From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The FERMI System:
Inducing Iterative Macro-operators from Experience

Patricia W. Cheng and Jaime G. Carbonell
Computer Science Department
Carnegie-Mellon University
Pittsburgh PA 15213

Abstract

Automated methods of exploiting past experience to reduce search vary
from analogical transfer to chunking control knowledge. In the latter
category, various forms of composing problem-solving operators into larger
units have been explored. However, the automated formulation of effective
macro-operators requires more than the storage and parametrization of
individual linear operator sequences. This paper addresses the issue of
acquiring conditional and iterative operators, presenting a concrete
example implemented in the FERMI problem-solving system. In essence,
the process combines empirical recognition of cyclic patterns in the
problem-solving trace with analytic validation and subsequent formulation
of general iterative rules. Such rules can prove extremely effective in
reducing search beyond linear macro-operators produced by past
techniques.

1. Introduction

Automated improvement of problem-solving behavior through
experience has long been a central objective in both machine learning
and problem solving. Starting from STRIPS [9], which acquired simple
macro-operators by concatcnation and parameterization of useful
operator scquences, chunking control knowledge has proven a popular
method for reducing scarch in solving future problems of like type.
More comprehensive chunking disciplines have been studied; for
instance, SOAR [18] chunks at all possible dccision points in the
problem solving, whereas MORRIS [15] and PRODIGY [l4] are more
selective in their formulation of useful macro-operators. Other forms of
learning particularly relevant to problem solving include strategy
acquisition [11, 17], and various forms of analogical reasoning.
Transformational analogy [S] transfers expertise directly from the
solution of past problems to new problems that bear close similarity,
and derivational analogy [6] transfers problem-solving stratcgies across
structurally similar problem-solving cpisodes. Both forms of analogy
provide the positive and negative exemplar data required to formulate
generalized plans [4, 7, 8, 11, 16, 17, 20].

This paper discusses the need for the formulation of a more
general class of macro-operators that enable conditional branching and
gencralized iteration. [t then presents a method for automated
induction of such macro-operators from recursive and iterative
problem-solving traces. Inducing iterative rules (macro-operators) from
behavioral traces involves the detection of repetitive patterns in the
subgoal structure of the problem-solving episodes. 'This ‘process
includes analysis of the trace to determine the common operations at an
appropriate Jevel of abstraction, and exuiction of conditions necessiy
for success.

Major savings in problem-sotving cfficiency accrue noy just from
collapsing many rules into asingle one with an iterative right-hand-side,
but alsy from advancing tests necessary for success from arbitrary

"The research reported in this paper was funded in part by the Office of Naval Research
under grants number N0O074-82-50767 and number NOOO14-84-K-0345 and in part by a gift
from the Hughes Corporation. We thank every member of the FERMI project -- Angela
Gugliotta, Angela Hickman, Jill Larkin, Fred Reif, Peter Shell, and Chris Walton -- for their
valuable discussions. We are especially grateful to Peter Shell and to Chris Walton for their
indispensible help on using Rulekit and on programming respectively.

490 / SCIENCE

points in the problem-solving process to up-front left-hand-side (1.1S)
conditions, [For instance, an iterative rule acquired by FERMI solves
independent lincar cquations in multiple unknowns by repeated
substitution of expressions containing progressively fewer variables.
‘This (or any orher) method can yield a unique solution only if there are
as many lincarly independent cquations as there are variables. Such a
condition is deduced automatically by analysis of the problem and is
subscquently added to the 1LHS of the iterative rule, climinating the
need to perform all the step-by-step substitutions in order to discover at
the end of the process that there are remaining variables and no
remaining cquations, or that there is a contradiction. The techniques
for developing and implementing this type of learning, as claborated in
subscquent sections, provide a useful addition to the repertoire of
machine learning methods in problem solving.

2. Overview of FERMI

FERMIL | our cxperimental testbed for iterative rule induction, is
a general problem solver in the natural sciences. Its flexible
architecture has been described elsewhere [3, 13]; here we focus only on
those aspects directly relevant to automated induction of itcrative rules.
FERMI scpurates problem solving knowledge from domain knowledge,
representing the former as strategies and the latter as factual frames at
different levels of abstraction in a semantic frame nctwork. Thus,
general concepts such as conservation of inass or equilibrium conditions
need be represented only once and inherited where appropriate.
Similarly, problem-solving knowledge, such as iterative
decomposition , are encoded as general strategies applicable to a wide
variety of problems. FERMI has successfully solved problems in areas
as diverse as fluid statics, linear algebra, classical mechanics, and DC
circuits applying the same general problem solving strategies, and some
of the same general domain concepts.

We have implemented several different control strategies for
FERMI. experimienting most extensively with an augmented means-
ends method, and more recently with analogical transfer, and with rule-
based forward chaining. ‘this paper confines its discussion to the third
technique, whose implementation was greatly facilitated by the use of
RuleKit[19], a new rule-hased language improving upon OPS5 by
accessing structured (rame representations and providing a multi-level
task agenda to prioritize rules dynamically. The overall control strateyy
was inspired by Larkin's study of expert protlent solving pretocols [12],
but its real utitity takes the form of a multi-level tace mechanism that
enables FERMI o introspect onits own problem-solving behavior at an
appropriate level of granularity to formulate new problem solving
operators. including the conditional iterative operators discussed in the
following section. The trace mechanism keens track of the emerging

""FERMI is an acronym for Flexible Expert Reasoner with Multi-Domain Inference, and a
tribute to Enrico Fermi, who displayed abilities to solve difficult problems in many of the
natural sciences by the application of general domain principles and problem solving strategies.

***Iterative decomposition proceeds as follows: 1. Isolate the largest manageable
subproblem. 2. Solve that subproblem by direct means. 3. If nothing remains to be solved,
compose the solutions to the subproblems into a solution to the original problem. 4. If part of
the problem remains to be solved, check whether that remaining part is a reduced version of the
original problem. 5. If so, go to 1, and if not halt with failure.

goal-subgoat tree, the methods used to attack the cach problem, and the
causes of success or failure at every intermediate step in the reasoning.

3. Acquiring lterative Macro-operators

Many problems share an implicit recursive or iterative nature.
These problems include mundane cveryday activitics such as walking
undl a destination is reached and cating until hunger is satisfied as well
as problems in mathematics and science such as those solved by
FERMI. The underlying recursive or iterative structure may become
apparent only through analysis of a successful solution path produced
by the problem solver. The detection of an iterative pattern in the
solution trace starts by pruning unsuccessful branches in the search tree
and removing irrclevant steps, if any. 'Then, the recurring pattern in the
trace sequence must be identified — a non-trivial process, as there may
be no repetition at the instantiated operator level, but rather at the more
abstract level of rccurring changes in the subgoal structure. After
detection, our learner will establish the conditions for iteration, extract
the necessary components from the operator scquences and state
descriptions, and construct a conditional iterative macro-operator. 'The
detailed description of this process and its implementation in FERMI
follows in the subsequent sections.

When given a trace that exhibits a fixed number of iterative cycles
before solution is reached, current methods of forming macro-operators
such as STRIPS, ACT* and SOARIL,9, 10. 18] cannot produce
operators that will generalize to an arbitrary number of itcrations.
Indced, they cannot even detect the iterative nature of the problem.
The MACROPS facility in STRIPS [9], for instance, would add all
subsequences of primitive operators for as many cycles as the instance
problem required into its triangle table — gencrating huge numbers of
macro-operators and failing to capture the cyclic nature of the solution.
Anderson's ACT*[1, 2] would compile one (or more) linear macro-
operators for each number of repetitions, also failing to capture the
iteration. Thus, for any single cycle of iteration, existing macro-
operator formation systems will, at best, produce macro-operators that
will apply to a predetermined number of iterations, which would not
gencralize to a fewer or greater number of cycles. Moreover, as we
remarked earlier, cach cycle may sclect different methods for solving
the same subgoals, and the recgularity exists at a higher level of
abstraction in the subgoal trace. Most carlier systems (SOAR partially
excepted) do not chunk problem solving traces at higher level of
abstraction than the sequence of instantiated operators. As we will
illustrate with an example problem in the familiar domain of solving
simultaneous lincar equations, the cxact sequence of rules may vary
from cycle to cycle while preserving an overall subgoal structure.

The learning in our program proceeds in three steps:

—

. detection of an iterative pattern in the solution trace at the
appropriate level of abstraction and granularity,

g

. formation of a macro-operator that transforms a state at the
beginning of a single iterative cycle o the state at the beginning of
the next cycle, and

. formation of an iterative operator that checks for generalized
applicability conditions inferred from the macro operator
together with conditions immediately following the itcrative
scquence in the successful solution trace.

]

Below we claborate on cach step with illustrations drawn from
our cxample problem on solving simultancous lincar cquations. A set
of operators for solving such systems of equations is listed in Figure L.
The operators arc all in the form of standard condition-action nules.
(Variables in the figure arc preceded by an = sign, all LHS conditions
are conjoined, and all RHS actions are cvaluated sequentially.) A trace
using these operators solving an algebra problem is shown in Figure 2.
The solution path involves: 1. selecting an appropriate variable, 2.
rearranging an cquation to express this variable in terms of others, if the
equation does not already appear in that form, 3. substituting the
equivalent expression for the variable whenever the variable occurs in
the remaining sct of equations, 4. climinating the cquation used for

substitution, and S. repeating the above steps until only an cquation
that contains no variable other than the desired unknown remains,

3.1. Pattern Detection

What type of repetitive pattern in the solution trace would
warrant the formation of an itcrative rule? We think that requiring
identical sequences of rules would be too restrictive, because partially
matched sequences may nonetheless contain information on equivalent
choices and orderings of operators. Consider repeated instances of the
same subproblem — say to establish a precondition on occasions when
it is not already satisfied. The instances may (or may not) require
differcnt operators. In our algebra example, after the execution of the
rule sclect-var+, if the problem state happens to include an equation
that has the variable returned by select-var+ on its I.HS, then the rule
var-on-lhs+ would apply. Otherwise, rule-var-on-lhs- would have to
be executed before var-on-ths+ applies. Thus. what rule follows select-
var+ could vary depending on the particular problem state.
Nonetheless, the specification that either var-on-lhs- or var-on-lhs+ —
and not other operators irrelevant to variable substitution — follows the
execution of select-var+ is useful. It reduces the number of matches to
be done by an amount proportivnal to the number of operators
excluded. Notice that the two alternative rules are different paths
satisfying the same subgoal. To capture information on sequencing that
is common across differing circumstances, our pattern detector looks
for consecutive, identical repetition of any scquence of changes in
subgoals. Subgoals are gencrated and removed by rules during problem
solving. Each column in Figure 3 shows a type of trace of the solution
path for the cxample problem in Figure 2:

. trace of the sequence of operators exeeuted.

2

L atrace of the sequicnce of subgoals for these operators, and

-

. atrace of the sequence of changes in these subgoals.

As can be seen, consceutive identical repetition is apparent only
in the last type of trace. (Identical repetitions are bracketed in the
figurc.) ‘The sccond type of trace varies across cycles because the
number of rules required to satisfy a subgoal may vary from cycle to
cycle.

3.2. Formation of Macro-operators with Conditionals

After an iterative pattern is detected. the program forms a macro-
operator by composing rules in a single ¢ycle of the iteration as an
intermediate step towards forming an iterative operator. The sequence
of operators that should be composed is therefore determined by the
pattern detected and is less arbitrary than in systems such as STRIPS
[9] and ACT*[2] in which any sequence can be a candidate for a
macro-operator. Although our trigger for forming a macro-operator
difters from others, the actual formation is in the tradition of macro-
operator learning systems such as STRIPS and ACT*, with the
cxception that we allow fur alternative actions conditional on the
problem state within the same operator. The greater generality
cngendered by this feature helps avoid the proliferation of macro-
operators in a problem solver [15. 14]. Assuming that cach conditional
consists of a simple if-then-else branch, that there is a series of n
conditionals in a cycle of iteration, and that these conditionals are
independent of cach other, the number of traditional macro-operators
— which do not allow internal conditionals — required to cover the
same state space would be 2",

Internal conditionals are implemented in our program by an
agenda control structure on the right-hand-side (RHS) of the macro-
operator. An agenda consists of an ordered list of "buckets” that
contain ordered sets of operators. In our program the buckets, and the
operators in cach bucket, are tested in order. When an operator does
not apply, the next operator in the same bucket is tested. When an
operator does apply, control is returned to the first operator in the
bucket. Control is passed on to the next bucket when no rule in the
bucket applies or when a rule that applics halts execution of the bucket.
When no rule in the last bucket applies or when it halts, control leaves

LEARNING / 491

name of rule

solve-unknown-
1-equation the number of equations is 1,
the number of variables is 1,

the desired unknown is =u,

there is an equation =c¢ that contuins =u,

there are no other equations

solve-unknown-
n-cquations the number of equations is > 1,

the number of variables is > 1,

the desired unknown is =u,

there is no equation that contains =u

and has no other variables in it

selectvar -+
the desired unknown is =u,
there is a variable =v that is not =u,
and =v appears in at least 2 cquations

select-var—
and appears in at least 2 cquations

var-on-lhs+ the current goal is to get an equation

with the selected variable on its I.HS,
the selected variable is =v,

and there is an equation with =v on its LHS

var-on-lhs—
sclected variable on its LHS,
the sclected variable is =v,

and there is no equation with =v on its LHS,
but there is an equation =e that contains =v

replace+
the selected equation is =el,
the selected variable is =v,

and =v occurs in a second cquation =e2

replace—
the sclected equation is =e,
the selected variable is =v,

no equation other than =e contains =v,

the number of equations is =nume,
and the number of variables is =numv

LHS: conditions

the current goal is to solve for unknown,

the current goal is to solve for unknown,

the current goal is to select a variable for substitution,

the current goal is to sclect a variable for substitution,
there is no variable that is not the unknown

the current goal is to get an equation with the

the current goal is to form a new equation by substitution,

the current goal is to form a new equation by substitution,

RHS: actions

solve for =uin =e,
and pop success

set up subgoals to (1) select a variable
for substitution

(2) get an equation with the selected
variable onits LLHS

(3) form a new cquation by substitution
(4) solve for unknown

mark =v as selected,
and pop success

pop failure

mark the cquation as selected,
and pop success

rearrange =e so that =v
is on its LHS

substitute occurrences of =v with
the RHS of =el

remove =v from working memory,
remove =e from working memory,
set =nume to (=nume — 1)

set =numv to (=numv — 1)

and pop success

Figure 1: operators for algebra problem

the agenda and is returned (o the top-level.

We exploit this control structure by placing in each agenda bucket
a disjunctive sct of opcrators for satisfying the same subgoal. The
automated learner puts operators in a bucket in an agenda when it
detects in the soltution trace sets of operators that have the same subgoal
on their I.HS but each member of the set has condition clements that
negate condition elements in cach of the other members of the set. The
negated condition clements obviously cannot be composed on the LHS
of a macro-operator, and arc instead left to form scparate operators in a
bucket on the RHS of the macro-operator. [n cach bucket the operator
that checks for satisfaction of the subgoal — and therefore halts
exccution of the bucket when its conditions are satisfied — is placed in
the first position. In such manner conditional branches are formulated
in new macro-operators without altering the uniform top-level control
structure.

[n our algebra cxample there are two sets of conditionals, with
two operators in each set: var-on-lhs+ and var-on-lhs- in one set, and
replace- and replace + in the other set. The first sct is a simple if-then-
clse conditional, the sccond st is repeatedly tested until replace- is

492 / SCIENCE

applicable, i.c., when there arc no more occurrences of the variable to
be replaced. A macro-operator with conditionals for our example
algebra problem is shown in Figure 4a.

With the cxception of negated condition clements and their
corresponding RHSs, whenever we compose a sequence of operators,
we aggregate the condition and action clements of the sequence of
operators applied in the trace. as in other proposed methods of forming
macro-operators (c.g., [1]). We climinate redundancies in the macro-
operator by dcleting:

1. duplicate condition clements,

2. condition clements that match a working memory clement,
including subgoals, created by an earlier rule within the sequence,

3. action clements that create subgoals matched by subsequent
condition elements in the sequence, and

4. condition and action clements whose sole function is to pass
variables bindings from one rule to the next.

Initial State

Equations: Variables: Goal Stack:
3x+y=10

x: desired unkown solve for unknown
z=3y/4 y
2x+y+2z=14 z

olve-unknown-n- \m\tried operators

failed operators
(e.g., Solve-unknown-l-equation) |} equations (e.g., select-var+)
[Equations)* [Variables] Goal Stack:
select variable
get equation
form new equations
solve for unknown
7] AY
failed operators lect-vart untried operators
(e.g., solve-unknown-n-equations) (e.g., select-var+ instantiated with z,
var-on-lhs+)
[Equations] Variables: Goal Stack:
x: desired unknown get equation
y: selected variable form new equations
z solve for unknown
failed oéators bm""“‘u’s‘ . N\
untried operators
Equations: [Variables] Goal Stack:
y=10-3x get equation
z=3¥4 form new equations
2x+y+2z=14 solve for unknown
7 |'Var—on-lhs+ N
Equations: [Variables] Goal Stack:
y=10-3x form new equation
z=3¥£4 solve for unknown
2x+y+2z=14
/7 ﬁeplace+ N\
Equations: {Variables} Goal Stack:
y=10-3x form new equation
2=3(10-3x)/4 solve for unknown
2x+y+22=14
/ v{eplace+ AN
Equations: [Variables] Goal Stack:
y=10-3x form new equation
z=3(10-3x)/4 solve for unknown
2x+(10-3x)+2z=14
7 beplace- N
Equations: Variables: Goal Stack:
z=3(10-3x)/4 x:desired unknown solve for unknown

2x+(10-3x}+22=14 z

7 golve-mﬂmown-n-equaﬁons\

Second Cycle
(see operator and goal traces in figure 3)
7 n
olve-unknown-l-equation

pomemeny

Equations: Variables: Goal Stack:
x=2 x: desired unknown nil
(Success)

Figure 2: Trace of states and operators in an example
algebra problem

* Square brackets indicate that the elements enclosed are unchanged.

Because justifications for the above deletions have been discussed
clsewhere (e.g., [1, 2]), we arc not repeating them in this paper.

3.3. Formation of Iterative Operators)
The branching feature above is desirable for an iterative operator
because it allows for variation from cycle to cycle. Without it, an

important class of iterative operators could not be represented or
acquired. The saving duc to internal branching on the number of
cquivalent traditional macro-operators increases exponentially with the
number of iteration cycles considercd. For problems requiring cxactly
m iterative cycles with n independent if-then-else conditionals in each
cycle, the number of traditional macro-operators required to cover the
state space is 2”™ Thus, for problems requiring iteration up to m
cycles, the total number of macro-operators grows to £, 2" In
contrast, a single iterative, conditional macro-operator independent of
m and n suffices. In view of the number of macro-operators required,
unless iterative operators are formed, it could casily be less efficient to
search through the large space of macro-operators than the original
space of operators in problem domains involving itcration. 'The
inefficiency is exacerbated by the fact that the myriad specific macro-
operators would share significant common substructure. Restricting
ourselves to non-iterative operators would thercfore severely limit
useful learning in such domains.

An important additional advantage of forming iterative operators
is that certain algebraic modifications in the intermediate macro-
operator can be related to the number of iterations i. Given a trace of a
successful path, we can form cquations with variables in these algebraic
modifications expressing conditions under which a solution will be
rcached through the iterative procedure. If there are multiple
modifications of this sort, variables in these modifications can be
related to cach other through i ‘The inferred relation can help detect
solvability by the iterative rule carly, before iteration is actually entered.
[.ct us illustrate this principle in our algebra example. As can be scen in
Figure 3, cach cycle through this macro-operator reduces the number of
equations and the number of variables each by 1. The reduction for i
cycles would be (g -) and (v - §) respectively, where ¢ is the number of
cquations given and v is the number of variables in the given cquations,
From the solution trace, we know that when the number of equations
and number of variables arc both 1, i.c., when

q-i=land

v-i=1,

then a solution can be reached. Eliminating 7 from the above
cquations, we get

qg=n.
Putting this inferred relation in the LHS of the itcrative rule helps
screen out insoluble problems without actually iterating through the
solution procedure. Other information can be similarly precomputed
and fronted as operational conditions on the LHS of new iterative
operators,

The iterative operator formed in our example problem is
presented in Figure 4b. In FERMI, the LHS of iterative operators is
formed by an aggregate of condition clements that need no iteration.
They are:

—

condition clements in the T.HS of the intermediate macro-
operator with variables or constants that are not modified by the
operator,

2. condition clements whose variables undergo simple algebraic
modifications by the operator — modifications such as addition,
multiplication, division by a constant or variable, ctc.. and

13

. checks on relations between the above variables inferred through
the successful solution tracc and the number of iterations —
checks such as cquating the number of unknowns to the number
of cquations in our example.

The RHS of the iterative operator consists of

—

a statement initializing a counter for the number of iterations,

3

an iterative agenda call to the intermediate macro-operator
formed earlicr (Scc Figure 4b),

[

and simple algebraic modifications based on the number of
iterations. For instance, the number of equations in our example
algebra problem is reduced by the number of iterations.

LEARNING / 193

trace of rules

solve-unknown-n-equations

select-var+

var-on-lhs-

var-on-lhs+
replace+
replace+
replace-

solve-unknown-n-equations

select-var+

var-on-lhs+
replace+
replace-

solve-unknown-1-equation

(sucess)

trace of subgoals
of rules

solve for unknown
select variable

get equation for substitution
get equation for substitution

form new equation
form new equation
form new equation
solve for unknown
select variable

get equation for substitution

form new equation

form new equation

solve for unknown
(success)

trace of changes
in subgoals

solve for unknown
select variable
get equation for substitution

form new equation

solve for unknown
select variable
get equation for substitution
form new equation

solve for unknown
{success)

Figure 3: Three types of traces of the example problem in Figure 2

"Information extracted from the same problem-solving step appeats in the same row

The macro-operator halts when its conditions are no longer satisfied.
Note that the iterative call to the macro-operator is the only truly iterative
component required.

To coordinate with the iterative operator, the intermediate macro-
operator (in the RHS of the iterative operator) is modified as follows: the
first two kinds of condition elements just listed are removed from its LHS

name of rule LHS: conditions

m-solve-unknown the current goal is to solve for unknown,*
the desired unknown is =u,*

the number of equations =nume is > 1,*
the number of variables =numv is > 1,*
there is a variable =v that is not =u,

=v appears in at least 2 equations,

there is no equation that contains =u

and has no other variables in it

m-var-on-lhs+

m-var-on-lhs- there is no equation with =v on its LHS,

but there is an equation =e that contains =v

m-replace- the selected equation is =e,
no equation other than =e contains =v,
the number of equations is =nume,*

and the number of variables is =numv*

m-replace+ the selected equation is =el,

and =v occurs in a second equation =e2

there is an equation =e with =v on its LHS

and the LHSs of operators in the agenda in its RHS. These are elements
that require no iteration and have been moved to the LHS of the iterative
operator. Corresponding action elements, those that do simple algebraic
modifications on the variables in condition elements, are also removed.
Such condition elements are no longer necessary because these
modifications are done more efficiently in the RHS of the iterative operator

RHS: actions

call agenda with
bucket 1: {m-var-on-lhs+ m-var-on-lhs-}
bucket 2: (m-replace- m-replace+)

mark equation as selected, and halt bucket

rearrange =e so that =v is on its LHS

remove =e from working memory
remove =v from working memory
set =nume to (=nume - 1)*

set =numv to (=numv - 1)*

and halt bucket

substitute occurrences of =v with
the RHS of =el

Figure 4a: Intermediate Macro-operator formed from a single cycle

* Elements marked with an asterisk are removed when the iterative operator is formed, and a counter =iterations for the number of

iterations is added.

name of rule LHS: conditions

i-solve-unknown the current goal is to solve for unknown,
the desired unknown is =u,

the number of equations =nume is > 1,
the number of variables =numv is > 1,

=nume is equal to =numv

RHS: actions

set =iterations to 0,

call agenda with bucket: (m-solve-unknown),
set =nume to (=nume - =iterations),

set =numv to (=numv - =iterations)

Figure 4b: Iterative operator

494 / SCIENCE

in a single step by relating the modifications directly to the number of
iterations. In their place a counter for the number of iterations is added.

FERMI solves many problems requiring iteration, including
simultancous algebraic cquations and physics problems such as finding
the pressure difference between 2 points a and b in a container
containing multiplc layers of liquids that have various densitics. A path
from a to b is repeatedly decomposed: until the requirements for
applying the formula for pressure difference in a single liquid are met.
‘The iterative operator to be learned from the problem-solving proccss is
cquivalent to the formula

Ap, =82 ,pAh
where A Py is the pressure difference between a and b, g is the surface
gravity, i is the summation index, n is the total number of liquids
between a and b, P, is the density of liquid,, and A hi is the change in
height of a path froma to bin liquidi.

4. Concluding Remarks

Learning in problem solving requires more than rote
memorization of linear operator scquences into macre-operators [15].
Parametrizing the macro-operators, and reducing redundant condition
and action elements provides only the first step towards morc general
strategy learning. In the FERMI project we have gone two steps
further:

1. automated generation of macro-operators with conditional
branching, and

2. automated creation of iterative macro-operators to solve problems
with cyclic subgoal structure.

The integrated implementation in FERMI of these two techniques, on
top of the traditional macro-operator formation method, provides a
theoretical enhancement in the power of macro-operators, and major
savings in both the number of requisite macro-operators and the time
required to search for applicable operators in future problem solving.
Further work should be done on correcting over-generalization in
iterative rules by learning from failure, generalizing types of inferences
that can be made from the iterative trace to produce up-front LHS tests
for an iterative opcrator, and on specifying types of condition elements
that can be transferred from the intermediate macro-operator to the
LHS of the iterative operator so as to improve carly detection of
solvability.

In addition to a larger scale implementation and more extensive
testing of our iterative macro-operator formation techniques, future
dircctions for lcarning in FERMI include:

& Incorporating analogical reasoning techniques [5. 6], which can
provide a basis for transferring powerful macro-operators across
related domains, as well as the more traditional transfer of
solution sequences across related problems.

e Exploring the role of autematic programming in the creation of
ever more claborate macro-operators. T'hus far, our primary
effort has been in detection, analysis, and cvaluation of problem
solving traces in order to extract all the information required to
formulate usecful, gencralized macro-operators. But, as the
complexity of the task increases, so does the necessity for
principled automatic synthesis of such macro-operators.

5. References

1. Anderson, J. R., The Architecture of Cognition, Cambridge, Mass.:
Harvard University Press, 1983.

2. Anderson, J. A. ‘‘Acquisition of Proof Skills in Geome{ry,” ip
Machine Learning, An Artificial Intelligence Approach, R. S. Michalski,
1. G. Carbonell and T. M. Mitchell, eds., Tioga Press, Palo Alto, CA,
1983.

3. Carbonell, J. G., Larkin, J. H. and Reif, F., ‘““Towards a General
Scientific Reasoning Engine,”” Tech. report, Carnegie-Mellon
University, Computer Science Department, 1983, CIP #445.

4. Carbonell, J. G., ‘“‘Experiential Learning in Analogical Problem
Solving,”” Proceedings of the Second Meeting of the American
Association for Artificial Intelligence, Pittsburgh, PA, 1982,

5. Carbonell, J. G., “‘Learning by Analogy: Formulating and Generalizing
Plans from Past Experience,”” in Machine Learning, An Artificial
Intelligence Approach, R. S. Michalski, J. G. Carbonell and
T. M. Mitchell, eds., Tioga Press, Palo Alto, CA, 1983,

6. Carbonell, J. G., “‘Derivational Analogy: A Theory of Reconstructive
Problem Solving and Expertise Acquisition,” in Machine Learning, An
Artificial Intelligence Approach, Volume II, Michalski, R. S., Carbonell,
J. G. and Mitchell, T. M., eds., Morgan Kaufmann, 1986.

7. Dietterich, T. and Michalski, R., ‘““Inductive Learning of Structural
Descriptions,” Artificial Intelligence, Vol. 16, 1981.

8. Dietterich, T. G. and Michalski, R. S., ““A Comparative Review of
Selected Methods for Learning Structural Descriptions,” in Machine
Learning, An Artificial Intelligence Approach, R. S. Michalski,
J. G. Carbonell and T. M. Mitchell, eds., Tioga Press, Palo Alto, CA,
1983.

9. Fikes, R. E. and Nilsson, N. J.,, “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving,”” Artificial
Intelligence, Vol. 2, 1971, pp. 189-208.

10. Laird, J. E., Rosenbloom, P. S. and Newell, A, *‘Chunking in SOAR:
The Anatomy of a General Learning Mechanism,”” Machine Learning,
Vol. 1, 1986.

11. Langley, P. and Carbonell, J. G., ‘‘Language Acquisition and Machine
Learning,” in Mechanisms for Language Acquisition, MacWhinney B.,
ed., Lawrence Erlbaum Associates, 1986.

12. Larkin, J. H., ““Enriching formal knowledge: A model for learning to
solve problems in physics,”” in Cognitive Skills and their Acquisition,
J. R. Anderson, eds., Lawrence Erlbaum Associates, Hillsdale, NJ,
1981.

13. Larkin, J., Reif, F. and Carbonell, J. G., ““FERMI: A Flexible Expert
Reasoner with Multi-Domain Inference,” Cognitive Science, Vol. 9,
1986.

14. Minton, S., Carbonell, J. G., Knoblock, C., Kuokka, D. and Nordin, H.,
“Improving the Effectiveness of Explanation-Based Learning,”” Tech.

report, Carnegie-Mellon University, Computer Science Department,
1986.

15. Minton, S., *‘Selectively Generalizing Plans for Problem Solving,’
Proceedings of IJCAI-85, 1985, pp. 596-599.

16. Mitchell, T. M., Version Spaces: An Approach to Concept Learning,
PhD dissertation, Stanford University, December 1978.

17. Mitchell, T. M., Utgoff, P. E. and Banerji, R. B., “‘Learning by
Experimentation: Acquiring and Refining Problem-Solving Heuristics,”*
in Machine Learning, An Artificial Intelligence Approach,
R. S. Michalski, J. G. Carbonell and T. M. Mitchell, eds., Tioga Press,
Palo Alto, CA, 1983.

18. Rosenbloom, P. S. and Newell, A., ‘*“The chunking of goal hierarchies:
A generalized model of practice,”” in Machine Learning: An Artificial
Intelligence Approach, Vol2, R. S. Michalski, J. G. Carbonell, and
T. Mitchell, eds., Kaufmann, Los Altos, Calif., 1986.

19. Shell, P. and Carbonell, J. G., ‘“The RuleKit Reference Manual’’, CMU
Computer Science Department internal paper.

20. Winston, P., Artificial Intelligence, Reading, MA: Addison Wesley,
19717.

LEARNING / 495

