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Abstract 

Automated methods of exploiting past experience to reduce search vary 
from analogical transfer to chunking control knowledge. In the latter 
category, various forms of composing problem-solving operators into larger 
units have been explored. However, the automated formulation of effective 
macro-operators requires more than the storage and parametrization of 
individual linear operator sequences. This paper addresses the issue of 
acquiring conditional and iterative operators, presenting a concrete 
example implemented in the FERMI problem-solving system. In essence, 
the process combines empirical recognition of cyclic patterns in the 
problem-solving trace with analytic validation and subsequent formulation 
of general iterative rules. Such rules can prove extremely effective in 
reducing search beyond linear macro-operators produced by past 
techniques.* 

1. Int reduction 
Automated improvement of problem-solving behavior through 

expcricncc has long been a central objcctivc in both machino learning 
and problem solving. Starting from STRlI’S [9], which acquired simple 
macro-operators by conc.ltcnation and paramctcrization of useful 
operator sequences, chunking control knowlcdgc has proben a popular 
method for reducing search in solving future problems of like type. 
Marc comprehensive chunking disciplines have been studlcd; for 
instance, SOAR [18] chunks at all possible decision points in the 
problem solving, whereas MORRIS [l.S] and PRODIGY [14] are more 
selective in their formulation of useFir macro-operators. Other forms of 
learning particularly relevant to problem solving inclttde strategy 
acquisition [il, 171, and various fauns of analogical reasoning. 
Transform;ltional analogy [S] transfers expcrtisc directly from the 
solution of past problems to new problems that bear close similarity, 
and dcriiational analogy [6] transfers problem-solving strategies across 
structurally Gmilar problem-solving episodes. Both forms of analogy 
provide th\: positive and negative exemplar data required to fom-mlatc 
gcneraliLcd plans [4, 7, 8, 11, 16, 17, 201. 

This paper discusses the need for the formulation of a more 
general class of macro-opcrarors that enable conditional br‘mching and 
generalLed iteration. It then presents a method for automated 
induction of such macro-operators from recursive and iterative 
problem-solving traces. Inducing iterative rules (macro-operators) from 
behavioral traces involves the detection of repetitibc pdttcrns in the 
subgoal structure of the problem-sole ing episodes. This process 
includes analysis of the trace to determine the common operations at an 
,Ipl?r”prialc ICCCl Of. ,Ib~ll~lctiOn, ;rncl cxlr;lctic)n (I:’ cctn(!iliotls tIcc‘c~\~lI y 
for wcccss. 
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poillk ill the pi’ol~lcm-solving process to up-front left-hand-side (I I IS) 
conditions. I:or instnncc, an itcratibc riilc ;tquircd by 1~11l<hll solves 
indcpcndcnt lincnr equations in miiltiplL’ unknowns by rcpcatcd 
~,\lh~titution 01’ cxprcssions containing progr\lhsi\cly fc\ccr vnriablcs. 
‘l’liih (or dny orhcr) mcrhod can yield d ilniquc solution oiil~ if thcrc n~*c 
;IS many linearly indcpcndent equations as thcrc arc \ari;lblcs. Such a 
contlitlon is dcduccd :\utom:itic;#y by ;mnlysis of the problem and is 
subjcqucntly :lddcd to the 1.11s of the itcrativc rule, eliminating the 
need to pcrlijrm all the step-by-step substitutions in order to discover at 
the end of Lhe process that thcrc arc rcnlaining variables and no 
remaining equations, or that thcrc is a contradiction. ‘1%~ techniques 
for dcvcloping and implcmcnting this type uf learning, as elaborated in 
subscqucnt sections, provide a ud’rrl addition to the repcrtoirc of 
machine learning methods in problem solving. 

2. Overview of FERMI 
t-FRI?I I**. our cxpcrimcntal tcstbed for iterative rute induction, is 

a general problem solver in the natural scicnccs. Its flexible 
architecture has been described clsewhcre [3, 1.31; here WC focus only on 
thocc aypccts directly relevant to automated induction of iterative rules. 
FI-XMI scpamtes problctn solving knowledge from domain knowledge, 
rcprcscl~ting the former as stratcgim and the l&ter as factual frames at 
different hels of abstr<iction in a semantic frame network. Thus, 
gcncrdl concepts such ;is uww saliuJl vl+it~ass or equilii,l.ium wnditioiis 
need be represented only once and inherited whcrc appropriate. 
Similarly, p$blcm-solving knowledge, such as iterative 
decomposition arc encoded as gcncrnl strategies applicable to a wide 
variety of probler&. l-‘ERM 1 has successfully solved problems in areas 
as diverse ;I$ fluid statics, linear algebra, classical mechanics, and DC 
circuits applying the same gcncral problem solving strategies, and some 
of the same general domain concepts. 

**FERMI is an acronym for Flexible Expert Reasoner with Multi-Domam Inference, and a 
tribute to Enrico Fermi, who displayed abihties to solve difficult problems in many of the 
natural sciences by the application of general domain principles and problem solving strategies. 

***Iterative decomposition proceeds as follows: 1. Isolate the largest manageable 
subproblem. 2. Solve that subproblem by direct means. 3. If nothing remains to be solved, 
compose the solutions to the subproblems into a solution to the original problem. 4. If part of 
the problem remains to be solved, check whether that remaining part is a reduced version of the 
origmal problem. 5. If so, go to 1, and if not halt with failure. 
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goal-subgoal tree. the methods LISC~ to attack the wh prohlcm. and the substitution, and 5. repeating the above steps until only an equation 
causes of success or failure at cbcry inter-mcdiatc itcp in the reasoning. that contains no variable other than the desired unknown remains. 

3. Acquiring Iterative Macro-operators 
Many problems share an implicit rccur\lvc or iterative nntur’c. 

‘fhcse problems include mundane cvcrqday ac!ilitics such as walking 
until a destination is rcachcd and eating until hunger is satistictl as well 
as oroblcms in mathematics and science such as those solved bv 

When given a trace that exhibits a fixed number of iterative cycles 
before solution is reached. current methods of forming macro-operators 
such as STRIPS, ACT*, and SOAK [l, 9,lO. 1X] cannot produce 
operators that will generalize to an arbitrary number of iterations. 
lndccd, they cannot even detect the iterative nature of the problem. 
The MACROPS facility in STRIPS [9], for instance, would add all 
subsequences of primitive operators for as many cycles as the instance 

3.1. Pattern Detection 
What type uf repetitive pattern in the solution trace would 

warrant the formation of an itcratitc rule? We think that requiring 
identical scquenccs of rules would be too restrictive, because partially 
matched scqucnces may nonetheless contain information on equivalent 
choices and orderings of operators. Consider rcpc,ltcd instances of the 
same subproblcm - say to establish a precondition on occasions when 
it is not already satisfied. 7he instances may (or may not) require 
different operators. In our algebra example, after the execution of the 
rule select-\sr+, if the problem state happens to include an equation 
that has the bariablc returned by select-v;tr+ on its I-HS. then the rule 
var-on-lhs+ would apply. Otherwise. rulemkar-on-lhq- would have to 
be executed before var-on-lhs+ applies. Thus. what rule follows select- 
\ar+ could vary depending on the particular problem state. 
Nonetheless, the specification that either var-on-lhs- or var-on-lhs+ - 
and not other opcrntors irrelevant to v,lriable substitution - follows the 
execution of selccr-var+ is useful. It reduces the number of matches to 
be done by an amount proportional to the number of operators 
excluded. Noticc that the two alternative mles are different paths 
satisfying the same subgoal. To capture information on sequencing that 
is common across differing circumstances. our pattern detector looks 
for consecutive, identical rcpctition of any scqucnce of chaqes in 
rubgoals. SubgoJs are generated and remobcd by rules during problem 
solving. l%ch column in Figure 3 shows a type of trace of the solution 
path for the example problem in Figure 2: 

problem required into its triangle table - generating huge numbers of 
macro-operators and failing to capture the cyclic nature of tile solution. 
Anderson’s ACT* [l, 21 would compile one (or more) linear macro- 
operators for each-number of repetitions, also failing to capture the 
iteration. Thus, for any single cycle of iteration, existing macro- 
operator formation systems will, at best, produce macro-operators that 
will apply to a predetermined number of iterations, which would not 
generalize to a fewer or greater number of cycles. Moreover, as we 
rcmarkcd earlier, each cycle may select different methods for solving 
the same subgoals, and the regularity exists at a higher level of 
abstraction in the subgoal trace. Most earlier systems (SOAR partially 
excepted) do not chunk problem solking tracts at higher level of 
abstraction than the sequence of instantiated operators. As we will 
illustrate with an example problem in the familiar domain of solving 
simultaneous linear equations, tl~c exact scqucnce of rules may vary 
from cycle to cycle while preserving an overall subgoal structure. 

‘Ihc learning in our program proceeds in three steps: 

tritcc at the 1. dctcction of an itcrativc pattern in the solution 
appropriatC ICvCl of abstraction and granularity, 

2. formatit)n of a macro-operator that transli)rms d state ilt the 

beginning of a single itcrativc cycle to the c;tntc at the beginning of 
the next cycle, and 

3. formation of an itcrativc operator that cheeks for gcncraliLed 
rtpplicability conditions inferred from the macro operator 
togcthcr with conditions immcdiatcly following the iterative 
scquencc in the successful solution trace. 

4. <I tI‘,lcc OF the a~~l~llcll~c o(‘c!l;tllgcs 111 t!;P,c ~llbgc’als. 

As c.111 hc 4ccn. con~,cctlti\cs idcnLical rc.pc:i!ioti is ,ip!J,ircnt only 
in the 1~~1 type of‘ ll;rc:‘. (ldctlticitl KJ~C~I~IOI~S arc !>r,~~k~ic~d in the 
ligurc.) ‘I he \ccond t)i!)c of trace. \;ti%l‘:, ~icross c4cIL’s bcc~iusc the 
number of HIICS rcquircd Lo satislj il Stlllg0dl IIliI?’ ViJI.)’ liUiJ1 CyClC t0 
cycle. 

3.2. Formation of Macro-operators with Conditionals 
After .tn itcrnti\c p:iltern is dctcctclt. the program forms il macro- 

0pc:;ttor I)> composin:, I-UILY in a sln$lc clclc of the ilcr,ltion 33 an 
intcrmcdi~~te \tcp towards furming ill1 itcr.ilivc operator. I’hc scqucncc 
of opcratorr that should IX composed is t!lcrcii~r\~ dctermincd by the 
p;rtt& &>tcctcd and is lcs\ arbit;.,Iry than in systems such ;js SI’KIPS 
[‘I] alld AC 1 I-1 ” ‘* 7 In whicll any scqwncc can bc a candic!,ltc for a 
macro-operator. Although our rriggcr for forming a tn,~cro-operator 
differs tiv~n others, the actual formation is in the tradition of macro- 
opcr&or lc,lrning sqstcms such as SIX I I’S and AC’I‘*, with the 
cxcCph)n LlW we i1llOti Ii,]. alternative ,:ctions con~!itiou,ll on the 
problem state within tllc same operator. ‘I‘hc grcatcr gcucrality 
cn;cndcrcd hy this fc,tturc helps a\,oid tllc prolifcr,ltion of macro- 
opcI‘nt0rs iJ7 ;I ~~roblCX1 Solver [I 5, 141. Assumin, ‘7 that CXII conditional 
consists of a simple if-then-else brunch, th‘it thcrc is ‘I scrics of 0 
iOllditi~H~illS in a cycle of ircration. and that these conditionals arc 
indcpcndcnt of each other. the number of rr;,ditiona! macro-operators 

I~clow WC elaborate on each step with illustrations drawn from 
our example problem on solving simultaneous linear equations. A set 
of operators for solving such systems of cqudtions is listed in Figure 1. 
The operators arc all in the form of standard condition-action rules. 
(Variables in the tigurc arc preccdcd by an = sign, all l,IiS conditions 
are conjoined, and all RHS actions arc cvaluatcd sequentially.) A trace 
using these operators solving an algebra problem is shown in Figure 2. 
The solution path involves: 1. selecting an appropriate cariablc, 2. 
rearranging an equation to express this variable in terms of others, if the 
equation dots not already appear in that form, 3. substituting the 
equivalent expression for the variable whenever the variable occurs in 
the remaining set of equations. 4. eliminating the equation used for 

- which do not allow inrornJ 
same state S!XKC would bc 2”. 

conditionals - rcquircd to c&er the 

lntcrnal conditionals arc implcmenlcd in our program by an 
agmdrl control structure on the right-hand-side (RHS) of UK macro- 
operator. An agenda consists of an ordered list of “buckets” that 
contain ordcrcd sets of operators. In our program the buckets, and the 
operators in each bucket, arc tested in order. When an opcrntor does 
not apply, the next operator in the same bucket is tested. When an 
operator dots apply, control is returned to the first operator in the 
bucket. Control is passed on to the next bucket when no rule in the 
bucket applies or when a rule that applies halts execution of the bucket. 
When 110 rule in the last bucket applies or when it halts, control leaves 
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name of rule 

solve-unknown- 
l-equation 

solve-unknown- 
n-equations 

selectvar -I- 

select-var - 

var-on-lhs + 

var-on-lhs- 

replace + 

replace - 

1X3: conditions 

the current goal is to solve for unknown, 
the number of equations is 1, 
the number of variables is 1, 
the desired unknown is = u, 
there is an equation =c that cont;hins =u, 
there are no other equations 

the current goal is to solve for unknown, 
the number of equations is > 1, 
the number of variables is > 1, 
the desired unknown is = u, 
there is no equation that contclins = u 
and has no other variables in it 

the current goal is to select a variable for substitution, 
the dcsircd unknown is = u, 
there is a variable = v that is not = u, 
and = v appears in at least 2 equations 

the current goal is to select a variable for substitution, 
there is no variable that is not the unknown 
and appears in at least 2 equations 

the current goal is to get an equation 
with the selectcdvariablc on its I.HS, 
the selected variable is = v, 
and there is an equation with = v on its LHS 

the current goal is to get an equation with the 
selected variable on its LHS, 
the selected variable is = v, 
and there is no equation with = v on its LHS, 
but there is an equation = e that contains = v 

the current goal is to form a new equation by substitution, 
the selected equation is = el, 
the selected variable is = v, 
and = v occurs in a second equation = e2 

the current goal is to form a new equation by substitution, 
the selected equation is = e, 
the selected variable is = v, 
no equation other than = e contains = v, 
the number of equations is = nume, 
and the number of variables is = numv 

Figure 1: operators for algebra problem 

the agenda and is returned to the top-levci. 

We exploit this control structure by placing in each agenda bucket 
a disjunctive set of operators for satisfying the same subgoal. The 
automated Icarner puts operators in a bucket in an agenda when it 
detects in the solution trace sets of operators that have the same subgoal 
on their JMS but each member of the set ha5 condition clemcnts that 
negate condition elements in each of the other mcmbcrs of the set. The 
negated condition elements obviously cannot be composed on the LHS 
of a macro-operator, and arc instead left to form separate operators in a 
bucket on the RHS of the macro-operator. In each bucket the operator 
that checks for satisfaction of the subgoal - and therefore halts 
execution of the bucket when its conditions arc satisfied - is placed in 
the first position. In such manner conditional branches are formulated 
in new macro-operators without altering the uniform top-lcvcl control 
structure. 

III our algebra example there arc two sets of conditionals, with 
two oper:ltorj in each set: var-on-lhs+ atIt v;lr-on-lhs- iI1 one set, and 
replace- and rcpl;lcc + in the other set. ‘t’hc first set is a simptc if-thcn- 
clsc conditional, the second set is rcpc~tcdly tested until replace- is 

RHS: actions 

solve for =u in =e, 
and pop success 

set up subgoals to (1) select a variable 
for substitution 
(2) get an equation with the selected 
1 arinblc on its I,HS 
(3) form a new equation by substitution 
(4) solve for unknown 

mark = v as selected, 
and pop success 

pop failure 

mark the equation 
and pop success 

as 

rearrange =e so that = v 
is on its LHS 

substitute occurrences of = v with 
the RHS of =el 

remove = v from working memory, 
remove = e from working memory, 
set = nume to (= nume - 1) 
set = numv to (= numv - 1) 
and pop success 

applicable, i-c.. when there are no more occurrences of the variable to 
bc rcplnccd. A macro-operator with conditionals for our example 
algebra problem is shown in I;igure 4a. 

With the exception of negated condition elements and their 
corresponding RJHSs, whenever wc compose a sequence of operators, 
WC aggrcg&e the condition dnd action clcmcnts of the scqucncc of 
operators ‘rpplicd in the tr,icc. A\ in other proposed methods of forming 
macro-operators (c.g., [l]). We eliminate redundancies in the macro- 
opcrntor by deleting: 

1. duplicate condition clcments, 

2. condition elements that match a working memory element, 
including subgoals, cre‘lted by an earlier rule within the sequence, 

3. action elements that create subgoals 
condition elements in the sequcncc, and 

matched by subsequent 

4. condition and action elements whose sole 
variables bindings from one rule to the next. 

function is to pass 

-i92 / SCIENCE 



Equations: Variables: 
3x+ -10 

Goal Stack: 

3- 
x: desired unkown solve for unknown 

z= yl4 Y 
2x+y+22=14 x I 

failed opGGs 

e 

olve-unknown-n- \ 
(e.g., Solve-unknown-l-equation) eqUatiOnS 

untried operators 
(e.g., select-var+) 

[EquatIonsI* [Variables] 

Initial State 

Goal Stack: 
select variable 
get equation 

fom new esuations 
solve for &own I 

fori new’ wuations I 
solve for u&norm I 

Goal Stack: 
get equation 

form new equations 
solve for unknown 

Goal Stack: 
form new equation 
solve for unlulown 

y: selected variable 

failed o$Lators 
JY 

ar-on-lhs- \ 
unhied operators 

Equations: 
y=lO-3x 
z=3 14 

2x+y+ =14 ai 

[Variables] 

/ Jz ar-on-lhs+ \ 

Equations: 
y=lO-3x 
2=3 f4 

2x+y+ =14 lz 

[Variables] 

important class of iterative operators could not be rcprcscntcd or 
acquired. The saving due to internal branching on the number of 
equivalent traditional macro-operators increases cxpc~~cntinllq tiith the 
number of iteration cycles considered. For problems requiring exactly 
,n itcrativc cycles with n indcpendcnt if-then-else conditionals in each 
cycle, the number of traditional macro-operators Icquired to cover the 
state space is 2”m. Thus, fur problems requiring iteration up to tn 
cycles, the total number of macro-operators grow5 to E, = 1 ,~ 2’“. In 
contrast, a single iterative, conditional macro-operator indcp‘cndcnt of 
m and II suffices. In view of the number of macro-opcratorc, rcyuircd, 
unless iterative operators arc formed, it could c’,Gly bc less cl’ficicnt to 
starch through the large spocc of macro-operators than the original 
space of operators in problem domains involving iteration. ‘Ihe 
incf?ciency is cxaccrbated by the fact that thy myriad specific macro- 
operators would share significant common substructure. Restricting 
ourselves to non-iterative operators would thercforc sevcrcly limit 
usctil learning in such domains. 

An important additional advantage of forming iterative operators 
is that certain algebraic modifications in the intermedi‘lte macro- 
operator can be related to the number of iterations i. Given a trace Of a 
successfU1 path, we can form equations hit11 variables in these algebraic 

modifications expressing conditions under which ;I solution will bc 
rc;lchcd through the itcrntivc proccctlurc. If thcrc arc multiple 
modilic;ltions of this sort, variables in thcsc modifications c;\n bc 
rcl;M to cilch other through i. ‘13~ infcrrcd rcl;ltic)n CJII help detect 
sulv,lhility by the itcrativc rule early, bclilrc itCratic\n is ;~ctunlly cntcrcd. 
I-et us illustrate this principle in our ;IlgCbril cx~rnplc. As can be seen in 
Figure 3, c~h cycle through this macro-opcI.;ltl)r rcduccs the number of 
equations and the number of v:\riablcs each by 1. ‘I’hc reduction for i 
cycles would bc (4 - i) and (V - 11 rcspcctivcly, whcrc y is the number of 
equations given and I’ is the number of kariablcs in the given equations. 
From the solution tr,icc, WC know th,it when the number of equations 
and number of variables arc both 1, i.e., when 

Equations: 
y= 10-3X 

2=3(10-3x)/4 
2x+y+2z=14 

[Variables] Goal Stack: 
form new equation 
solve for *own 

q-i= land 

v-i= 1, 

eplace+ 

then a solution can be reached. Eliminating i from the above 
equations, wc get 

Equations: [Varlables] Goal Stack: 
y=lO-3x 

2=3(10-3x)/4 
form new equation 
solve for unknown 

2x+(10-3x)+2z=14 

eplace- 
I 

\ 

9 = v. 

Putting this inferred relation in the LHS of the itcrativc rule helps 
screen out insoluble problems without actually iterating through the 
solution procedure. Other information can be similarly prccomputcd 
and fronted as operational conditions on the LHS of new iterative 
operators. 

Equations: Variables: 
2=3(10-3xJI4 x:desired unknown 

2x+(10-3x)+2z=14 z 

The iterative operator formed in our example problem is 
presented in Figure 4b. In FERMI, the LHS of iterative operators is 
formed by an aggrcgatc of condition clcmcnts that need no iteration. 

I They are: 
olve-unknown-n-equations\ 

~“““““““““‘“‘-‘--- . . ..----c-------“------~~-~---. 

(see operator and goal traces in figure 3) 

1. condition clemcnts in the T.FIS of the intcrmcdiatc macro- 

2. condition elements whose variables undergo simple algebraic 
modifications by the operator - modifications such as addition, 
multiplication, division by a constant or variable. etc.. and 

3. checks on reldtlons between the nbove variables inferred through 
the successful solution tract and the number of iter‘itions - 
checks such as cqu,lting the number of unknou ns to the number 
of equations in our example. 

operator with variables or constants that are not modified by the 
operator, 

(Success) 

Figure 2: Trace of states and Operators in an example 
algebra problem The RHS of the iterative operator consists of 

l Square brackets indicate that the elements enclosed are unchanged. 

Bccausc justifications for the above deletions have been discussed 
elsewhere (e.g., [1,2]), we arc not repeating them in this paper. 

3.3. Formation of Iterative OperatOrS 

The branching feature above is dcsirablc for an iterative operator 
because it allows for variation from cycle to cycle. WithOUt it, an 

1. a statement initializing a counter for the number of iterations, 

2. an iterative agenda call to the intermediate macro-operator 
formed earlier (See Figure 4b), 

3. and simple algebraic modifications based on the number of 
iterations. For instance. the number of equations in our example 
algebra problem is reduced by the number of iterations, 
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trace of rules trace of subgoals 
of rules 

trace of changes 
in subgoals 

solve-unknown-n-equations 
select-var+ 
var-on-lhs- 
vat--on-lhs+ 

replace+ 
replace+ 
replace- 

solve-unknown-n-equations 
select-var+ 
var-on-lhs+ 

replace+ 
replace- 

solve-unknown-l-equation 
(sucess) 

solve for unknown 
select variable 

get equation for substitution 
get equation for substitution 

form new equation 
form new equation 
form new equation 
solve for unknown 

select variable 
get equation for substitution 

form new equation 
form new equation 
solve for unknown 

(success) 

Figure 3: I’hree types of traces of the example problem in 
*Information extracted from the same problem-solving step appears in the 

The macro-operator halts when its conditions are no longer satisfied. 
Note that the iterative call to the macro-operator is the only truly iterative 
component required. 

To coordinate with the iterative operator, the intermediate macro- 
operator (in the RHS of the iterative operator) is modified as follows: the 
first two kinds of condition elements just listed are removed from its LHS 

name of rule 

m-solve-unknown 

m-var-on-lhs+ 

m-var-on-lhs- 

m-replace- 

m-replace+ 

* Elements marked 

iterations is added. 

name of rule 

solve for unknown 
select variable 

get equation for substitution 

form new equation 

solve for unknown 
select variable 

get equation for substitution 
form new equation 

solve for unknown 
(success) 

LHS: conditions 

the current goal is to solve for unknown,* 
the desired unknown is =u,* 
the number of equations =nume is > I,+ 
the number of variables =numv is > l,* 
there is a variable =v that is not =u, 
=v appears in at least 2 equations, 
there is no equation that contains =u 
and has no other variables in it 

call agenda with 
bucket 1: (m-var-on-lhs+ m-var-on-lhs-) 
bucket 2: (m-replace- m-replace+) 

there is an equation =e with =v on its LHS mark equation as selected, and halt bucket 

there is no equation with =v on its LHS, 
but there is an equation =e that contains =v 

rearrange =e so that =v is on its LHS 

the selected equation is =e, 
no equation other than =e contains =v, 
the number of equations is =nume,* 
and the number of variables is =numv* 

remove =e from working memory 
remove =v from working memory 
set =nume to (=nume - l)* 
set =numv to (=numv - l)* 
and halt bucket 

the selected equation is =el) 
and =v occurs in a second equation =e2 

with an asterisk are removed when the iterative operator is formed, and a counter =iterations for the number of 

Figure 2* 
same row 

and the LHSs of operators in the agenda in its RHS. These are elements 
that require no iteration and have been moved to the LHS of the iterative 
operator. Corresponding action elements, those that do simple algebraic 
modifications on the variables in condition elements, are also removed, 
Such condition elements are no longer necessary because these 
modifications are done more efficiently in the RHS of the iterative operator 

RHS: actions 

substitute occurrences of =v with 
the RHS of =el 

Figure 4a: Intermediate Macro-operator formed from a single cycle 

LHS: conditions RHS: actions 

i-solve-unknown the current goal is to solve for unknown, 
the desired unknown is =u, 
the number of equations =nume is > 1, 
the number of variables =numv is > 1, 
=nume is equal to =numv 

set =iterations to 0, 
call agenda with bucket: (m-solve-unknown), 
set =nume to (=nume - =iterations), 
set =numv to (=numv - Gterations) 

Figure 4b: Iterative operator 
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in a single step by relating the modifications directly to the number of 
iterations. In their place a counter for the number of iterations is added. 

FERMI solves many problems requiring iteration, including 
simultilncotts algebraic equations and physics problems such as finding 
the prcssurc diffcrencc bctwccn 2 points a and b in a container 
containing multiple layers of liquids that have various dcnsitics. A path 
from a to b is rcpcatcdly dccomposcd, until the rcquircmcnts for 
applying the formula for prcsswc diffcrcncc in a single liquid arc met. 
‘Ihe iterative operator to be learned from the problem-solving process is 
equivalent to the formula 

A Pah = g ‘i = 1, n Pi Ahi 
where A pa, is the pressure difference bctwecn 1 and b, g is the surface 
gravity, i 1s the summation index, 11 is the total number of liquids 
between a and b, pi is the density of liquidi, and A hi is the change in 
height of a path from a to b in liquidi. 

4. Concluding Remarks 
Learning in problem solving requires more than rote 

memorization of linear operator sequences into macro-operators [15]. 
Parametrizing the macro-operators, and reducing redundant condition 
and action elements provides only the first step towards more general 
strategy learning. In the FERMI project we have gone two steps 
further: 

1. automated generation of macro-operators with conditional 
branching, and 

2. automated creation of iterative macro-operators to solve problems 
with cyclic subgoal structure. 

The integrated implementation in FERMI of these two techniques, on 
top of the traditional macro-operator formation method, provides a 
theoretical enhancement in the power of macro-operators, and major 
savings in both the number of requisite macro-operators and the time 
required to search for applicable operators in future problem solving. 
Further work should be done on correcting over-generalization in 
iterative rules by learning from failure, generalizing types of inferences 
that can be made from the iterative trace to produce up-front I,IIS tests 
for an iterative operator, and on specifying types of condition elements 
that can be transferred from the intermediate macro-operator to the 
LHS of the iterative operator so as to improve early detection of 
solvability. 

In addition to a larger scale implementation and more extensive 
testing of our iterative macro-operator formation techniques, future 

directions for Icarning in Ft3KMI include: 

l Incorporating analogical reasoning tcchniqucs [5. 61, which can 
provide ;I basis for transferring powcrfttl macro-opcr;ltors across 
rclatcd domains, as well as the mom traditional tr,msfcr of 
solution scqucnccs across rclatcd problems. 

0 l~xplorirlg the role of automatic progmmming in the creiltion of 
cvcr more claboratc macro-operator. ‘I’hus f:u-, our primary 
cffon has been in dctcction. analysis. and evaluation of problem 
solving tracts in order to extract all the information required to 
formulntc useful, gcncmli/cd macro-operators. Hut, as the 
complexity of the task incrcascs, so dots the ncccssity for 
principled atttomatic synthesis of such macro-operators. 
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