
The FERMI System:
Inducing Iterative Macro-operators from Experience

Patricia W. Cheng and Jaime G. Carbonell
Computer Science Department

Carnegie-Mellon University
Pittsburgh PA 15213

Abstract

Automated methods of exploiting past experience to reduce search vary
from analogical transfer to chunking control knowledge. In the latter
category, various forms of composing problem-solving operators into larger
units have been explored. However, the automated formulation of effective
macro-operators requires more than the storage and parametrization of
individual linear operator sequences. This paper addresses the issue of
acquiring conditional and iterative operators, presenting a concrete
example implemented in the FERMI problem-solving system. In essence,
the process combines empirical recognition of cyclic patterns in the
problem-solving trace with analytic validation and subsequent formulation
of general iterative rules. Such rules can prove extremely effective in
reducing search beyond linear macro-operators produced by past
techniques.*

1. Int reduction
Automated improvement of problem-solving behavior through

expcricncc has long been a central objcctivc in both machino learning
and problem solving. Starting from STRlI’S [9], which acquired simple
macro-operators by conc.ltcnation and paramctcrization of useful
operator sequences, chunking control knowlcdgc has proben a popular
method for reducing search in solving future problems of like type.
Marc comprehensive chunking disciplines have been studlcd; for
instance, SOAR [18] chunks at all possible decision points in the
problem solving, whereas MORRIS [l.S] and PRODIGY [14] are more
selective in their formulation of useFir macro-operators. Other forms of
learning particularly relevant to problem solving inclttde strategy
acquisition [il, 171, and various fauns of analogical reasoning.
Transform;ltional analogy [S] transfers expcrtisc directly from the
solution of past problems to new problems that bear close similarity,
and dcriiational analogy [6] transfers problem-solving strategies across
structurally Gmilar problem-solving episodes. Both forms of analogy
provide th\: positive and negative exemplar data required to fom-mlatc
gcneraliLcd plans [4, 7, 8, 11, 16, 17, 201.

This paper discusses the need for the formulation of a more
general class of macro-opcrarors that enable conditional br‘mching and
generalLed iteration. It then presents a method for automated
induction of such macro-operators from recursive and iterative
problem-solving traces. Inducing iterative rules (macro-operators) from
behavioral traces involves the detection of repetitibc pdttcrns in the
subgoal structure of the problem-sole ing episodes. This process
includes analysis of the trace to determine the common operations at an
,Ipl?r”prialc ICCCl Of. ,Ib~ll~lctiOn, ;rncl cxlr;lctic)n (I:’ cctn(!iliotls tIcc‘c~\~lI y
for wcccss.

*The research reported in this paper was funded in part by the Office of Naval Research
under grants number N00074-82-50767 and number NOC014.84-K-0345 and in part by a gift
from the Hughes Corporation. We thank every member of the FERMI project -- Angela

Gugliotta, Angela Hickman, Jill Larkin, Fred Reif, Peter Shell, and Chris Walton -- for their
valuable discussions. We are especially grateful to Peter Shell and to Chris Walton for their
indispensible help on using Rulekit and on programming respectively.

poillk ill the pi’ol~lcm-solving process to up-front left-hand-side (I I IS)
conditions. I:or instnncc, an itcratibc riilc ;tquircd by 1~11l<hll solves
indcpcndcnt lincnr equations in miiltiplL’ unknowns by rcpcatcd
~,\lh~titution 01’ cxprcssions containing progr\lhsi\cly fc\ccr vnriablcs.
‘l’liih (or dny orhcr) mcrhod can yield d ilniquc solution oiil~ if thcrc n~*c
;IS many linearly indcpcndent equations as thcrc arc \ari;lblcs. Such a
contlitlon is dcduccd :\utom:itic;#y by ;mnlysis of the problem and is
subjcqucntly :lddcd to the 1.11s of the itcrativc rule, eliminating the
need to pcrlijrm all the step-by-step substitutions in order to discover at
the end of Lhe process that thcrc arc rcnlaining variables and no
remaining equations, or that thcrc is a contradiction. ‘1%~ techniques
for dcvcloping and implcmcnting this type uf learning, as elaborated in
subscqucnt sections, provide a ud’rrl addition to the repcrtoirc of
machine learning methods in problem solving.

2. Overview of FERMI
t-FRI?I I**. our cxpcrimcntal tcstbed for iterative rute induction, is

a general problem solver in the natural scicnccs. Its flexible
architecture has been described clsewhcre [3, 1.31; here WC focus only on
thocc aypccts directly relevant to automated induction of iterative rules.
FI-XMI scpamtes problctn solving knowledge from domain knowledge,
rcprcscl~ting the former as stratcgim and the l&ter as factual frames at
different hels of abstr<iction in a semantic frame network. Thus,
gcncrdl concepts such ;is uww saliuJl vl+it~ass or equilii,l.ium wnditioiis
need be represented only once and inherited whcrc appropriate.
Similarly, p$blcm-solving knowledge, such as iterative
decomposition arc encoded as gcncrnl strategies applicable to a wide
variety of probler&. l-‘ERM 1 has successfully solved problems in areas
as diverse ;I$ fluid statics, linear algebra, classical mechanics, and DC
circuits applying the same gcncral problem solving strategies, and some
of the same general domain concepts.

**FERMI is an acronym for Flexible Expert Reasoner with Multi-Domam Inference, and a
tribute to Enrico Fermi, who displayed abihties to solve difficult problems in many of the
natural sciences by the application of general domain principles and problem solving strategies.

***Iterative decomposition proceeds as follows: 1. Isolate the largest manageable
subproblem. 2. Solve that subproblem by direct means. 3. If nothing remains to be solved,
compose the solutions to the subproblems into a solution to the original problem. 4. If part of
the problem remains to be solved, check whether that remaining part is a reduced version of the
origmal problem. 5. If so, go to 1, and if not halt with failure.

400 1 SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

goal-subgoal tree. the methods LISC~ to attack the wh prohlcm. and the substitution, and 5. repeating the above steps until only an equation
causes of success or failure at cbcry inter-mcdiatc itcp in the reasoning. that contains no variable other than the desired unknown remains.

3. Acquiring Iterative Macro-operators
Many problems share an implicit rccur\lvc or iterative nntur’c.

‘fhcse problems include mundane cvcrqday ac!ilitics such as walking
until a destination is rcachcd and eating until hunger is satistictl as well
as oroblcms in mathematics and science such as those solved bv

When given a trace that exhibits a fixed number of iterative cycles
before solution is reached. current methods of forming macro-operators
such as STRIPS, ACT*, and SOAK [l, 9,lO. 1X] cannot produce
operators that will generalize to an arbitrary number of iterations.
lndccd, they cannot even detect the iterative nature of the problem.
The MACROPS facility in STRIPS [9], for instance, would add all
subsequences of primitive operators for as many cycles as the instance

3.1. Pattern Detection
What type uf repetitive pattern in the solution trace would

warrant the formation of an itcratitc rule? We think that requiring
identical scquenccs of rules would be too restrictive, because partially
matched scqucnces may nonetheless contain information on equivalent
choices and orderings of operators. Consider rcpc,ltcd instances of the
same subproblcm - say to establish a precondition on occasions when
it is not already satisfied. 7he instances may (or may not) require
different operators. In our algebra example, after the execution of the
rule select-\sr+, if the problem state happens to include an equation
that has the bariablc returned by select-v;tr+ on its I-HS. then the rule
var-on-lhs+ would apply. Otherwise. rulemkar-on-lhq- would have to
be executed before var-on-lhs+ applies. Thus. what rule follows select-
\ar+ could vary depending on the particular problem state.
Nonetheless, the specification that either var-on-lhs- or var-on-lhs+ -
and not other opcrntors irrelevant to v,lriable substitution - follows the
execution of selccr-var+ is useful. It reduces the number of matches to
be done by an amount proportional to the number of operators
excluded. Noticc that the two alternative mles are different paths
satisfying the same subgoal. To capture information on sequencing that
is common across differing circumstances. our pattern detector looks
for consecutive, identical rcpctition of any scqucnce of chaqes in
rubgoals. SubgoJs are generated and remobcd by rules during problem
solving. l%ch column in Figure 3 shows a type of trace of the solution
path for the example problem in Figure 2:

problem required into its triangle table - generating huge numbers of
macro-operators and failing to capture the cyclic nature of tile solution.
Anderson’s ACT* [l, 21 would compile one (or more) linear macro-
operators for each-number of repetitions, also failing to capture the
iteration. Thus, for any single cycle of iteration, existing macro-
operator formation systems will, at best, produce macro-operators that
will apply to a predetermined number of iterations, which would not
generalize to a fewer or greater number of cycles. Moreover, as we
rcmarkcd earlier, each cycle may select different methods for solving
the same subgoals, and the regularity exists at a higher level of
abstraction in the subgoal trace. Most earlier systems (SOAR partially
excepted) do not chunk problem solking tracts at higher level of
abstraction than the sequence of instantiated operators. As we will
illustrate with an example problem in the familiar domain of solving
simultaneous linear equations, tl~c exact scqucnce of rules may vary
from cycle to cycle while preserving an overall subgoal structure.

‘Ihc learning in our program proceeds in three steps:

tritcc at the 1. dctcction of an itcrativc pattern in the solution
appropriatC ICvCl of abstraction and granularity,

2. formatit)n of a macro-operator that transli)rms d state ilt the

beginning of a single itcrativc cycle to the c;tntc at the beginning of
the next cycle, and

3. formation of an itcrativc operator that cheeks for gcncraliLed
rtpplicability conditions inferred from the macro operator
togcthcr with conditions immcdiatcly following the iterative
scquencc in the successful solution trace.

4. <I tI‘,lcc OF the a~~l~llcll~c o(‘c!l;tllgcs 111 t!;P,c ~llbgc’als.

As c.111 hc 4ccn. con~,cctlti\cs idcnLical rc.pc:i!ioti is ,ip!J,ircnt only
in the 1~~1 type of‘ ll;rc:‘. (ldctlticitl KJ~C~I~IOI~S arc !>r,~~k~ic~d in the
ligurc.) ‘I he \ccond t)i!)c of trace. \;ti%l‘:, ~icross c4cIL’s bcc~iusc the
number of HIICS rcquircd Lo satislj il Stlllg0dl IIliI?’ ViJI.)’ liUiJ1 CyClC t0
cycle.

3.2. Formation of Macro-operators with Conditionals
After .tn itcrnti\c p:iltern is dctcctclt. the program forms il macro-

0pc:;ttor I)> composin:, I-UILY in a sln$lc clclc of the ilcr,ltion 33 an
intcrmcdi~~te \tcp towards furming ill1 itcr.ilivc operator. I’hc scqucncc
of opcratorr that should IX composed is t!lcrcii~r\~ dctermincd by the
p;rtt& &>tcctcd and is lcs\ arbit;.,Iry than in systems such ;js SI’KIPS
[‘I] alld AC 1 I-1 ” ‘* 7 In whicll any scqwncc can bc a candic!,ltc for a
macro-operator. Although our rriggcr for forming a tn,~cro-operator
differs tiv~n others, the actual formation is in the tradition of macro-
opcr&or lc,lrning sqstcms such as SIX I I’S and AC’I‘*, with the
cxcCph)n LlW we i1llOti Ii,]. alternative ,:ctions con~!itiou,ll on the
problem state within tllc same operator. ‘I‘hc grcatcr gcucrality
cn;cndcrcd hy this fc,tturc helps a\,oid tllc prolifcr,ltion of macro-
opcI‘nt0rs iJ7 ;I ~~roblCX1 Solver [I 5, 141. Assumin, ‘7 that CXII conditional
consists of a simple if-then-else brunch, th‘it thcrc is ‘I scrics of 0
iOllditi~H~illS in a cycle of ircration. and that these conditionals arc
indcpcndcnt of each other. the number of rr;,ditiona! macro-operators

I~clow WC elaborate on each step with illustrations drawn from
our example problem on solving simultaneous linear equations. A set
of operators for solving such systems of cqudtions is listed in Figure 1.
The operators arc all in the form of standard condition-action rules.
(Variables in the tigurc arc preccdcd by an = sign, all l,IiS conditions
are conjoined, and all RHS actions arc cvaluatcd sequentially.) A trace
using these operators solving an algebra problem is shown in Figure 2.
The solution path involves: 1. selecting an appropriate cariablc, 2.
rearranging an equation to express this variable in terms of others, if the
equation dots not already appear in that form, 3. substituting the
equivalent expression for the variable whenever the variable occurs in
the remaining set of equations. 4. eliminating the equation used for

- which do not allow inrornJ
same state S!XKC would bc 2”.

conditionals - rcquircd to c&er the

lntcrnal conditionals arc implcmenlcd in our program by an
agmdrl control structure on the right-hand-side (RHS) of UK macro-
operator. An agenda consists of an ordered list of “buckets” that
contain ordcrcd sets of operators. In our program the buckets, and the
operators in each bucket, arc tested in order. When an opcrntor does
not apply, the next operator in the same bucket is tested. When an
operator dots apply, control is returned to the first operator in the
bucket. Control is passed on to the next bucket when no rule in the
bucket applies or when a rule that applies halts execution of the bucket.
When 110 rule in the last bucket applies or when it halts, control leaves

LEARNING ! 491

name of rule

solve-unknown-
l-equation

solve-unknown-
n-equations

selectvar -I-

select-var -

var-on-lhs +

var-on-lhs-

replace +

replace -

1X3: conditions

the current goal is to solve for unknown,
the number of equations is 1,
the number of variables is 1,
the desired unknown is = u,
there is an equation =c that cont;hins =u,
there are no other equations

the current goal is to solve for unknown,
the number of equations is > 1,
the number of variables is > 1,
the desired unknown is = u,
there is no equation that contclins = u
and has no other variables in it

the current goal is to select a variable for substitution,
the dcsircd unknown is = u,
there is a variable = v that is not = u,
and = v appears in at least 2 equations

the current goal is to select a variable for substitution,
there is no variable that is not the unknown
and appears in at least 2 equations

the current goal is to get an equation
with the selectcdvariablc on its I.HS,
the selected variable is = v,
and there is an equation with = v on its LHS

the current goal is to get an equation with the
selected variable on its LHS,
the selected variable is = v,
and there is no equation with = v on its LHS,
but there is an equation = e that contains = v

the current goal is to form a new equation by substitution,
the selected equation is = el,
the selected variable is = v,
and = v occurs in a second equation = e2

the current goal is to form a new equation by substitution,
the selected equation is = e,
the selected variable is = v,
no equation other than = e contains = v,
the number of equations is = nume,
and the number of variables is = numv

Figure 1: operators for algebra problem

the agenda and is returned to the top-levci.

We exploit this control structure by placing in each agenda bucket
a disjunctive set of operators for satisfying the same subgoal. The
automated Icarner puts operators in a bucket in an agenda when it
detects in the solution trace sets of operators that have the same subgoal
on their JMS but each member of the set ha5 condition clemcnts that
negate condition elements in each of the other mcmbcrs of the set. The
negated condition elements obviously cannot be composed on the LHS
of a macro-operator, and arc instead left to form separate operators in a
bucket on the RHS of the macro-operator. In each bucket the operator
that checks for satisfaction of the subgoal - and therefore halts
execution of the bucket when its conditions arc satisfied - is placed in
the first position. In such manner conditional branches are formulated
in new macro-operators without altering the uniform top-lcvcl control
structure.

III our algebra example there arc two sets of conditionals, with
two oper:ltorj in each set: var-on-lhs+ atIt v;lr-on-lhs- iI1 one set, and
replace- and rcpl;lcc + in the other set. ‘t’hc first set is a simptc if-thcn-
clsc conditional, the second set is rcpc~tcdly tested until replace- is

RHS: actions

solve for =u in =e,
and pop success

set up subgoals to (1) select a variable
for substitution
(2) get an equation with the selected
1 arinblc on its I,HS
(3) form a new equation by substitution
(4) solve for unknown

mark = v as selected,
and pop success

pop failure

mark the equation
and pop success

as

rearrange =e so that = v
is on its LHS

substitute occurrences of = v with
the RHS of =el

remove = v from working memory,
remove = e from working memory,
set = nume to (= nume - 1)
set = numv to (= numv - 1)
and pop success

applicable, i-c.. when there are no more occurrences of the variable to
bc rcplnccd. A macro-operator with conditionals for our example
algebra problem is shown in I;igure 4a.

With the exception of negated condition elements and their
corresponding RJHSs, whenever wc compose a sequence of operators,
WC aggrcg&e the condition dnd action clcmcnts of the scqucncc of
operators ‘rpplicd in the tr,icc. A\ in other proposed methods of forming
macro-operators (c.g., [l]). We eliminate redundancies in the macro-
opcrntor by deleting:

1. duplicate condition clcments,

2. condition elements that match a working memory element,
including subgoals, cre‘lted by an earlier rule within the sequence,

3. action elements that create subgoals
condition elements in the sequcncc, and

matched by subsequent

4. condition and action elements whose sole
variables bindings from one rule to the next.

function is to pass

-i92 / SCIENCE

Equations: Variables:
3x+ -10

Goal Stack:

3-
x: desired unkown solve for unknown

z= yl4 Y
2x+y+22=14 x I

failed opGGs

e

olve-unknown-n- \
(e.g., Solve-unknown-l-equation) eqUatiOnS

untried operators
(e.g., select-var+)

[EquatIonsI* [Variables]

Initial State

Goal Stack:
select variable
get equation

fom new esuations
solve for &own I

fori new’ wuations I
solve for u&norm I

Goal Stack:
get equation

form new equations
solve for unknown

Goal Stack:
form new equation
solve for unlulown

y: selected variable

failed o$Lators
JY

ar-on-lhs- \
unhied operators

Equations:
y=lO-3x
z=3 14

2x+y+ =14 ai

[Variables]

/ Jz ar-on-lhs+ \

Equations:
y=lO-3x
2=3 f4

2x+y+ =14 lz

[Variables]

important class of iterative operators could not be rcprcscntcd or
acquired. The saving due to internal branching on the number of
equivalent traditional macro-operators increases cxpc~~cntinllq tiith the
number of iteration cycles considered. For problems requiring exactly
,n itcrativc cycles with n indcpendcnt if-then-else conditionals in each
cycle, the number of traditional macro-operators Icquired to cover the
state space is 2”m. Thus, fur problems requiring iteration up to tn
cycles, the total number of macro-operators grow5 to E, = 1 ,~ 2’“. In
contrast, a single iterative, conditional macro-operator indcp‘cndcnt of
m and II suffices. In view of the number of macro-opcratorc, rcyuircd,
unless iterative operators arc formed, it could c’,Gly bc less cl’ficicnt to
starch through the large spocc of macro-operators than the original
space of operators in problem domains involving iteration. ‘Ihe
incf?ciency is cxaccrbated by the fact that thy myriad specific macro-
operators would share significant common substructure. Restricting
ourselves to non-iterative operators would thercforc sevcrcly limit
usctil learning in such domains.

An important additional advantage of forming iterative operators
is that certain algebraic modifications in the intermedi‘lte macro-
operator can be related to the number of iterations i. Given a trace Of a
successfU1 path, we can form equations hit11 variables in these algebraic

modifications expressing conditions under which ;I solution will bc
rc;lchcd through the itcrntivc proccctlurc. If thcrc arc multiple
modilic;ltions of this sort, variables in thcsc modifications c;\n bc
rcl;M to cilch other through i. ‘13~ infcrrcd rcl;ltic)n CJII help detect
sulv,lhility by the itcrativc rule early, bclilrc itCratic\n is ;~ctunlly cntcrcd.
I-et us illustrate this principle in our ;IlgCbril cx~rnplc. As can be seen in
Figure 3, c~h cycle through this macro-opcI.;ltl)r rcduccs the number of
equations and the number of v:\riablcs each by 1. ‘I’hc reduction for i
cycles would bc (4 - i) and (V - 11 rcspcctivcly, whcrc y is the number of
equations given and I’ is the number of kariablcs in the given equations.
From the solution tr,icc, WC know th,it when the number of equations
and number of variables arc both 1, i.e., when

Equations:
y= 10-3X

2=3(10-3x)/4
2x+y+2z=14

[Variables] Goal Stack:
form new equation
solve for *own

q-i= land

v-i= 1,

eplace+

then a solution can be reached. Eliminating i from the above
equations, wc get

Equations: [Varlables] Goal Stack:
y=lO-3x

2=3(10-3x)/4
form new equation
solve for unknown

2x+(10-3x)+2z=14

eplace-
I

\

9 = v.

Putting this inferred relation in the LHS of the itcrativc rule helps
screen out insoluble problems without actually iterating through the
solution procedure. Other information can be similarly prccomputcd
and fronted as operational conditions on the LHS of new iterative
operators.

Equations: Variables:
2=3(10-3xJI4 x:desired unknown

2x+(10-3x)+2z=14 z

The iterative operator formed in our example problem is
presented in Figure 4b. In FERMI, the LHS of iterative operators is
formed by an aggrcgatc of condition clcmcnts that need no iteration.

I They are:
olve-unknown-n-equations\

~“““““““““‘“‘-‘-------c-------“------~~-~---.

(see operator and goal traces in figure 3)

1. condition clemcnts in the T.FIS of the intcrmcdiatc macro-

2. condition elements whose variables undergo simple algebraic
modifications by the operator - modifications such as addition,
multiplication, division by a constant or variable. etc.. and

3. checks on reldtlons between the nbove variables inferred through
the successful solution tract and the number of iter‘itions -
checks such as cqu,lting the number of unknou ns to the number
of equations in our example.

operator with variables or constants that are not modified by the
operator,

(Success)

Figure 2: Trace of states and Operators in an example
algebra problem The RHS of the iterative operator consists of

l Square brackets indicate that the elements enclosed are unchanged.

Bccausc justifications for the above deletions have been discussed
elsewhere (e.g., [1,2]), we arc not repeating them in this paper.

3.3. Formation of Iterative OperatOrS

The branching feature above is dcsirablc for an iterative operator
because it allows for variation from cycle to cycle. WithOUt it, an

1. a statement initializing a counter for the number of iterations,

2. an iterative agenda call to the intermediate macro-operator
formed earlier (See Figure 4b),

3. and simple algebraic modifications based on the number of
iterations. For instance. the number of equations in our example
algebra problem is reduced by the number of iterations,

LEARNING / 49-3

trace of rules trace of subgoals
of rules

trace of changes
in subgoals

solve-unknown-n-equations
select-var+
var-on-lhs-
vat--on-lhs+

replace+
replace+
replace-

solve-unknown-n-equations
select-var+
var-on-lhs+

replace+
replace-

solve-unknown-l-equation
(sucess)

solve for unknown
select variable

get equation for substitution
get equation for substitution

form new equation
form new equation
form new equation
solve for unknown

select variable
get equation for substitution

form new equation
form new equation
solve for unknown

(success)

Figure 3: I’hree types of traces of the example problem in
*Information extracted from the same problem-solving step appears in the

The macro-operator halts when its conditions are no longer satisfied.
Note that the iterative call to the macro-operator is the only truly iterative
component required.

To coordinate with the iterative operator, the intermediate macro-
operator (in the RHS of the iterative operator) is modified as follows: the
first two kinds of condition elements just listed are removed from its LHS

name of rule

m-solve-unknown

m-var-on-lhs+

m-var-on-lhs-

m-replace-

m-replace+

* Elements marked

iterations is added.

name of rule

solve for unknown
select variable

get equation for substitution

form new equation

solve for unknown
select variable

get equation for substitution
form new equation

solve for unknown
(success)

LHS: conditions

the current goal is to solve for unknown,*
the desired unknown is =u,*
the number of equations =nume is > I,+
the number of variables =numv is > l,*
there is a variable =v that is not =u,
=v appears in at least 2 equations,
there is no equation that contains =u
and has no other variables in it

call agenda with
bucket 1: (m-var-on-lhs+ m-var-on-lhs-)
bucket 2: (m-replace- m-replace+)

there is an equation =e with =v on its LHS mark equation as selected, and halt bucket

there is no equation with =v on its LHS,
but there is an equation =e that contains =v

rearrange =e so that =v is on its LHS

the selected equation is =e,
no equation other than =e contains =v,
the number of equations is =nume,*
and the number of variables is =numv*

remove =e from working memory
remove =v from working memory
set =nume to (=nume - l)*
set =numv to (=numv - l)*
and halt bucket

the selected equation is =el)
and =v occurs in a second equation =e2

with an asterisk are removed when the iterative operator is formed, and a counter =iterations for the number of

Figure 2*
same row

and the LHSs of operators in the agenda in its RHS. These are elements
that require no iteration and have been moved to the LHS of the iterative
operator. Corresponding action elements, those that do simple algebraic
modifications on the variables in condition elements, are also removed,
Such condition elements are no longer necessary because these
modifications are done more efficiently in the RHS of the iterative operator

RHS: actions

substitute occurrences of =v with
the RHS of =el

Figure 4a: Intermediate Macro-operator formed from a single cycle

LHS: conditions RHS: actions

i-solve-unknown the current goal is to solve for unknown,
the desired unknown is =u,
the number of equations =nume is > 1,
the number of variables =numv is > 1,
=nume is equal to =numv

set =iterations to 0,
call agenda with bucket: (m-solve-unknown),
set =nume to (=nume - =iterations),
set =numv to (=numv - Gterations)

Figure 4b: Iterative operator

191 i SCIENCE

in a single step by relating the modifications directly to the number of
iterations. In their place a counter for the number of iterations is added.

FERMI solves many problems requiring iteration, including
simultilncotts algebraic equations and physics problems such as finding
the prcssurc diffcrencc bctwccn 2 points a and b in a container
containing multiple layers of liquids that have various dcnsitics. A path
from a to b is rcpcatcdly dccomposcd, until the rcquircmcnts for
applying the formula for prcsswc diffcrcncc in a single liquid arc met.
‘Ihe iterative operator to be learned from the problem-solving process is
equivalent to the formula

A Pah = g ‘i = 1, n Pi Ahi
where A pa, is the pressure difference bctwecn 1 and b, g is the surface
gravity, i 1s the summation index, 11 is the total number of liquids
between a and b, pi is the density of liquidi, and A hi is the change in
height of a path from a to b in liquidi.

4. Concluding Remarks
Learning in problem solving requires more than rote

memorization of linear operator sequences into macro-operators [15].
Parametrizing the macro-operators, and reducing redundant condition
and action elements provides only the first step towards more general
strategy learning. In the FERMI project we have gone two steps
further:

1. automated generation of macro-operators with conditional
branching, and

2. automated creation of iterative macro-operators to solve problems
with cyclic subgoal structure.

The integrated implementation in FERMI of these two techniques, on
top of the traditional macro-operator formation method, provides a
theoretical enhancement in the power of macro-operators, and major
savings in both the number of requisite macro-operators and the time
required to search for applicable operators in future problem solving.
Further work should be done on correcting over-generalization in
iterative rules by learning from failure, generalizing types of inferences
that can be made from the iterative trace to produce up-front I,IIS tests
for an iterative operator, and on specifying types of condition elements
that can be transferred from the intermediate macro-operator to the
LHS of the iterative operator so as to improve early detection of
solvability.

In addition to a larger scale implementation and more extensive
testing of our iterative macro-operator formation techniques, future

directions for Icarning in Ft3KMI include:

l Incorporating analogical reasoning tcchniqucs [5. 61, which can
provide ;I basis for transferring powcrfttl macro-opcr;ltors across
rclatcd domains, as well as the mom traditional tr,msfcr of
solution scqucnccs across rclatcd problems.

0 l~xplorirlg the role of automatic progmmming in the creiltion of
cvcr more claboratc macro-operator. ‘I’hus f:u-, our primary
cffon has been in dctcction. analysis. and evaluation of problem
solving tracts in order to extract all the information required to
formulntc useful, gcncmli/cd macro-operators. Hut, as the
complexity of the task incrcascs, so dots the ncccssity for
principled atttomatic synthesis of such macro-operators.

5. References
1. Anderson, J. R., The Architecture of Cognition, Cambridge, Mass.:

Harvard University Press, 1983.

2. Anderson, J. A., “Acquisition of Proof Skills in Geometry,” in
Machine Learning, An Artificial Intelligence Approach, R. S. Michalski,
J. G. &bone11 and T. M. Mitchell, eds., Tioga Press, Palo Alto, CA,
1983.

3.

4.

5.

6.

Carbonell, J. G., Larkin, J. H. and Reif, F., “Towards a General
Scientific Reasoning Engine,” Tech. report, Carnegie-Mellon
University, Computer Science Department, 1983, CIP #445.

Carbonell, J. G., “Experiential Learning in Analogical Problem
Solving,” Proceedings of the Second Meeting of the American
Association for Artificial Intelligence, Pittsburgh, PA, 1982.

Carbonell, J. G., “Learning by Analogy: Formulating and Generalizing
Plans from Past Experience,” in Machine Learning, An Artificial
Intelligence Approach, R. S. Michalski, J. G. Carbonell and
T. M. Mitchell, eds., Tioga Press, Palo Alto, CA, 1983.

Carbonell, J. G., “Derivational Analogy: A Theory of Reconstructive
Problem Solving and Expertise Acquisition,” in Machine Learning, An
Artificial Intelligence Approach, Volume II, Michalski, R. S., Carbonell,
J. G. andMitchell, T. M., eds., Morgan Kaufmann, 1986.

Dietterich, T. and Michalski, R., “Inductive Learning of Structural
Descriptions,” Artificial Intelligence, Vol. 16, 1981.

Dietterich, T. G. and Michalski, R. S., “A Comparative Review of
Selected Methods for Learning Structural Descriptions,” in Machine
Learning, An Artificial Intelligence Approach, R. S. Michalski,
J. G. Carbone11 and T. M. Mitchell, eds., Tioga Press, Palo Alto, CA,
1983.

Fikes, R. E. and Nilsson, N. J., “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving,” Artificial
Intelligence, Vol. 2, 1971, pp. 189-208.

10. Laird, J. E., Rosenbloom, P. S. and Newell, A., “Chunking in SOAR:
The Anatomy of a General Learning Mechanism,” Machine Learning,
Vol. 1, 1986.

11. Langley, P. and Carbonell, J. G., “Language Acquisition and Machine
Learning,’ ’ . in Mechanisms for Language Acquisition, MacWhinney B.,
ed., Lawrence Erlbaum Associates, 1986.

12. Larkin, J. H., “Enriching formal knowledge: A model for learning to
solve problems in physics,” in Cognitive Skills and their Acquisition.
J. R. Anderson, eds., Lawrence Erlbaum Associates, Hillsdale, NJ,
1981.

13. Larkin, J., Reif, F. and Carbonell, J. G., “FERMI: A Flexible Expert
Reasoner with Multi-Domain Inference,” Cognitive Science, Vol. 9,
1986.

14. Minton, S., Carbonell, J. G., Knoblock, C., Kuokka, D. and Nordin, H.,
“Improving the Effectiveness of Explanation-Based Learning,” Tech.
report, Carnegie-Mellon University, Computer Science Department,
1986.

15. Minton, S., “Selectively Generalizing Plans for Problem Solving,”
Proceedings of iJCAI-85, 1985, pp. 596-599.

16. Mitchell, T. M., Version Spaces: An Approach to Concept Learning,
PhD dissertation, Stanford University, December 1978.

17. Mitchell, T. M., Utgoff, P. E. and Banerji, R. B., “Learning by
Experimentation: Acquiring and Refining Problem-Solving Heuristics,”
in Machine Learning, An Artificial Intelligence Approach,
R. S. Michalski, J. G. Carbonell and T. M. Mitchell, eds., Tioga Press,
Palo Alto, CA, 1983.

18. Rosenbloom, P. S. and Newell, A., “The chunking of goal hierarchies:
A generalized model of practice,” in Machine Learning: An Artificial
Intelligence Approach, Vo1.2, R. S. Michalski, J. G. Carbonell, and
T. Mitchell, eds., Kaufmann, Los Altos, Calif.: 1986.

19. Shell, P. and Carbonell, J. G., “The RuleKit Reference Manual”, CMU
Computer Science Department internal paper.

20. Winston, P., Artificial Intelligence, Reading, MA: Addison Wesley,
1977.

LEARNING / -t95

