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ABSTRACT 

Rational inductive behaviour is strongly influenced by ex- 
isting knowledge of the world. This paper begins to elucidate 
the formal relationship between the base-level induction to be 
attempted, the direct evidence for it (positive and negative in- 
stances) and the indirect evidence (higher-level regularities in 
the world). By constructing a program to search the space 
of forms of higher-level regularity WC discover some important 
new forms which have direct application to analogy, single- 
instance generalization and enumerative induction in general. 
We outline a theory which we hope is the first step towards 
the construction of powerful and robust learning systems. * 

I INTRODUCTION 

Ultimately, the source of all our knowledge of the world 
must be observation, either direct, communicated or inherited. 
One of the principal problems of philosophy has been to ex- 
plain how this accumulation of observations can be used to fill 
in the gaps in our knowledge, particularly of the future. With- 
out such an ability, rationality, which requires the prediction 
of the outcome of our actions, would be impossible. In AI, 
the problem is doubly acute: not only do we desire to under- 
stand the process for its own sake, but also without such an 
understanding we cannot build machines that learn. The basic 
answer to the problem is that we come to believe in some gen- 
erally applicable rules (universals) by a process of induction 
from prior instances of their application; we then apply these 
rules in situations of incomplete knowledge using deduction. So 
far, so good. In AI, the two halves of the process correspond 
roughly to the division into the areas of machine learning and 
knowledge-based systems. Analogy, which seems at first sight 
to defy this classification, is shown in [Davies & Russell 861 to 
belong more to the deductive phase. 

In this paper, our object is to make some progress towards 
a theory of induction which will prescribe, as far as is possi- 
ble, the correct inductive behaviour for an intelligent system. 
As explained below, one essential element of this task is to 
explicate the way in which existing world knowledge affects a 
system’s inductive acquisition of new knowledge. This need is 
pointed out in [Michalski 831. In order to explain how present- 
day intelligent systems (such as ourselves) have arrived at our 
degree of understanding of the world, given the fact that at the 
beginning of evolutionary history there was no existing knowl- 
edge, our theory must provide a formal relationship between 
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the system’s existing knowledge and the universal to be in- 
duced; put simply, we seek a domain-independent theory. The 
basic problem to be solved is this: given a mass of ground facts 
and no other domain knowledge, what can be inferred? 

As mentioned earlier, we perform inductions on the ground 
facts to obtain universals. Enumerative induction is just 
the simple process by which, from a collection of instances 

. a, satisfying P(u,) and Q(ai), we induce the general rule 
i&‘(z) + Q(x)]. Th e search for a rationale for this induc- 
tive step seems to be circular: we use it because it has always 
worked, but the belief that this means it will work in the fu- 
ture requires an inductive step. This is Hume’s Problem of In- 
duction, which, according to modern interpretation, he rightly 
deemed to be inherently insoluble. If we could prove an enu- 
merative induction to be valid, this would amount to prevision 
of the future, a scientifically dubious concept.* 

Intuitively, an enumerative induction is made more certain 
by the discovery of further confirming instances as long as no 
disconfirmation occurs. This model of induction is somewhat 
different from the version space approach to concept learn- 
ing ([Mitchell 78]), in which the generalizations produced are 
justified by a linguistic bias which limits the set of allowable 
generalizations so that if only one of the set is consistent with 
the observations then it is assumed to be true. This means 
that the number of confirming instances is ignored. Moreover, 
the factual content of the linguistic bias is neither elucidated 
nor motivated (but see [Utgoff 841); in this light it is hard to 
view the version space approach as a form of inference. This 
issue is also discussed in [Dietterich 861. The problem with 
which we are concerned is not just the selection of an appro- 
priate generalization for some data, but the assessment of its 
probable truth; selection derives automatically from this if we 
select the most probable generalization. 

In particular, we wish to investigate why one generaliza- 
tion may be given a great deal of credence, whilst another is 
regarded very suspiciously, even though they both have the 
same number of positive instances and no negative instances. 
For example, consider the case of the traveller to Italy meeting 
her first Italian. On hearing him speak Italian, she immedi- 
ately concludes that all Italians speak Italian; yet on discov- 
ering that his name is Giuseppe, she doesn’t conclude that all 
Italians are called Giuseppe. Clearly, the difference lies in the 
traveller’s prior knowledge of countries, languages and names. 

Goodman’s classic example of grue emeralds is another case 
in point, which he used in [Goodman 461 to refute the early 
claims of the confirmation theorists (Carnap and others) that 
the probability of a proposition could be inferred from its in- 
stances and syntactic form alone. In Goodman’s example, we 

* For, despite our best predictions, the whole world could be 
swallowed tomorrow by a giant intergalactic toad ([Hoppe]). 
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are to evaluate the two inductions 
1) All emeralds are green 
2) All emeralds are grue 

given that all the millions of emeralds observed to date are 
green, where grue means ‘green if observed before tomorrow, 
and blue if observed thereafter’. Both have the same over- 
whelming collection of positive instances, but the second seems 
somewhat undesirable. Goodman’s answer to what became 
known as the ‘new riddle of induction’ is that the rule must be 
projectible. We will return to the definition of projectibilitp in 
a later section. In spirit, his answer is the same as ours: 

“\Yhile confirmation is indeed a relation between cvi- 
dence and hypotheses, this does not mean that our def- 
inition of this relation must refer to nothing other than 
such evidence and hypotheses. The fact is that when- 
ever we set about determining the validity of a given 
projection from a given base, we have and use a good 
deal of other relevant knowledge.” ([Goodman 8.31 pp. 
845). 

The object of this paper is to show what this knowledge con- 
sists of, and to show how it can be found and used to give 
additional confirmation to enumerative inductions. What we 
want is a theory which will be able to start with nny body of 
knowledge of any world (preferably in wff form), and say which 
inductions are reasonable and which aren’t. We therefore re- 
quire that the ‘other relevant knowledge’ have a syntactic rela- 
tionship to the evidence and inductive hypothesis, since other- 
wise the theory itself will be assuming something factual about 
the world, and hence will fail when applied to a world in which 
the factual assumption is false. In this, we strongly disagree 
with [Holland et al. 861, who say “In essence, our approach is 
to deny the sufficiency of purely syntactic accounts . . . and to 
insist that sensible inferential rules take into account the kinds 
of things being reasoned about.” We believe that such an ap- 
proach simply begs the question of how such world-dependent 
rules could ultimately be acquired, except by some syntactic 
process; moreover, a physical system seems fundamentally in- 
capable of performing anything but syntactic processes. For- 
tunately, in a formal system, logical entailment is a syntactic 
relationship (this is the fundamental achievement of the study 
of logic since Aristotle) and will play a large role in our theory. 

If we are to build systems which observe an environment 
containing regularities and make use of them via the process of 
induction, we must be able to eliminate such spurious induc- 
tions as ‘all emeralds are grue’. It might be argued that Good- 
man is playing the sophist here; a philosopher might wish to 
know why emeralds are not considered grue, but the AI prag- 
matist might object that this is creating difficulties for the sake 
of it, and that we can avoid such problems in real systems just 
by not coining absurd, unmotivated concepts. However, an 
AI system needs to coin new terms (see? e.g., [Lenat 83a,83b], 
[Lenat et al. 791); not being endowed with common sense, an 
AI system is quite likely to generate terms as absurd as ‘grue’, 
and thus we need a theory to guard against inductions using 
them and a theory to help avoid their generation. At a more 
basic level, we wish to avoid calling all Italians Giuseppe. 

II HIGHER-LEVEL REGULARITIES 

The fundamental idea which we aim to expound and for- 
malize is that an inductive generalization can be confirmed 
or disconfirmed, not only by the observation of its own in- 
stances or counter-examples, but also by the observation of 

other, higher-level regularities in the world. Naturally, these 
regularities will be based on other instances and, in turn, on 
other regularities. The general idea is to bring our outside 
experience to bear on whether to accept a given rule. It is 
extremely rare for inductions to be performed in vucuo. In the 
case of the traveller in Italy, the generalization that all Italians 
speak Italian is supported by the more general regularity that, 
within any given country, most people tend to speak the same 
language; on the other hand, Giuseppe is not assumed to be 
the name of all Italians because of the higher-level regularity 
that almost all social groups use a variety of names. Assum- 
ing that emeralds are grue contradicts the general rule that 
intrinsic properties of objects don’t change, particularly not 
over a whole class and particularly not in response to some ab- 
solute time point (as opposed to a time point related to each 
individual). Some philosophers have objected to the use of 
such properties as grue in inductions on the grounds that they 
are intrinsically disjunctive ([Sanford 70]), not ostensively de- 
finable ([Salmon 74]), positional and non-qualitative ([Barker 
& Achinstein SO]) and epistemologically inferior ([Swinburne 
731). But to the little-known species of bond-weevil that lives 
exclusively on unmatured, fixed-date, treasury bonds, proper- 
ties such as ‘grue’ will seem perfectly natural and useful. A 
theory of induction cannot, therefore, rest on ‘intrinsic’ prop- 
erties of the induced rule, but on its relation to the sum of our 
knowledge of the universe. 

In this paper, we will concentrate on confirmatory, rather 
than disconfirmatory, regularities. Our proposal is that each 
such regularity corresponds to a universally quantified propo- 
sition which, if taken as literally true, would be sufficient to 
deductively imply the base-level generalization we are at-tempt- 
ing, given its observed, positive instances. Furthermore, if the 
higher-level regularity is to provide additional confirmation, it 
must have positive instances, preferably a large number, which 
are not instances of the base-level rule. This is the external ev- 
idence requirement. In a formal system, therefore, the higher- 
level regularities have the desired syntactic relationship to the 
base-level rule (see the discussion of the syntactic requirement 
in the Introduction). The higher-level regularities, in turn, 
may be confirmed by regularities at a still higher level, until 
ultimately we have to give in to the necessity to do simple 
enumerative induction. In essence, therefore, we are trying 
to bring deduction to the aid of induction as far as possible, 
as a means of allowing our world knowledge to influence our 
inductive processes. 

In the remainder of this paper, we describe the following 
steps in the process of building a theory of induction: 

1) Construction of the space of possible classes of higher- 
level regularities. 

2) Searching the space for interesting classes. 
3) Analyzing the results of the search. 
4) Applying the results. 

III CONSTRUCTING THE SP.4CE OF 
HIGHER-LEVEL REGULARITIES 

For any particular induction, we can often think of some 
higher-level rule, derived from our experience, which either 
confirms or denies it, as in the Italian case. In order to auto- 
mate this process, we need to elucidate the formal relationship 
between the base-level and the general rule. We must also en- 
deavour to identify all such classes of general rules, in order 
that 
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1) We can take into account all the applicable higher-level 
rules already known. 

2) We can perform further inductions to decide if a poten- 
tially relevant higher-level regularity actually holds. 

As mentioned above, the higher-level rule; if literally true, 
should form part of a deductive argument, together with the 
base-level instances, leading to the affirmation of the base-level 
rule. Our approach is therefore to construct the space of all 
possible deductive arguments that lead to the base-level rule 
as their conclusion. The construction is schematic, i.e., we use 
generalized predicate schemata P and Q as antecedent and COII- 

sequent, and the results we are looking for are thus schematic 
classes of regularities, such that when faced with the task of 
confirming a given induction, we can instantiate the schematic 
rule appropriately and use it for steps 1) and 2) given above. 

In order to maintain completeness, we construct all resolu- 
tion proofs of the base-level rule, given the instances. In de- 
scribing how to do this, we will use rules with unary predicates, 
for simplicity. As we show below, this results in an overly- 
restricted space of first-order regularities; this restriction is re- 
lieved by using binary predicates. The simplest schematic rule 
is Vz[P(x) =s- Q(z)]; we must find those sets of facts which, 
when combined with the instances and the negation of the 
rule, lead to a contradiction. 

We thus begin with t,he negation of the rule, which, in 
clausal (CNF) form, is 

Pb> 

1QW 
for some skolem constant a; we then ask what other facts could 
be added to lead to a contradiction. To cut a long story short, 
the only interesting fact we can add is the rule itself, written 
+‘(W Q( > 5 in CNF. Thus our task becomes that of find- 
ing all sets of facts which can be resolved, together with the 
instances, to leave the base-level rule as the only remaining 
clause. Since a resolution step removes two complementary 
literals: our reverse resolution algorithm takes as input the 
current state of the database, then generates all possible new 
pairs of complementary literals (and finds all possible existing 
clauses to which they could be added), such that if the litcrals 
were resolved the database would be left in the current state. 
The literals we introduce can contain any existing predicate, 
variable or constant, or include a new one of each (designated 
R;, y;, b; respectively; we choose not to include function sym 
bols in our language). * Thus two possible ‘parent’ databases 
of the database containing just the clause UP V Q(z) are 

-(xc> v RI@) and -I(YI) v +W v Q(d 
-1(4 v Q(x) h(h) 
As one might suspect, the space is quite large (in fact, dou- 

bly exponential): the base-level database MY V Q(x) has 
20 possible parents; at the second level the average database 
has around 350 parents. Although we will not discuss them 
here, our implementation therefore includes a number of prun- 
ing heuristics which keep the search manageable without losing 
any of the interesting points in the space. Another modifica- 
tion is to introduce the instances in a ‘macro-move’: for the 

* The exact details of the algorithm used are not important 
here; one can imagine constructing a simple PROLOG predi- 
cate resolve(Clause1, Clause,?, Clause) which suceeds iff Clause 
is the result of resolving Clause1 and Clause2; we then in\-okc 
the predicate with only the Clause argument instantiated. 

itt” instance we add the literals P(c~i) and Q(a;) as separate 
clauses, along with their complementary literals attached to 
ot,her part,s of the dat,abase, all in one step. 

IV SFARCHING THE SPACE 

So far we have given a somewhat simplistic picture of the 
space of regularities we have constructed. As soon as we start 
searching it, we realize that many of the regularity classes are 
simply not plausible; that is, they fail to correspond to any 
possible regularity in the actual world. Unfortunately, this is a 
hard condition for any machine with limited experience to rec- 
ognize. For this reason, we currently use a human evaluator for 
nodes in the space, so that the machine follows paths that the 
author thinks promising. As a preliminary measure, this has 
been quite successful; however, to attain our goal of a world- 
independent theory, and to explore more of the space, we also 
need to investigate how a machine can recognize that a given 
class of regularities is uncommon in the world of its experience. 
It is intended that such a capability be built into the proto- 
type system we have constructed; for our world-knowledge, we 
will use the broad, common-sense knowledge base of the CYC 
project ([Lenat et al. 861). I nasmuch as this knowledge base 
corresponds to our actual world, this will also constitute em- 
pirical research into the actual structure of high-level common- 
sense knowledge. 

It is important for our purposes that the causal structure 
of the world be such that there are really only a few important, 
classes of regularities. If this were not the case, then whenever 
we wished to confirm an induction it would be necessary to es- 
amine a large amount of potentially relevant information, and 
to perform a large amount of cumulative detection to maintain 
the currency of the stock of regularities. Our results so far in- 
dicate that there are grounds for optimism, at least in the real 
world. 

V RESULTS 

The following subsections describe the general classes of 
regularity which have been identified after searching the space, 
with the help of some additional thought. 1Ve start with the 
unary space to illustrate its restrictions, and then move to the 
binary space. In each section vve give the schematic, logical 
form of the regularity, display the deductive argument leading 
to the base-level rule, and give an example. Some of these 
classes were already known to us; others were quite unexpected 
(sections A and E), although perhaps obvious in retrospect. 
We are thus convinced of the usefulness of an automatic, (semi- 
)exhaustive generator of classes of deductive arguments. 

A. Rules with a more general left-hand side 
The simplest class of higher-level regularities consists of 

rules with the same consequent as the base-level rule but a 
weaker (more general) antecedent. Thus the rule 

V’r[A(z) 3 Q(x)] (where Wf’(~> * RWI) 
is sufficient to imply the base-level rule V.x[P(x) j Q(x)] di- 
rectly. 
Examples: 

a) .‘All social groups use a variety of names” confirms 
“All nations use a variety of names.” 
llcre P = Nation, Q = ~YameT’ari~ty, 
R = SocialGroup. 

b) “All things made of (a certain type of) beryl are green” 
confirms 
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“All emeralds are green.” 
Here P = Emerald, Q = Green, 
R = MadeOfBeryl. 

Because R is more general than P, the rule VZ[R(Z) =F Q(x)] 
can be confirmed by many instances which are not P; thus, if 
we have the appropriate data, it becomes easier to prove the 
more general rule than the more specific (base-level) rule. 

This class of confirmation has two apparently distinct in- 
terpretations. On the one hand, a) is ‘empirical’ in flavour: 
by observing lots of other social groups, we add plausibility 
to the base-level rule, but no explanation is offered. On the 
other hand, b) is causal in flavour, offering the beginning of an 
explanation. Two important points to note here: 

a No observations of positive instances of the base-level 
rule are required. 

l The ‘explanation’ type of support for the generalization 
is the starting-point for explanation-based generaliza- 
tion [Mitchell et al. 861, which also has no logical need 
for an instance of the proposed generalization; we can 
extend the basic principle by adding further intermedi- 
ary concepts, for example 

where S is ‘reflects light of wavelength 550 nm’. The 
process of explanation-based generalization uses exactly 
such a detailed, non-operational theory and compiles 
it into such useful encapsulations as “all emeralds are 
green ” and “never run outside during an earthquake”. 

B. Decision rules 

The only other simple regularity we have found so far in 
the unary space takes the form 

V~YPW A J=(Y) A Q(Y) * Q(41 

which can also be written as 

WW * Q(41 v WP(4 * ~QWI. 
In [Davies 851 these are called decision rules, because P decides 
the truth of Q. With one instance described by P(al) A Q(al), 
the base-level rule becomes deductively justified. 
Example: 

“Either all cars in Japan drive on the left, or they all 
drive on the right .” 

Once we see one car driving on the left, we know that all cars 
in Japan drive on the left. While it seems true that we can 
know this decision rule without having been to Japan, in fact 
it has no confirming instances that are not also instances of the 
base-level rule. Thus it does not satisfy the external evidence 
requirement. We actually believe it as a result of a further gen- 
eralization; if we restrict ourselves to formulae with only unary 
predicates, we must express this as a second-order regularity, 
by quantifying over the country predicate P: 

VP[NationaEityPredicate(P) I 

Vzy[P(x) A LeftDriver A P(y) 

* LeftDriwer( y)]] 

We will see in the next subsection that this awkward formula- 
tion is turned into a first-order sentence by using binary pred- 
icate schemata. 

C. Direct generalizations using binary predicates 
As noted above, using only unary predicates limits the rich- 

ness of the hierarchy of regularity classes; this limitation is 

eased when we use binary predicates. The base-level rule that 
we are now trying to confirm is written V’z[P(z,b) + Q(x,c)], 
where b and c are constants. In the unary space, the only in- 
teresting database that refutes the negation of the base-level 
rule was the rule itself. With binary predicates, we also have 
the following three ‘variabilization’ generalizations: 

D. 

V~YP’(~, Y> * Qb, 41 

v’s@‘(~, b) * Q(z, 41 

V~YZP(~, Y) * Q(v)l. 

More general rules using binary predicates 

The binary equivalent of the unary formulae for rules with 
more general antecedents is 

W&(~, al> * Q(G 41 
where Vz[P@, b) * &(z, al)]. 

Thus the rule “things made of beryl are green” is expressed as 

Vz[MateriaE(z, Beryl) + CoZour(z, Green)] 

The normal type of causal argument introduces a chain of 
intermediate predicates Ri using appropriate linking constants 
a;. 

A simple generalization relationship between P and R can 
also be used: 

‘WRl(z, b) * Qh 41 
where V~YW, Y> * Rda:,~)l. 

E. Determination rules 

The binary equivalent of a decision rule is called a determi- 
nation, a form which captures a very common and useful type 
of regularity. The form 

VWZY@‘(Z, w) A P(Y, w> A Q(Y, z> =+ Qb d] 
together with one instance described by P(a, b), Q(a, c) is suf- 
ficient to guarantee the base-level rule. 
Example: 

If NationaZity(s, w) means “x has nationality w”, and 
Language(z, Z) means ‘Ox speaks language z”, then the 
determination 

V’ws yz[Nationality(x, w) A Nationality( y, w) 

ALanguage(y, z) + Language(z, z)] 

T 

means “Nationality determines Language”, since it re- 
quires that any two people with the same nationality 
must speak the same language. With the observation 
of Giuseppe, an Italian speaking Italian, this gives us 
the base-level rule “All Italians speak Italian”. 

‘wo important points to note: 
Decision and determination rules find a common expres- 
sion in the extension of predicate calculus described in 
[Davies and Russell 861, which also shows this form of 
regularity to be the necessary background knowledge 
for the successful use of analogical reasoning. We de- 
fine a new connective, representing the determination 
relationship as P&w) > Q(z, 2). 
Determinations also provide a valid form of single- 
instance generalization which actually utilizes informa- 
tion contained in the instance in forming the general- 
ization. This contrasts with the explanation-based gen- 
eralization (EBG) technique which simply uses the in- 
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stance as a focus, assuming that the domain theory is 
already strong enough to prove the base-level rule. A 
corollary of this is that, by taking information from the 
instance, we can build a more powerful single-instance 
generalization system, in the sense that we can perform 
the generalization with a weaker domain theory. For ex- 
ample, using the determination “Nationality determines 
Language”, and one instance of an Italian, we predict 
that all Italians speak Italian; for an EBG system this 
would require a theory which could predict an entire Ian- 
guage (vocabulary, grammar and all) from facts about 
a nation - needless to say, no such theory is available. 

F. Extended determinations 
The regularity classes given above are sufficient to guaran- 

tee the generalization from no instances or from one instance. 
Yet quite often we find that one instance is not quite satisfy- 
ing, but after several confirmations we are happy. One way 
to account for this is to postulate that the appropriate deter- 
mination is only weakly supported, so that we need the extra 
instances to convince ourselves. A different way is to extend 
the search direction already taken to reach determination, by 
adding further instances: 

VWw,X,Yl,... , in, dP(x, w> A P(YI 7 w> A Q(YI, z)A 
. . . AP(yn, w> A Q(Y~, 4 =+ Qb ~>1 

together with n instances described by 

P(al,b), Q(al,c) -. . P(am,b), Q(anTc) 

is sufficient to guarantee the base-level rule 

‘W(x, b) =j Q(x, 41. 
The meaning of the exten ded determination (we 
determinationn) is clearly seen if we rewrite it: 

might call it 

\JW,Yl,-,Yn, ~[P(~l,w)AQ(yl,z)A... 

AP(ynL, w> A Q(Y~, z> 3 

‘WP(x, 4 * Q(x, 411 
Roughly this can be interpreted as follows “All enumerative 
inductions from n instances, with P as antecedent and Q as 
consequent, succeed.” This regularity can be confirmed by a 
history of such successful inductions, and thus the induction 
in question, Vx[P(x, b) 3 Q(x, c)] becomes justified. 

As an example, consider again the case of inducing the rule 
“all emeralds are green”, given n green instances. Formally, 
we write this as 

Vx[JeweZType(x, Emerald) + CoZour(z, Green)]. 

Now many jewel types are not uniform in colour (diamonds, for 
example, come in black, yellow, blue, pink and white) so the 
determination “jewel type determines colour” does not hold 
and we cannot perform a single-instance induction. However, 
as we explain below, the extended determination does still hold, 
so the n-instance induction is justified. 

If we have successfully induced the rules “all sapphires are 
blue”, “all rubies are red”, “all amethysts are purple” from 
collections of instances, then these will be positive instances of 
the extended determination, so it will be well-confirmed. But 
in the case of classes such as diamonds, the left-hand side of 
the extended determination isn’t satisfied, since it is unlikely 
that n instances of a variegated class are all the same colour; 
thus diamonds are not a disconfirming instance of the extended 
determination, and it remains well-supported. 

If, on the other hand, the Colour predicate admitted ar- 
guments like ‘gruezsss’ (green until 2086, blue thereafter), 
then the extended determination would have disconfirming in- 
stances, since the left-hand side would be satisfied by colours 
such as gruels72 but the universal on the right-hand side would 
be false. 

It is important to note that extended determinations are 
actually much weaker than determinations, and we basically 
expect them to be satisfied, more or less, for any ‘reasonable’ 
P and Q. 

VI COMPARISON WITH GOODMAN’S 

THEORY OF PROJECTIBILITY 
Goodman’s theory of induction has been the most influen- 

tial contribution to the field in recent times. We will therefore 
take the time to briefly outline his theory here, and then re- 
express it in our terms. 

Goodman defines the act of projection as the assumption 
of a general rule from some collection of instances; a rule is 
projectible if this can be done legitimately. The last part of his 
excellent book, “Fact, Fiction and Forecast” ([Goodman 831, 
first published 1955) is devoted to an attempt to elucidate the 
criteria for deciding projectibility. 

In this theory, rules derive projectibility from three sources: 
1) the earned entrenchment of the predicates involved; 
2) the inherited entrenchment which the predicates derive 

from their parent predicates; 
3) the projectibility of their overhypotheses. 

We define these terms below. 

A. Entrenchment 

Goodman’s principal requirement for the projectibility of 
a rule Vx[P(z) + Q(X)] is that the predicates P and Q be 
well-entrenched. A predicate P becomes well-entrenched as 
an antecedent as a result of frequent past projections of other 
rules with P as antecedent; similarly for Q as consequent. Thus 
‘green’ is well-entrenched, whilst ‘grue’ is not. 

B. Parent predicates 
The notion of a parent predicate is used in defining both 

inherited entrenchment and overhypotheses. A predicate R is 
a parent of S iff 

1) R is a predicate applying to classes of individuals. 
2) Among the classes to which R applies is the extension 

of S. Thus ‘uniform in colour’, which applies to any 
group of individuals all of the same colour, is a parent of 
‘green’. Similarly, ‘type of jewel’ is a parent of ‘emerald’. 

C. Inherited entrenchment 
A predicate inherits entrenchment from its parent predi- 

cates. Thus if ‘uniform in colour’ is well-entrenched, ‘green’ 
derives further entrenchment from it. 

D. Overhypotheses 
An overhypothesis of P + Q is a rule R + S such that R 

is a parent of P and S is a parent of Q. Thus an overhypothesis 
of “all emeralds are green” is “all types of jewels are uniform 
in colour” . If the overhypothesis is projectible, this adds to 
llte projectibility of its underhypothesis. Here, for example, 
both R and S are reasonably entrenched, and the overhypoth- 
esis is fairly well supported, e.g. by “all sapphires are blue”, 
“all rubies are red”. A given rule can have many overhypothe- 
ses, and each may in turn be supported in turn by further 
overhypotheses at the next level. 
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E. Analysis 
We will now attempt to analyze Goodman’s theory in our 

terms. By formalizing each of his notions, we can fit them into 
the general framework of the confirmation of rules by higher- 
level regularities. 

The entrenchment of a predicate P corresponds approxi- 
mately to an observed second-order regularity of the form 

VQVXl . . - xn[[P(xd A Q(xl) A . - - A P(G) A Q(xn>l 
=+ ‘J4JW =+ Q~x>ll 

which bears close resemblance to the definition of extended de- 
termination given above. The difference is that because Good- 
man is working exclusively with unary predicates, he is forced 
to quantify over the predicate Q (in defining the entrenchment 
of P) in order to satisfy the external evidence requirement, 
thus requiring that P be a successfully projected predicate re- 
gardless of the consequent Q. The use of binary predicates 
allows us to quantify just over their second argument, giving 
the more fine-grained notion of successful projection of similar 
rules, rather than just rules with the same antecedent. 

The notion of a parent predicate is a little tricky to for- 
malize using unary predicates; it would look something like 
this: 

A is a parent of B iff 3S[A(S) A Vx[x E S M B(x)]] 

A more natural way to write it is to use a binary predicate: 

A is a parent of B iff Vz[B(z) x=+ A(z,B)] 

which amounts to reifying B. For example, we write 

Vx[EmeraZd(x) u JeweEType(x, Emerald)] 

Viewed in this light, an overhypothesis is essentially a deter- 
mination. 

Clearly, there is a great deal of overlap in the two ap- 
proaches. There are, however, some slight differences in em- 
phasis, stemming mainly, one may conjecture, from the differ- 
ing requirements of philosophy and artificial intelligence. 
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Goodman is trying to systematize human practice; he 
does not attempt, for example, to jzlstifv the entrench- 
ment criterion. When written formally, we see en- 
trenchment (and the other notions) as codifications of 
higher-level regularities, which push back the inevitable 
point at which we must simply appeal to an unjustifi- 
able, naked principle of enumerative induction. (As is 
pointed out in [Quine gL Ullian 701, in the human case 
we may be able to push it back far enough such that 
the evolutionary process itself may be ‘credited’ with 
performing such inductions.) The main commonality of 
the two theories, and the revolutionary aspect of Good- 
man’s work, is that we no longer have to make such an 
appeal within the base-level induction itself. 
In Goodman’s theory, predicates derive entrenchment 
from actual past projections, taking the form of (not 
necessarily spoken) linguistic utterances and correspond- 
ing to projections performed in the history of the cul- 
ture rather than just the individual. This is essentially 
a psychological theory about exactly what evidence hu- 
mans take into account in making new projections. In 
our approach, we try to identify all the evidence that 
should logically be taken into account, which may en- 
tail making further inductions ‘on demand’ as well as 
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noticing past inductions. 
l Because we use binary predicates and an exhaustive 

generator, we are able to produce a much richer hierar- 
chy of ‘overhypotheses’. Both theories, however, rely on 
the existence of a rich taxonomic vocabulary to facili- 
tate expression of the desired regularities. This leads us 
naturally into a study of the relation between language 
and induction. 

VII REPRESENTATION AND INDUCTION 

An implicit hypothesis of Goodman’s theory is that ev- 
eryday terms will tend to be well-entrenched, since otherwise 
they would drop out of use. (He states (p. 97) that “entrench- 
ment and familiarity are not the same . . . a very familiar 
predicate may be rather poorly entrenched,” but gives no ex- 
amples.) The key idea behind analyzing this hypothesis is to 
understand the process by which terms become familiar parts 
of the language. If we can capture the conditions under which 
new words are acquired, then we can give a semantics to the 
presence of a word in our language, as well as to the word it- 
self. * Thus the fact that green is a primitive attribute in 
our language, as weIl as being a physiological primitive of our 
observation apparatus, suggests that greenness is a commonly- 
occurring property in the world, and, more importantly, that 
greenness is a good predictor for various other properties, such 
as whether something is animal or vegetable, ripe or unripe. If 
we limit our acquisition and retention of terms to those which 
manifest such useful properties, then we are guaranteed that 
familiar terms will tend to be entrenched, and thus that rules 
using t,hem will be projectible. The language-evolution aspect 
of this idea finds strong echoes in the theory of induction given 
in [Christensen 641; the reflection of properties and regularities 
of the world in our neurological development is one of the prin- 
ciple themes of Roger Shepard’s work, described in [Shepard 
84, 861. Although we have barely scratched the surface of the 
enormous topic of the interrelationship of language, represen- 
tation and learning, it seems that the analysis of the semantics 
of the presence of words in a language, via the analysis of the 
processes of acquisition and retention, may be a profitable ap- 
proach. 

VIII APPLICATIONS 

We will first describe how we propose to build systems uti- 
lizing the ideas given above; we wiIl then discuss possible ap- 
plications to some induction projects, past and present. 

The scenario we envisage is that of an autonomous intelli- 
gent agent engaged in the continuous process of investigating 
its environment and attempting to fulfil its various goals. The 
system may need to assess the degree of confirmation of a pro- 
posed rule for one of three reasons: 

1) it needs a rule for concluding some goal, and has none 
available; 

2) it has some theoretical reasons for believing the rule 
plausible; 

3) it has noticed that the rule is empirically plausible. 

* Rendell, in [Rendell 861, talks about the “semantics of the 
constraint imposed by the language” as part of an attempt to 
understand the bias inherent in version-space systems (the un- 
grounded premise to which we alluded earlier); this is another 
aspect of the same idea. 



To evaluate the proposed rule, the system performs the follow- 
ing tasks: 

a Assess the direct empirical support for the rule; if nec- 
essary, this may involve experimentation. 

l Instantiate the known classes of higher-level regularity 
so that they apply to the rule in question; if the system 
already knows the degree of confirmation of the instan- 
tiated regularities, take that into account; if not, call 
the evaluation procedure recursively to compute their 
confirmation. 

l Repeat the same process for any plausible competing 
hypotheses. 

If the proposed rule is well-supported by its higher-level reg- 
ularities, and clearly better than any conflicting hypothesis, 
then it can be adopted (subject to revision). 

From our investigations to date in the space of regularities, 
it seems that we can capture most of the relevant informa- 
tion using just three basic classes: simple implicative rules, 
determinations and extended determinations. These seem to 
provide the justification for the basic types of argument on 
common use. As mentioned above, as long as there are a small 
number of types it is reasonable to build specialized ‘regularity- 
noticing’ demons to spread the computation load, rather than 
using ‘lazy evaluation’. The higher-level rules we thus accu- 
mulate are also useful for suggesting new, plausible base-level 

Our proposed architecture seems closest to that of AM and 
EURISKO ([L enat 761, [Lenat 83a,83b]), which actively per- 
forms experiments in order to confirm its conjectures induc- 
tively. EURISKO can be said to use higher-level regularities of 
a sort, since it has a heuristic which essentially leads it to con- 
sider conjectures similar t,o those which have already proven 
successful. Recalling the basic task of inferring facts from a 
mass of ground data, it is clear that when we add the ability 
to recognize a new class of higher-level regularities we actually 
expand the set of inferences the system can make. Most induc- 
tive systems in AI use only simple, associative regularities. We 
therefore hypothesize that with the degree of synergy afforded 
by the addition of multiple layers of regularities, EURISKO’s 
performance can be considerably enhanced. 

A system which uses theoretical (causal, explanatory) sup- 
port as well as direct empirical support for its proposed rules 
is described in [Doyle 851. In the light of the theory given 
above, we would argue that there are forms of further, indi- 
rect empirical support which are in no sense causal, yet offer 
more power than the simple ‘associationist’ approach. Other 
systems which conduct large-scale inductive investigations are 
the RX system ([slum 82]), and UNIMEM/RESEARCHER 
([Lebowitz 861); th e same arguments apply in these cases. 

IX CONCLUSIONS AND FUTURE 
RESEARCH DIRECTIONS 

We have shown that the requirement for a theory of in- 
duction is not that it render enumerative induction valid, but 
that it elucidate the way in which the plausibility of an induc- 
tion is affected by the presence of further evidence, distinct 
from its direct positive and negative instances. The relation- 
ship between the direct and indirect evidence is a formal one, 
as required, and we have given a method for identifying all 
general classes of such evidence. We have constructed a sys- 
tem which applies the method to discover some novel and, we 

believe, important classes of regularity. The result of the syn- 
ergistic interplay of induction and deduction is that we can now 
distinguish plausible from spurious inductions, and can max- 
imize the usefulness of the observational knowledge a system 
possesses. The ‘punchline’ is simply this: fhe more classes of 
regularity a system is equipped to observe, the more inferences 
it can make from a given collection of data. 

A major weakness which we would like to address is that 
the theory as described only allows first-order regularities. Al- 
though we glossed over the point in the exposition above, an 
extended determination need not use only an exact number n 
for all its inductions -- n really just means ‘many’, and this is 
how it will be implemented in the real system. The model of 
analogy by similarity in [Russell 861 suggests that there may 
be other useful non-first-order regularities, for example in the 
definitions of natural kinds ([Rosch 781) and in the distribu- 
tional variation of attribute values in a population ([Medin & 
Smith 841). At present it is not clear how to cope with these 
problems. 

Potentially fruitful areas for further investigation include: 
l studying the interaction of language and induction via 

the semantic analysis of the process of representational 
evolution; 

l empirical experiments to establish what are the useful, 
commonly-occurring classes of regularity in any given 
world; 

l quantification of the contributions of higher-level regu- 
larities to a base-level rule, especially regularities with 
less than 100% confirmation; 

l construction of robust systems, using the principles out- 
lined above, that are able to acquire, organize and use 
effectively knowledge of a complex environment, even in 
the absence of any a priori knowledge of the environ- 
ment; although such systems seem somewhat beyond 
our present abilities, it is hoped that we have begun to 
dismantle one of the theoretical barriers to their cre- 
ation. 
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