
Quantifying the inductive bias in concept learning (extended abstract) 

David Haussler 

Department of Mathematics and Computer Science, 
University of Denver, Denver, Colorado 80208. 

Abstract 

We show that the notion of bias in inductive concept 
learning can be quantified in a way that directly relates to 
learning performance, and that this quantitative theory of 
bias can provide guidance in the design of effective learning 
algorithms. We apply this idea by measuring some common 
language biases, including restriction to conjunctive concepts 
and conjunctive concepts with internal disjunction, and, 

P 
uided by these measurements, develop learning algorithms 
or these classes of concepts that have provably good conver- 

gence properties. 

Introduction 

The theme of this pa er is that the notion of bias in 
inductive concept learning U86] [R86/ can be quantified in a 
way that enables us to 

Ip 
rove 

i 
meaningful convergence proper- 

ties for learning algorit ms. We measure bias with a com- 
binatorial parameter defined on classes of concepts known as 
the Vapnik-Chervonenkis dimension (or simply d+ensiorr ) 
[VC71/, [P78j’, JBEHW86/. The lower the dlmenslon of the 
class of concepts considered by the learning algorithm, the 
stronger the bias. 
shown to be 

In /BEHW86,‘? this parameter has been 
strongly correlated with learning performance, as 

defined in the learning performance model introduced by Vali- 
ant jV84j, [VSS]. Th is model can be outlined as follows. 

A concept is defined by its set of instances in some 
instance s ace. A sample of a concept is sequence of observa- 
tions, eat rl of which is an instance of the concept ( positive 
observation ) or a non-instance of the concept 
vation ). Samples are assumed to be create 6 

negatrve obser- 
from inde en- 

dent, random observations, chosen according to some K xed 
probability distribution on the instance space. Given a sam- 

f! 
le of a target concept to be learned, a learning algorithm 
orms a hypothesis, which is itself a concept. The algorithm is 

consistent if its hypothesis is always consistent with the given 
sample, i.e. includes all observed positive instances and no 
observed negative instances. A consistent hypothesis may still 
disagree with the target concept by failing to include unob- 
served instances of the target concept or including unobserved 
non-instances of the target concept. The error of a 
hypothesis is the combined probability of such instances, i.e. 
the probability that the hypothesis will disa 
dom observation of the target concept, se ected ‘i 

ree with a ran- 
from the 

instance space according to the fixed probability distribution. 
Two performance measures are applied to learning algo- 

rithms in this setting. 
1. The convergence rate of the learning algorithm is measured 
in terms of the sample size that is required for the algorithm 
to produce, with high probability, a hypothesis that has a 
small error. The qualification “with high probability” is 
required because the creation of the sample is a probabilistic 
event. Even the best learning algorithm cannot succeed in the 
unlikely event that the sample is not indicative of typical 
observations. However, while the model is probabilistic, no 
specific assumptions are made about the probability distribu- 
tion that governs the observations. This distinguishes this 
approach from usual statistical methods employed in pattern 
recognition, where the object of learning is usually reduced to 
the estimation of certain parameters of a classical distribu- 
tion. The distribution-free formulation of convergence rate is 

obtained by upper bounding the worst case convergence rate 
of the learning algorithm over all probability distributions on 
the instance space. This provides an extremely robust perfor- 
mance guarantee. 
2. The >omputational efficiency of the learning algorithm is 
measured in terms of the (worst case) computation time 
required to pass from a sample of a given size to a hypothesis. 
Our results for conjunctive concepts indicate the possibility of 
a trade-off between convergence rate and computational 
efficiency., in which the fastest converging learning methods 
require significantly more computation time than their slower 
converging counterparts. In order to optimize this trade-off, 
applying the general method developed in JBEHW86/, we 
em 

x 
loy heuristic techniques based on the greedy method for 

fin ine: a small set cover iN69l lJ741 that trade off a small 
decrezse in the convergence rate’ for’s very large increase in 
computational efficiency. This general idea forms a secondary 
theme of the paper. 

1. Quantifying inductive bias 

In the simplest type of inductive concept learnin , each 
instance of a concept is defined by the values of a fixe li set of 
attributes, not all of which are necessarily relevant. For 
example, an instance of the concept “red triangle” might be 
characterized by the fact that its color is red, its shape is tri- 
angular and its size is 5. Following [MCLBS], we consider 
three types of attributes. A nominal attribute is one that 
takes on a finite, unordered set of mutually exclusive values, 
e.g. the attribute color, restricted to the six primary and 
secondary colors. A linear attribute is one with a linearly 
ordered set of mutually exclusive values, e.g. a real-valued or 
integer-valued attribute. A tree-structured attribute is one 
with a finite set of hierarchically ordered values, e.g. the attri- 
bute shape with values triangle, square, hezagonll circle, 
polygon and any-shape, arranged in the usual “is-a hierar- 
chy. Only the leaf values triangle, square, hexagon and circle 
are directly observed. Since a nominal attribute can be con- 
verted to a tree-structured attribute by addition of the spe- 
cial value any-value, we will restrict our discussion to tree- 
structured and linear attributes. 

Equations relating attributes to values will be called 
terms, which are either elementary or compound. The possible 
forms of elementary terms are as follows. 

For tree-structured attributes: 
= red, shape = polygon. 

attribute = value, e.g. 
color 

For linear attributes: value1 2 attribute < value2 e.g. 
5 < sire < 12. Strict inequalities are also permzted, as well 
as-intervds open on one side. Terms such as 5 6 size 5 5 are 
abbreviated as size = 5. 

Compound terms /MC83/ can take the following forms. 
For tree-structured attributes: 

attribute = value. or value, or * * . or value, 
e.g. shape = square 0: circle, aid for linear at&ibutes: any 
disjunction of intervals e.g. 0 5 age 2 21 or age 2 65. Dis- 
junctive operators within compound terms are called internal 
disjunctions. 

We consider the following types of concepts: 
1. pure conjunctive: 
where each 

term1 and term2 and * * . and termk, 
term. is an 

color = red and 5 1. .&e 5 12, 
elementary term, e.g. 
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2. pure disjunctive: 
connected by “or” 

same as pure conjunctive but terms are 

3. internal disjunctive: same as pure conjunctive, but allowing 
compound terms, e.g. 

(cofor = red or blue or yellow) and (5 2 size 2 12) 

These concept types have the following interpretations in 
the context of rule based knowledge representations. 
Pure conjunctive: antecedent of a single, variable-free Horn 
clause rule (PROLOG rule), e.g. 

type = pos t color = red and 5 < size 5 12 
Pure disjunctive: antecedents of severafrules, each with a sin- 

f 
le term and all with a common consequent. 
nternal disjunctive: antecedent of a single rule with pure dis- 

junctive “helper rules” for the compound terms, e.g. for the 
internal disjunctive concept given above, create a new value 
“primary” for color and form the rules 
color = primary t color = red 
color = primary t color = blue 
color = primary t color = yellow 
type = pos t color = primary and 5 5 site 2 12 

In Section 2 we will see how collections of rules for inter- 
nal disjunctive concepts can be generated mechanically from 
samples. But first, we describe how these and other learning 
algorithms can be evaluated, 

To quantify the inductive bias of a learning al orithm, 
we use the following notion from ‘VC71]. Let 2 be an 
instance s 

f 
ace and let H be a class o i concepts defined on X, 

e.g. the c ass of pure conjunctive concepts over an instance 
space determined by a fixed set of attributes. For any finite 
set S C X of instances, El,(S) = {S n h : h E H}, i.e. the 
set of 21 subsets of S that can be obtained by intersecting S 
with a concept in H, or equivalently, the set of all ways the 
instances of S can be divided into positive and negative 
instances so as to be consistent with some concept in H. If 
n,(S) is the set of all subsets of S then we say that S is shat- 
tered by H. The Vapnik-Chervonenkis dimension of H (or 
simply the dimension of H) is the smallest integer d such that 
no S C X of cardinality d + 1 is shattered by H. If no such d 
existsrthe dimension of H is infinite. 

As an example, suppose X is the instance space defined 
by one linearly ordered attribute size and H is the set of pure 
conjunctive concepts over X. Thus H is just the set of ele- 
mentary terms involving site, i.e. size intervals. For any 
three distinct instances, i.e. instances where size = z, size = y 
and sire = z, with x < y < Z, there is no concept in H for 
which the first and third instances are positive but the second 
instance is negative because there is no interval that contains 
z and z without containin 

fI 
y. Hence no set of three instances 

in X can be shattered by implying that the dimension of H 
is at most 2. Since any two ‘out of three distinct instances can 
be shattered by H, this upper bound is tight, at least when 
size has three or more distinct values. 

cpper bounds on the dimensions of the more general con- 
cept classes introduced above are as follows: 
k term pure conjunctive concepts on n attributes, each tree- 
structured or linear: 

F( 
1) d 5 4klog(4k”/n). 
or k of size roughly n/2 or larger, 

i!‘i) bette: u’,,‘e”r bound . 
k term pure*disjunctive concepts on n attributes: 
(2) d < 4klog(l6n)(log(2k) + loglog( 16n)). 

k term internal disJunctlve concepts on n attributes, using a 
total of j internal disjunctions: 
(3) d < 5(k+j)log(5(k+j d;). 

Justifications for these d boun s are omitted due to lack of 
space’. 

Let C be a class of target concepts of some type and 
level of complexity, e.g. p-term pure conjunctive concepts over 
an instance space defined by n-attributes. Given a target 
concept in C and some number m of observations of this con- 

‘/VC71), [WSl], [AA831 and [BEHWM] g’ lve a variety of other examples of 

concept classes of finite dimeoslon. When H is of finite dimension, Wenocur and 

Dudley call H a Vapalk-Chervonenkis Class (VCC) iwD8li. The Vapntk- 
Chervonenkis nttmber of this class, denoted V(H), corresponds to the dimension of H 

plus one. 

cept! a learning algorithm will explore some space of possible 
hypotheses. This will be called the eflective hypothesis space of 
the learning algorithm for target concepts in C and sample 
size m. The numerical bias of the learning algorithm is 
defined as the Vapnik-Chervonenkis dimension of its effective 
hypothesis space. A lower bias is a stronger bias. For exam- 
ple, in the next section we will present an algorithm (Algo- 
rithm 2) for learning pure conjunctive concepts that has the 
following property: presented with m observations of an unk- 
nown p-term pure conjunctive target concept over an instance 
space of it attributes, it always produces a consistent pure 
conjunctive hypothesis with at most Dlnm + 1 terms. Hence 
the-effective hypothesis space of the a’lgorithm for target con- 
cepts of this type with samde size m is the class of at most 
plnm + l-term pure * con’unctive concepts over an instance 
space of n attrlbutes. + hese limitations on the hypothesis 
space are due to the fact that the algorithm only considers 
pure conjunctive hypotheses and prefers concepts with fewer 
terms, two of the informal types of bias identified in jV86/. 
Using formula (1) with k = plnm, we can approximately 
upper bound the numerical bias of the algorithm for p-term 
pure conjunctive target concepts over an instance space of n 
~~ibute~~~d~~~~~~~~~,y 

e can now use the following theorem to relate this numeri- 
cal bias with the convergence rate of the algorithm for these 
target concepts. 

Theorem 1. [BEHWSS,p Given any consistent learning 
algorithm with numerical bias for targetaconcepts in a class C 
and sample size m of at most rm , where r 2 2 and 
0 5 N < 1, then for any probability distribution on the 
instance space, any target concept in C and any E and 6 
between 0 and 1, given a random sample of the target concept 
of size at least 

I I %og2, 
8r 8r laol 

(6) max -log- 
E 6 e(r-cr) c( l-(Y) 1 I 

the algorithm produces, with probability at least 1 - 6, a 
hypothesis with errpr at most e. If the numerical bias is 
bounded by r(log m) , it suffices to have sample size 

l-cl 

I 
2 21+4r (7) %og-,- 

[ 
1% 

8(21+2)‘+lr 
max 

- q  

E 6 f 6 1 ! 

Plu ging in formula (5 
hdln(m ,‘, term (i.e. letting 1 

above into (7) but ignoring the 
= 1 and r = 4plog(4pVn)), this 

theorem shows that given a p-term pure conjunctive target 
concept over n attributes and approximately 2 

(8) 
128plog(4p vi) 

max log 
t 

random observations, Algorithm 2 produces, with probability 
at least 1 - 6, a hypothesis with error at most e, independent 
of the target concept and independent of the underlying distri- 
bution governing the generation of observations. By a different 
argument, using bound (1’) and (6) with (Y = 0, we can also 
obtain the upper bound 

(9) 
2 16n 16n 

max Qlog- -log- 
t 6’ CT t 1 

on the required number 
better for small n. 

of observations, which is considerably 

cepts over n attributes, 

%This is derived from Theorem 11 of [BEHW86]. We are suppressing some ad- 
ditional measurability assumptions required in the general form of the theorem since 
they wll not be relevant in our intended applications (see appendix of [BEHW86/3. 
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formulas (8 
1 

and (9) is that the convergence rate does not 
depend at a 1 on the size or complexity of the trees that define 
the values of the tree-structured attributes, nor on the 
number of values of the linearly ordered attributes. It also 
shows that the convergence rate depends only logarithmically 
on the number of attributes and the confidence facltor S. The 
strongest dependence is on the inverse error - and the 

number p of terms in the 
is much worse than linear. 

target concept, yet neitger of these 

In fact, the argument used in proving Theorem 1 shows 
the following stronger result: given any p-term pure conjunc- 
tive target concept over n attributes and a sample of approx- 
imately the size given in 

6 1 - 6 any consistent hypot 
8) or (9), with probability at least 

esis within the effective hypothesis 
space of Algorithm 2, i.e. any consistent conjunct with at 
most plnm + 1 terms, will have error at most e, independent 
of the underlying probability distribution that governs the 
observations. Thus no matter what our method is, if we hap- 
pen to find a conjunct with at most plnm + 1 terms con- 
sistent with a sample of this size, then we can use this con- 
junct as our hypothesis and have confidence at least 1 - 6 
that its error is at most E. This kind of a posteriori 

is what lead Pearl to call the 

sample grows. 

2. Application: 
tion. 

learning concepts with internal disjunc- 

We now illustrate the application of the analytical 
method outlined above in the stepwise development and 
analysis of learning algorithms for pure conjunctive, pure dis- 
junctive and finally internal disjunctive concepts. 

We will use the single representation trick, as described 
in [CSZ]: each observation is encoded as a rule, e.g. a positive 
observation of a red triangle of size 5 becomes: 
type = pos c color = red and site = 5 and shape = triangle. 
Let S be a sample encoded in this form and A be an attri- 
bute. If A is a tree-structured attribute, for each term A = v 
that occurs in the sample S, mark the leaf of the tree for A 
that represents the value u with the number of positive obser- 
vations and the number of negative observations that include 
the term A = w. If A is a linear attribute, build a list of such 
pairs of numbers, ordered by the values 11. This data structure 
will be called the projection of the sample onto the attribute 
A. 

Given the projection of S onto A, we can find the most 
s ecific 
ii 

term of the form A = v that implies all of the positive 
o servations, which we call the minimal dominating term for 
A’. If A is a tree-structured attribute, the minimal dominat- 
ing term is A = V, where v is the value of the node that is the 
least common ancestor of all the leaves of the tree of A WV;: 
values occur in at least one positive observation. 
minimal dominating term is found using the climbing tree 
heuristic of [MCL~Z?]. It corres onds to the “lower mark” in 
the attribute trees of IBSPSS]. pf A is a linear attribute, the 
minimal dominating term is the term ur 5 A 5 u2, where y1 
and v2 are the smallest and largest values of A that occur m 
at least one positive observation, i.e. the result of applying 
the “closing interval rule” of /MCL83/. We can use the 
minimal dominating terms to find the most specific pure con- 
junctive concept consistent with a given sample. 

Algorithm 1. (naive algorithm for learning conjunctive 
concepts) 

‘For simplicity, we will assume that every sample contains at leaat one poai- 
tive and one negative observation. This implies (among other things) that a minimal 
dominating term always exists, and will make our algorithms simpler. 

1. For each attribute, calculate the projection of the sample 
onto this attribute and find the minimal dominating term. 
Let the conjunction of these minimal dominating terms be the 
expression E. 
2. If no negative examples are implied by E then return E, 
else report that the sample is not consistent with any pure 
conjunctive concept. 

The effective hypothesis space of this algorithm is the 
class of all pure conjunctive concepts over some fixed set of 
attributes and doesn’t depend on the sample size or the 
number of terms in the target concept. Since the dimension 
of pure con’unctive concepts on n attributes is at most 2n by 
formula (1’ 

iven 
3 above, the convergence rate of this algorithm is 

K 

by formula (9) above, i.e. given a random sample of size 
9), Algorithm 1 produces, with probability at least 1 - 6, a 
ypothesis with error at most e for any pure conjunctive tar- 

get concept and any distribution on the instance space. 

While significant in its generality, this upper bound 
suffers from the fact that the number of observations required 
grows at least linearly in the number of attributes. In many 
AI learning situations where conjunctive concepts are used, 
the task is to learn relatively simple conjuncts from samples 
over instance spaces with many attributes. In this case a 
better algorithm would be to find the simplest conjunct (i.e. 
the conjunct with the least number of terms) that is con- 
sistent with the data, rather than the most specific conjunct. 
With this strategy, given a sample of any p-term pure con- 
junctive concept on n attributes, we always find a consistent 

K 
ure conjunctive hypothesis that has at most p terms. Thus 
y the same analysis (i.e. using (6) with a = 0) and using for- 

mula (1) instead of (1 ) (with k = p)! the upper bound on the 
sample size required for convergence 1s reduced to 

(10) max 
[ 

%og2, 
c 6 

32p log( 4p u/n ) 
1% 

32p log(4p <) 

E c 1 

which is logarithmic in the number of attributes. Call this 
the optimal algorithm. Can it be efficiently implemented? 
The following shows that it probably cannot. 

Theorem ,!?. Given a sample on n attributes, it is NP- 
hard to find a consistent pure conjunctive concept for this 
sample with the minimum number of terms. 

In proving this theorem, we show that this problem is 
equivalent to following NP-hard problem [GJ79]: 

Minimum Set Cover: given a collection of sets with union 
T find a subcollection whose union is T that has the 
mmimum number of sets. 

There is, however, an obvious heuristic for approximat- 
ing the minimum cover of T: First choose a largest set. Then 
remove the elements of this set from T and choose another 
set that includes the maximum number of the remaining ele- 
ments, continuing in this manner until T is exhausted. This is 
called the greedy method. Applying it to the problem of 
finding pure conjunctive concepts, we get the following. 

Algorithm 2. (greedy algorithm for learning pure conjunc- 
tive concepts) 
1. For each attribute, calculate the projection of the sample 
onto this attribute and find the minimal dominating term. 
2. Starting with the empty expression E, while there are nega- 
tive observations in the sample do: 

a. Among all attributes, find the minimal dominating 
term that eliminates the most negative observations and 
add it to E, breaking out of the loop if no minimal dom- 
inating term eliminates any negative examples. 
b. Remove from the sample the negative observations 
that are eliminated and update the projections onto the 
attributes accordingly. 

3. If there are no negative observations left return E, 
else report that the sample is not consistent with any pure 
conjunctive concept. 

It can be shown that if the set T to be covered has m 
elements and p is the size of the minimum cover, then the 
greedy method is uaranteed to find a cover of size at most 
p logm + 1 [N69] fJ7.41. H ence given a sample of an p-term 
pure conjunctive concept with m negative observations, Algo- 
rithm 2 is guaranteed to find a consistent pure conjunctive 
hypothesis with at most approximately plogm terms. Using 
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Theorem 1, this ives the approximate upper bound on the 
convergence rate 7 
previous section. 

or Algorithm 2 given by formula (8) in the 
Since Algorithm 2 is, like Algorithm 1, a 

consistent 
the bound 

algorithm for arbitrary pure .conjunctTve 
on the convergence rate given in formula 

concepts, 
(9) holds 

as well. Note that the b&nd on theconvergence rate for the 
gir;z:~, method is not much worse than the bound (10) for the 

algorithm! yet the greedy method 1s slgmficantly 
cheaper computationally. 

The compliments of pure conjunctive concepts can be 
represented as pure disjunctive concepts. Hence this is the 
dual form of pure conjunctive concepts. A variant of Algo- 
rithm 2 can be used to learn oure disiunctive concerts. In the 
dual form, each term must eliminate811 negative observat,ions 
and need only imply some subset of positive observations, and 
all terms together must imply all positive observations. The 
dual greedy method is to repeatedly choose the term that 
implies the most positive observations and add it to the dis- 
junct, removing the positive observations that are implied, 
until all 

P 
ositive observations are accounted for. This is a 

variant o the “star” method in MCL891. Since k term nure 
disjunctive concepts have a Vannik-Chervonenkis dimension 
similar to that of k term pure cbnjunctive concepts 

f 
formula 

(2)), the analysis of the convergence rate of this a gorithm 
goes through as above. 

We 
lation of 

now tackle internal disjunctive concepts. The calcu- 
the Vannik-Chervonenkis dimension of these concerts 

given in the pretious section indicates that the strongest bias 
yn learning them is to minimize the total number ‘;f terms 
plus internal disiunctions. i.e. to minimize the total size of all 
the terms, where the size ‘of a compound term is defined as the 
number of internal disjunctions it contains plus one. Let E be 
an internal disjunctive concept that is consistent with a given 
sample. As with pure conjunctive concepts, each term in E 
implies all positive observations and eliminates some set of 
negative observations. A compound term with this pro 
will be called a dominating compound term. We would li K 

erty 
e to 

eliminate all the negative observations using a set of terms 
with the smallest total size. This leads to the following. 

given 
Minimum Set Cover problem with positive integer costs: 

a collection of sets with union T, where each set has 
associated with it a positive integer cost, find a subcollection 
whose union is T that has the minimum total cost. 

Since it generalizes Minimum Set Cover, this problem is 
clearly NP-hard. However, approximate solutions can found 
by a generalized greedy method. Let T’ be a set of elements 
remainine to be covered. For each set in the collection. define 
the gain,&ost ratio of this set as the number of elements of T’ 
it contains divided by its cost. The generalized greedy 
method is to always choose the set with the highest gain/cost 
ratio. As with the basic Minimum Set Cover problem, it can 
be shown that if the original set T to be covered has m ele- 
ments and p is the minimum cost of any cover, then the gen- 
eralized greedy method is guaranteed to find a cover of size at 
most plogm L 1. 

To apply this method in learning internal disjunctions, 
let the gain/cost ratio of a dominating compound term be the 
number of negative observations it eliminates divided by its 
size. 

Algorithm 3. (greedy algorithm for learning internal dis- 
junctive concepts) 
1. For each attribute, calculate the projection of the sample 
onto this attribute. 
2. Starting with the empty expression E, while there are nega- 
tive observations in the samnle do: 

a. Among all attributei, find the dominating compound 
term t with the highest gain/cost ratio, breaking out of 
the loop if none have 
for the attribute of t P 

ositive gains. If there is no term 
a ready in E, add t to E. Otherwise 

replace the old term in E for the attribute of t with t. 
b. Remove from the sample the negative observations t 
eliminates and update the projections onto all attributes 
accordingly. 

3. If 
else 

’ there are no negative observations left return E, 
report that the sample is not consistent with any internal 

disjunctive concept. - 

find 
To implement this algorithm, we need a procedure to 

a dominating compound term with the highest gain/cost 

ratio for a given attribute from the projection of the sample 
onto that attribute. Since there are in general exponentially 
many distinct dominating compound terms with respect to the 
number of leaves of a tree-structured attribute or the number 
of values of a linear attribute, this cannot be done by exhaus- 
tive search. However, there is a reasonably efficient recursive 
procedure that does this for tree-structured attributes, and a 
simple iterative procedure fsr linear attributes. Each of these 
procedures takes time O(q ), where q is the number of dis- 
tinct values of the attribute that ap ear in the observations. 
Space limitations preclude a detaile cr 
cedures. 

discussion of these pro- 

By formula (3) and the above result on the performance 
of the generalized greedy method. the numerical bias of Algo- 
rithm g for k-terminteinal disju’nctive target concepts using 
a total of j internal disjunctions (i.e. of size k + j) and sam- 
ple size 
S(k+j)fn(m)log S(k?j ln(rr$‘&) 

most 

term, formula ( i 4 ) of 
atIgnoring the l$l”n~~j] 

heorem 1 gives an upper bound on the 
convergence rate similar to that of Algorithm 2 given in 
equation (8), with k+j substituted for p. 

3. Extensions 
There are several possible extensions to these algorithms 

that would increase their domain of application. We outline 
two of them here. 

1. The ability to handle “don’t care” values for some attri- 
butes in the sample (see e.g. [QSS], [V84/). 

A “don’t care” value for attribute A corresponds to an 
observation in rule form having the term A = any-value. In 
fact, we can go one step further and let observations be arbi- 
trary pure conjunctive expressions, where, for example, the 
positive observation shape = polygon and color = blue means 
that the concept contains all blue polygons, and the 
corresponding negative observation means that no blue 

P 
olygons are contained in the concept. In this form, the prob- 

em of learning from examples is seen to be a special. case of 
the more general problem of knowledge refinement /MICS,Y,I, 
wherein we start with a collection of rules that are already 
known and try to derive from them a simpler, more general 
(and hopefully more comprehensible) set of rules. This exten- 
sion can be accomplished by modifying the notion of the pro- 
jection of the samples onto the attributes to allow terms of 
the observations to project to internal nodes of the tree- 
structured attributes or intervals in the linear attributes. 
Other parts of the algorithm are changed accordingly. 

2. Promoting synergy while learning a set of concepts. 

So far we have only considered the problem of learning a 
single concept in isolation. In fact, we would like to build sys- 
tems that learn many concepts, with higher level concepts 
bein built upon intermediate and low level concepts (see e.g. 
P4 / SB86/). The first step is to extend our notion of concept 
to inc ude many-valued observations, rather than just positive 
and negative. In this way we can learn rules that define the 
values of one attribute in terms of the values of the other 
attributes. This is essentially knowledge refinement on rela- 
tional databases JMIC86/. Ignoring attributes with many 
values for the time being, this can be accomplished in a rea- 
sonable way by finding a separate concept for each value of 
the attribute that discriminates this value from all the others. 

Once we have learned to recognize the values of the new 
attribute.in terms of the primitive attributes, it can be added 
to the set of primitive attributes and used later in learning to 
reco nize the values of other attributes. In this scheme new 
attri utes are always nominal. However, they could acquire a f 
tree structure as they are used to define later concepts in the 
following manner (see also [US61 /BSPSS/): whenever an inter- 
nal disjunctive concept is formed using a compound term 
A =vloru20t a*- otvk, check to see if this same com- 
pound term is required by other concepts. If it is required 
often enough, check the tree for the attribute A. If a node 

~&tlZZ~~~~ “d:, ‘.Z. 
v can be added without destroying the 
f f a new node is added, the compound 

terms it reprdsents can be replaced by an elementary term 
using the value of the new node. Thus the collection of rules 
given in Section 1 for the internal disjunctive concept involv- 
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ing the primary colors might be created by the “discovery” of 
the higher level value of primary for the attribute color. In 
this way a useful vocabulary of more abstract values for 
attributes evolves under the pressure to find simple forms for 
higher level concepts, creating a synergy between learned con- 
cepts. 

Another type of synergy is achieved by using the algo- 
rithm for pure conjunctive concepts along with the dual algo- 
rithm for pure disjunctive concepts. If new Boolean attributes 
are defined for often-used pure conjuncts or disjuncts, then 
these can allow the recognition of higher level concepts in 
DNF and CNF respectively by effectively reducing these 
expressions to pure disjunctive or conjunctive form. Often 
used internal disiunctive concents could be used as well. The 
creation of thesk new attribites can greatly increase the 
number of attributes that are considered in- later learning 
tasks, which argues strongly for learning methods whose per- 
formance does not degrade badly as the number of attributes 
grows, such as those we have presented. 

Conclusion. 

We have presented a methodology for the quantitative 
analysis of learning performance based on a relatively simple 
combinatorial property of the space of hypotheses explored by 
the learning algorithm. Applications of this methodology 
have been presented in the development and analysis of learn- 
ing algorithms for pure conjunctive, pure disjunctive and 
internal disjunctive concepts. Several open problems remain, 
in addition to those mentioned above. Some are: 
1. Can we develop the proper analytic tools to deal with algo- 
rithms that 
a. attempt to handle the problem of noisy data jQSS/ or 
b. attemnt to learn “fuzzv” concepts that are defin’ed proba- 
bilisticaliy with respect to-the instance space? 
2. What power is gained by allowing the learnin algorithm to 
form queries during the learning process [SASS] b’vG86/? 
3. Can we find provably efficient incremental learning algo- 
rithms (i.e. ones that modify an evolving hypothesis after each 
observation) to replace the “batch processing” learning algo- 
rithms we have given here? 
4. To what extent can we extend these results to concepts 
that involve internal structure, expressed with the use of vari- 
ables, quantifiers and binary relations (e.g. the c-expressions of 
[MCL 83/)? 
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