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A model is presented for the class of inductive inference problems 
that are solved by refinement algorithms - that is, algorithms 
that modify a hypothesis by making it more general or more spe- 
cific in response to examples. The separate effects of the syntax 
(rule space) and semantics, and the relevant orderings on these, 
are precisely specified. Relations called refinement operators are 
defined, one for generalization and one for specialization. Gen- 
eral and particular properties of these relations are considered, 
and algorithm schemas for top-down and bottom-up inference 
are given. Finally, difficulties common to refinement algorithms 
are reviewed. 

Introduction 

The topic of this paper is the familiar problem of inductive learn- 
ing: determining a rule from examples. Humans exhibit a strik- 
ing ability to solve this problem in a variety of situations - to 
the extent that it is difficult to believe that a separate algorithm 
is at work in each case. Hence, in addition to the problems of 
implementing real systems that learn by example, there is the 
challenge of identifying fundamental principles that underlie this 
sort of learning. 

As an illustration of the basic ideas, consider the following 
concept-learning problem (adapted from [Mitchell, 19821). Ob- 
jects have three attributes: size (large, small), color (red, yel- 
low, blue), and shape (triangle, circle). A concept consists of an 
ordered pair of objects, possibly with some attributes left un- 
determined. For example, C = {(large ? circle), (small ? ?)} 
represents the concept “a large circle of any color, and any small 
object”. There is a most-general concept ( { (? ? ?), (? ? ?)}) 
and a large number (144) f o most-specific concepts (both ob- 
jects fully specified). Examples, or training instances, can be 
positive or negative: {(large blue circle), (small blue triange)} 
is a positive example of the concept C above, whereas {(large 
red triangle), (large blue circle)} is a negative example. If the 
current hypothesis excludes a positive example, the inference 
procedure must generalize it; and if it includes a negative exam- 
ple, the procedure must make it more specific. Every domain 
has rules for making a hypothesis more or less general; here, 
a concept can be generalized by changing an attribute from a 
specific value to ‘?‘, or specialized by the inverse operation. 

l Work funded in part by the National Science Foundation, under Grants 
MCS8002447 and DCR8404226. 

The essential features of this simple illustration apply to 
many inductive learning problems in a variety of domains: for- 
mal languages and automata (e.g., [Angluin, 19821, [Crespi- 
Reghizzi, 19721); programming languages (e.g., [Hardy, 19751, 
[Shapiro, 19821, [Summers, 19771 ); functions and sequences 
([Hunt et al., 19661, [Langley, 19801); propositional and pred- 
icate logic ([Michalski, 19751, [Shapiro, 19811, [Valiant, 19841)) 
and a variety of representations specific to a particular domain 
(e.g., [Feigenbaum, 19631, [Winston, 19751). 

From the experiences of many researchers (see, for exam- 
ple, [Angluin and Smith, 19831, [Banerji, 19851, [Cohen, 19823, 
[Michalski, 19831 f or summaries), a number of general guidelines 
have been suggested: 

Define a space of examples and a space of rules rich enough 
to explain any set of examples. 

Given some examples and a set of possible hypotheses, 
generalize the hypotheses that fail to explain positive ex- 
amples, and specialize hypotheses that imply negative ex- 
amples. 

If possible, represent examples in the same language used 
to express the rules. 

Our goal is to present a formal model to unify many of the 
ideas common to these domains. The value of such a formalism 
is that the essential features of the inductive component of a 
projected application can be identified quickly, and basic algo- 
rithms constructed, without the need to rediscover these ideas 
from first principles. Another advantage is that the abstract 
properties and limitations common to algorithms based on this 
model can be identified and studied without reference to the 
details of a particular application. 

This report is necessarily brief, with only the outlines of 
the principal concepts given, plus examples to illustrate their 
application. More details, examples, and proofs are available in 
the full report ([Laird, 19851). 

Inductive Inference Problems 

Definition 1 An inductive inference problem has six compo- 
nents: 

l A partially ordered set (D, >), called the semantic domain. 

l A set E of expressions over a finitely presented algebra, 
called the syntactic domain. 
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A mapping h: E + D such that every d in D is h(e) for 
some expression e in E. 

A designated element do of D, called the target object. 

An oracle, EX, for “examples” of do, in the form of signed 
expressions in E. If EX() returns +e, then do 2 h(e), and 
if EX() returns -e, then do 2 h(e). 

An oracle (>?) for the partial order, such that (ei > ez?) 
returns 1 if h(el) 2 h(ea), and 0 otherwise. 

The examples below will help this definition seem less ab- 
stract. It is more general than most definitions of inductive 
inference, in that target objects need not be subsets of some set; 
instead, they are simply elements of a partial ordering. Rules 
are expressions over some algebra which is expressive enough to 
name every possible target object. The mapping h is the asso- 
ciation between rules and the objects they denote. Note that 
h may map more than one expression to the same semantic el- 
ement; if h(el) = h(ez), th en ei and ez are called h-equivalent 
rules. There may, of course, be different syntactical representa- 
tions of one semantic domain (grammars, automata, logical ax- 
ioms, etc.); according to this model, the problem changes when 
a new syntax & is adopted. 

Examples are elements of the same set & of expressions: i.e., 
every expression in E is potentially an example - positive in case 
its semantic representation is no greater than than the target, 
and negative otherwise. In practice, the set of examples is often 
limited to a subset of the expressions (see below). The oracle 
EX represents the mechanism which produces examples of the 
target; in actuality, examples may come from a teacher, a ran- 
dom source, a query-answering source, or combinations of these. 
Note that EX depends on the target object do. 

The oracle (z?) serves to abstract the aspect of the problem 
concerned with testing whether an expression imples an exam- 
ple. In practice, the complexity of this problem ranges from 
easy to unsolvable. By oracularizing it we are choosing to ig- 
nore the complexity of this problem while we study the abstract 
properties of inductive inference. 

Example 1 Let X = {xi,. . . ,xt} be a finite set, and D = 2x, 
the set of subsets of X. For example, X might denote a set 
of automobile attributes (sedan, convertible, front-wheel drive, 
etc.), while an element of D specifies those attributes possessed 
by a particular model. Let D be partially ordered by 2, the 
containment relation. There are many possible languages for 
representing D, such as the conventional one for set theory. A 
more algebraic language is a Boolean algebra over the elements 

Xl,..., it with elements of D represented by monomials of degree 
t (minterms). Thus the empty set is represented by xi . , . xi (x’ 
denotes the complement of z), and {xi} = h(x1xhxi . . . xi). In 
this case h is a bijection between minterms and elements of D. If 
ml and mz are minterms, then ml is a positive example of m2 iff 
every uncomplemented variable in ml occurs uncomplemented 
in mz. 

Example 2 Let D be the class of partial recursive functions 
mapping integers to integers. If fr and f2 are functions in D, 
define fl 1 f2 iff for every integer x such that f2(x) is defined, 

fdx) = fi(x)- A convenient language for representing the func- 
tions in D is the subset of LISP expressions mapping integers 
to integers. If P is such a program, then h(P) is the partial 
function computed by P. Consider the function f(x) = x2. A 
positive example of f is the program (LAMBDA (X) (COND ((= 
X 2) 4))). Intuitively, this example states that f (2) = 4 with- 
out giving any other values of f. The problem of deciding for 
two arbitrary programs Pi and P2 whether Pr > Pz is, of course, 
recursively unsolvable. 

The general inductive inference problem allows any expres- 
sion in E to be an example. More often we are limited to a 
subset of E for examples (e.g., in Example 2 above, we may be 
given only programs defined on a single integer rather than ar- 
bitrary programs). But what property guarantees that a subset 
of E .is sufficient to identify a target uniquely? 

Definition 2 Let S be a set of examples of do. An expression 
e is said to agree with S if for every positive example e+ in S, 
h(e) 2 h(e+), and for every negative example e- in S, h(e) 2 
h(e-). 

Definition 3 A suficient set of examples of do is a signed sub- 
set S of E with the property that all expressions that agree with 
S are h-equivalent and are mapped by h to do. 

Example 3 In Example 1 above, a sufficient set of examples 
for any target can be formed from only the t minterms with 
exactly one uncomplemented variable. In Example 2, a sufficient 
set of examples can be constructed from programs of the form: 
(LAMBDA (X) (COND ((= X i> j 1))) where i and j are integer 
constants. 

Example 4 In many concept-learning problems, objects pos- 
sess a subset of some group of t binary attributes, and a concept 
is a subset of the set of all possible distinct objects. A “ball”, 
for example, might denote the concept consisting of all objects 
with the “spherical?” attribute, regardless of other attributes 
(“red?“, “wooden?“, etc.). As a formal expression of this do- 
main, let (51,. . . , xl} be Boolean variables, and D the set of 
sets of assignments of values (0 or 1) to all of the variables, par- 
tially ordered by 2. For syntax we may take the set of Boolean 
expressions; h maps an expression to the set of satisfying as- 
signments. Expression er is an example of ez iff the Boolean 
expression “er + e2” is a tautology (+ denotes implication), 
since then any assignment satisfying ei then must also satisfy 
eg. A sufficient set of examples for any expression can be formed 
from the set of minterms, since these represent a single assign- 
ment. 

Finally, note that for every inductive inference problem there 
is a dual problem, differing only in that D is partially ordered 
by 5 (rather than 2). Then er is a positive example of eg if 
e2 5 ei, and a negative example otherwise. 

Refinements 

In most applications, the mapping h: & --) D is not just an 
unstructured assignment of expressions to objects. Usually there 
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is an ordering k of the expressions that is closely related to that 
on the underlying semantics. For example, referring again to 
the size-color-shape example in the introduction, we see that 
the syntactic operation of replacing an attribute (“red”) by the 
don’t-care token (“?“) corresponds semantically to replacing 
the set of expressed objects by a larger set. The ordering k may 
only be a quasi-ordering (reflexive and transitive but not anti- 
symmetric). But we can still use it to advantage in computing 
generalizations and specializations of hypotheses, provided it has 
three properties: an order-homomorphism property with respect 
to h; a computational sub-relation called a refiraement; and a 
completeness property. These we shall now define. 

Definition 4 Let ? be an ordering of E. The mapping h: E + 
D is said to be an order-homomorphism if, for all el and e:! in E 
such that el k e2, h(el) 2 h(e2). 

Example 5 Referring back to Example 1, let rn:! k ml if every 
uncomplemented variable in ml also occurs uncomplemented in 
m2. Then h is an order-homomorphism. 

In Example 2, it is not clear how to define P2 > PI on arbi- 
trary LISP programs so as to form an order-homomorphism. In 
[Summers, 19771, this problem is solved by restricting the class 
of LISP programs to have a very specific form. 

Example 6 Because of the expressiveness of predicate calculus, 
many systems use a first-order language L (or subset thereof) 
as the syntactic component of the inference problem. But what 
is the semantic component, and how is it ordered? Example 
4 is the analogous case for propositional logic, where D con- 
sisted of sets of assignments, ordered by 2. With first-order 
logic, Herbrand models (i.e., sets of variable-free atomic formu- 
las) take the place of assignments, and D consists of classes of 
(first-order definable) H er rand models, ordered by 2. The sen- b 
tence ‘dx (red(;c)V - large(x)) designates the class of models in 
which everything that is large is also red. 

A syntactic ordering is as follows: given sentences (~1 and 
‘p2 in l, define ‘p2 k ‘p1 iff k ‘p1 - ~32 (where -+ indicates im- 
plication). It is easy to see that h is an order-homomorphism: if 
(~1 implies ‘p2, then any model of ‘p1 is also a model of cp2, and 
hence the models of cp1 are a subset of those of 92. 

The importance of t to inductive inference is as follows: 
Suppose a hypothesized rule e is found to be too general in the 
sense that there exists a negative example e- such that h(e) 2 
h(e-). Then (assuming h is an order-homomorphism) any new 
hypothesis e’ such that e’ t e will also be too general, and 
hence need not be considered. Similarly, if e is too specific, 
then any hypothesis e’ such that e ? e’ can be eliminated from 
consideration. 

In order to take advantage of the efficiency induced by the 
syntactic ordering k, we need the means to take an expression 
and obtain from it expressions that are more general or more 
specific. This leads to the notion of a refinement relation. 

Definition 5 An upward refinement 7 for k is a recursively 
enumerable (r.e.) binary relation on & such that (i) 7* (the 
reflexive-transitive closure of 7) is the relation 2; and (ii) for all 
el,e2 E l, if (el, e2) E 7 then h(el) 2 h(e2). The notation 7(e) 
denotes the set of espressions el such that (el, e) E y. 

There is a dual definition of a downward refinement p for 
an ordering 5: p* = 5, and if (el,e2) E p then h(el) < h(e2). 
Nearly everything true of upward refinements has a dual for 
downward refinements, but to save space we shall omit dual 
statements. 

The r.e. condition on refinements means that they can be 
effectively computed. Thus if e is found to be too specific, an 
inference algorithm can compute the set 7(e), and y of each 
of these expressions, etc., in order to find a more general hy- 
pothesis. We would like to know that, by continuing to refine 
e upward in this way, we will eventually obtain an expression 
for every object d more general than h(e). This motivates the 
completeness property of refinements. 

Definition 6 An upward refinement 7 is said to be complete 
for e E & if h(r*(e)) = {d 1 d 2 h(e)}. If 7 is complete for all 
e E E then 7 is said to be complete. 

Example 7 In the language of Example 1, let 7(m) be the 
set of minterms m’ obtained from m by uncomplementing ex- 
actly one of the complemented attributes. Thus 7(z~z~. . . xi) = 
{(XIX:. . . xi), (5’1x24.. . xi),. . . ) (2’1.. *x:‘tqxCt)}, and 

7(zlz2 - - . xt) = 0. It is easily seen that 7 is a complete upward 
refinement for minterms. A complete downward refinement for 
minterms 7(m) computes the set of minterms obtained from m 
by complementing one of the uncomplemented attributes. 

Example 8 Let & be the set of first-order clauses (i.e., disjunc- 
tions of atomic literals or their negation) with only universal 
quantification, assuming some fixed language Z. An upward re- 
finement for E (with respect to the ordering ? of Example 6) is 
as follows ([Shapiro, 19811): 

Let C be a clause. 7(C) is the set of clauses obtained from 
applying exactly one of the following operations: 

Unify two distinct variables x and y in C (replace all oc- 
currences of one by the other). 

Substitute for every occurrence of a variable x a most- 
general term (i.e., function call or constant) with fresh 

variables. (For example, replace every 5 by f(x1) where f 
is a function symbol in C and x1 does not occur in C.) 

Disjoin a most-general literal with fresh variables (i.e., 

P(XI> or - 14x1>, where p is a predicate symbol and x1 
does not occur in C). 

For example, let r(x, y) stand for the relation Z- is-a-blood- 

relative-ojy, j(x) f or le tl f unction the-father-ojx, and m(s) for 
the function the-mother-ojx. Let C be the clause 7.(x, j(y)) -+ 
r(x, y), meaning that if someone is related to a person’s father, 
then he is related to that person. The following clauses are all 
in 7(C): 

0 r(x, j(x)) -+ r(x:x) 

l f+4 4 , f M ) - +( 4, d 

l +, f(y)) - (4x, Y) V +I, ~2)) 

Each of the derived clauses is easier to satisfy and hence has 
more models. 
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More examples of refinements over various domains are given 
in [Laird, 19851. The task of constructing a refinement can be 
tricky, because one must ensure that all useful generalizations or 
specializations have been included. But given the formal defini- 
tion, it is basically a problem in algebra, rather than a heuristic 
problem as has usually been the case for most applications. In 
essence, the refinement is a formal expression of the “production 
rules” or “generalization rules” found in many implementations 
(e.g., [Michalski, 19801, [Mitchell, 19771). 

Below we sketch a simple “bottom-up” algorithm for induc- 
tive inference using an upward refinement. For simplicity we 
assume that 

1. 7(e) is finite for all e. (7 is then said to be locally finite.) 

2. There is an expression emin E & such that e ? emin for all 
eE t. 

3. 7 is complete for emin. 

The algorithm repeatedly calls on EX and tests the current 
hypothesis against the resulting example. If the hypothesis is 
too specific, it refines it, placing the more general expressions 
onto a queue and taking a new hypothesis from the front of 
the queue. If the hypothesis is too general, it discards it (with 
no refinement) and takes a new one from the queue. It can be 
shown that the algorithm will eventually converge to a correct 
hypothesis provided EX presents a sufficient set of examples for 
the target. 

ALGORITHM UP-INFER: 
Initialize H + emin. 

QUEUE + emptyo. 
EXAMPLES + empty0. 

Do Forever: 
EXAMPLES + EXAMPLES U {EXO}. 
While H disagrees with any EXAMPLES: 

Using the (>?) oracle, check 
that Hz no negative examples, and 
H 2 some positive example. If so, 
add 7(H) to QUEUE. 

H + front(QUEUE) . 

By duality we can construct a top-down algorithm using 7 
and emoz. Other algorithms are also possible, depending on 
the properties of the domain and the refinements. Most induc- 
tive inference algorithms in the literature are either top-down 
or bottom-up ([Mitchell, 19821 suggests using both in parallel). 
And for some domains, one direction seems advantageous over 
the other (conjunctive logical domains, for example, seem to pre- 
fer generalization to specialization). This directional asymmetry 
seems to occur mainly when the refinement is locally finite in 
one direction but not in the other. Note that this is a syntactic 
property, not a semantic one: regular sets of strings, for exam- 
ple, are easier to infer bottom-up when the rules are expressed as 
automata or as logical axioms ([Biermann and Feldman, 19721, 
[Shapiro, 1981]), but top-down when the rules are expressed as 
regular expressions ([Laird, 19851). 

Finally, it is worth observing how refinement algorithms han- 
dle the so-called Disjunction Problem. In the context of classical 

concept-learn 7, this refers to the problem of forming a “rea- 
sonable” gener. _ization from examples in a domain that includes 
a disjunction operation. The trivial generalization, consisting of 
the disjunction of all the positive examples, is usually unsuit- 
able since it will never converge to a hypothesis representing an 
infinite set. On the other hand, it is undesirable to eliminate 
the trivial generalization as a possibility, since it might lead to 
the correct rule. 

Since refinement algorithms such as the one above apply the 
operator 7 to hypotheses in the order in which they are dis- 
carded, the minimal generalization (adding only the one element 
to the set) is not necessarily the first one tried. For example. 
suppose the domain is the class of regular sets of strings over 
the alphabet (0, l} and examples are strings in and not in the 
target set. If the current hypothesis is represented by a regular 
expression R, and a string w1 is presented that is not included 
by R, a refinement algorithm will generalize by applying 7 to 
R, producing a set of new expressions to be tried in turn as 
hypotheses. Among these are expressions which extend R to 

R + WI; but other expressions, such as R*, will also be con- 
structed and held on the queue in order. If another positive 
example w2 is presented, R + w1 will be discarded, but R’ will 
be considered before the refinements of R + w1 (including the 
trivial one R + w1 + ~2). It can be shown that the algorithm 
will converge to a correct expression, whether or not the target 

is a finite set of strings. 

Limitations of the Refinement Approach 

The induction-by-refinement model is not expected to yield effi- 
cient algorithms directly since it is too general to take advantage 
of specific properties of the domain. Instead, the primary value 
of the model is the way it clarifies the important roles played 
by the semantic and syntactic orderings, and in the definition of 
refinement operators for computing appropriate generalizations 
and specializations of hypotheses. Recently several researchers 
have been looking for efficient inference algorithms that yield 
(with high probability) rules whose “error” is arbitrarily small, 
as measured by the probability distribution governing the pre- 
sentation of examples ([Valiant, 19841, [V&liant, 19851. [Blumer 
et. al., 19861). I n many of these algorithms, a refinement op- 
eration is clearly being employed; but instead of generating all 
refinements 7(e), the examples are used to reduce the set of pos- 
sibilities - e.g., 7(e, Z) is computed using the example Z. yielding 
more general expressions that are consistent with .z. 

There are many domains in which the partial order is too 
linear or too “flat” to be of much use in searching for hypothe- 
ses. Consider, for example, the problem of finding an arithmetic 
recursion relation of the form sn = j(sn-1) to explain a se- 
quence of integers. We might, for instance, try the hypothesis 

2 s, = s,-1 + 5 and find that it explains only one integer in the 
sequence. At this point, the “less defined than or equal to” or- 
dering used in Example 2 is no more useful for finding a more 
general function than a simple generate-and-test approach. 

Refinement algorithms have generally performed poorly when 
the examples are subject to “noise” (e.g., [Buchanan and Mitchell, 
19781). They also tend to require that all examples be stored, so 
that later refinements can be tested to avoid over-generalization 
or -specialization (e.g., [Shapiro, 19821). These two limitations 
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are inevitably related: for, a procedure which is tolerant of faulty 
examples cannot expect to find a hypothesis consistent with ev- 
ery example seen so far and hence must be selective about the 
examples it chooses to retain. It is interesting to note that nearly 
all refinement algorithms in the literature refine in only one di- 
rection (up or down). Consequently these algorithms cannot 
recover if they over-refine in response to a faulty example. By 
contrast, an algorithm which can refine upward and downward 
has the potential for correcting an over-generalization resulting 
from a false positive example when subsequent examples so in- 
dicate (e.g., [Shapiro, 19821). 

Finally - and most serious - the refinement technique relies 
on a fixed algebraic language, without suggesting any way to 
incorporate new “terms” or “concepts” into the language. In the 
learning of geometric shapes, for example, we could in principle 
define complex patterns in terms of the elementary relations 
of the language (edge, circle, above, etc.), but the description 
would be too complex to find by searching through the rule 
space E. By contrast, a suitable set of higher-level concepts 
(e.g., triangle, box, inside) could make the refinement path to 
a successful rule short enough to find by searching. But I am 
unaware of any general technique for discovering such new terms 
(other than having a friendly “teacher” present them explicity). 
A successful model of this process would be a significant advance 
in the study of inductive learning. 

[8] Crespi-Reghizzi, S. An effective model for grammar infer- 
ence. In Information Processing 71, B. Gilchrist, ed. 
New York: Elsevier North-Holland, 1972, pp. 524-529. 

[9] Feigenbaum, E. A. The simulation of verbal learning be- 
havior. In Computers and Thought, E. A. Feigenbaum 
and J. Feldman, eds. New York: McGraw-Hill, 1963. 

[lo] Gold, E. M. Language identification in the limit. Infor- 
mation and Control IO (1967) 447-474. 

[ 11) Hardy, S. Synthesis of LISP programs from examples. Proc. 
IJCAI-75, pp. 268-273. 

[12] Hunt, E. B., J. Marin, and P. J. Stone. Experiments in 
Induction. New York: Academic Press, 1966. 

[13] Laird, P. D. Inductive inference by refinement. Tech. Rpt. 
376, Department of Computer Science, Yale Univer- 
sity, New Haven, Ct., 1986. 

[14] Langley, P. W. Descriptive discovery processes: experi- 
ments in Baconian science. Tech. Rep. CS-80-121, 
Computer Science Department, Carnegie-Mellon Uni- 
versity, 1980. 

[15] Michalski, R. V ariable-valued logic and its applications to 
pattern recognition and machine learning. In Com- 
puter Science and multipte-valued logic theory and ap- 
plications, D. Rine, ed. Amsterdam: North-Holland, 
1975, pp. 506-534. 

[16] Michalski, R. Pattern recognition as rule-guided inductive - _ 
inference. IEEE Trans. Pat. Anal. and Mach. Intel. 
(PAMI-2):4 (1980) 349-361. 

Acknowledgements 

I am especially grateful to Dana Angluin for many helpful dis- 
cussions of this work. Thanks also to Takeshi Shinohara, whose 
careful reading of the original report identified some errors and 
improved the exposition. 

[17] Michalski, R. Theory and methodology of inductive learn- 
ing. AI 20:2 (1983) 111-161. 

[18] Mitchell, T. M. Version Spaces: a candidate elimination 
approach to rule learning. Proc. IJCAI-77, pp. 305- 
310. 

References 
[19] Mitchell, T. M. Generalization as search. Artificial Intel- 

ligence l8:2 (1982) 203-226. 

[l] Angluin, D. Inference of Reversible Languages. J. ACM 
293 (1982) 741-765. 

[2] Angluin, D. and C. H. Smith. Inductive Inference: theory 
and methods. Computing Surveys 15~3 (1983) 237-269. 

[3] Banerji, Ranan. The logic of learning. In Advances in 
Computers 24, M. Yovits, ed., Orlando: Academic 
Press, 1985, pp. 177-216. 

[4] Biermann, A. W. and J. Feldman. On the synthesis of 
finite-state machines from samples of their behavior. 
IEEE Trans. Comput. C-21 :6 (1972) 592 - 597. 

[5] Blumer, A., A. Ehrenfeucht, D. Haussler, M. Warmuth. 
Classifying learnable geometric concepts with the Vap- 
nik-Chervonekis Dimension. Proc. 18th ACM Symp. 
Theory of Comp. May, 1986. 

[6] Buchanan, B. G. and T. M. Mitchell. Model-Directed 
learning of production rules. In Pattern-directed in- 
ference systems, D. A. Waterman and F. Hayes-Roth, 
eds. New York: Academic Press, 1978, pp. 297-312. 

[7] Cohen, P. R. and E. A. Feigenbaum, eds. The handbook 
of artificial intelligence, Vol. III. Los Altos: William 
Kaufmann, Inc., 1982. 

[20] Shapiro, E. Y. (1981). Inductive inference of theories from 
facts. Tech. Rep. 192, Department of Computer Sci- 
ence, Yale University, New Haven, Ct., 1981. 

[21] Shapiro, E. Y. (1982). Algorithmic program debugging. 
Ph. D. dissertation, Computer Science Department, 
Yale University, New Haven, Ct., 1982. Published by 
M.I.T. Press. 

(221 Summers, P. D. A methodology for LISP program con- 
struction from examples. J.ACM 24 :1 (1977) 161-175. 

[23] Valiant, L. G. A theory of the learnable. C. ACM 27:ll 
(1984) 1134-1142. 

[24] Valiant, L. G. Learning disjunctions of conjunctions. Proc. 
IJCAI-85, pp. 560 - 566. 

[25] Winston, P. H. Learning structur’al descriptions from ex- 
amples. In Psychology of Computer Vision, P. H. Win- 
ston, ed. New York: McGraw-Hill, 1975. 

476 / SCIENCE 


