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Abstract

Learning in complex, changing environments requires
methods that are able to tolerate noise (less than per-
fect leedback) and drift (concepts that change over time).
These two aspects of complex environments interact with
cach other: when some particular learned predictor fails to
correctly predict the expected outcome (or when the out-
come occurs without having been preceded by the learned
predictor), a learner must be able to determine whether
the situation is an instance of noise or an indication that
the concept is beginning to drift. We present a learning
method that is able to learn complex Boolean character-
izalions while tolerating noise and drift. An analysis of
the algorithm illustrates why it has these desirable behav-
jors, and cmpirical results from an implementation (called
STAGGER) are presented to show its ability to track chang-

ing concepts over time.

I Introduction

Sometimes a low barometer reading indicates rain com-
ing, and sometimes it doesn’t. Furthermore, for months
alter a volcanic eruption, previously good indicators of
rain may become poor predictors, while other {previously
poor) indicators may become predictive. Attempting to
learn from experience about associations between events
like these in the real world is confounded because (a) most
associations are not perfectly consistent (hence observed
instances of these associations contain ‘noise’), and (b) as-
sociations change or drift over time.  Learning in thesc
environments is compounded by the fact that noise and
drilt interact: il atl some point a particular good indicator
fails Lo predict the intended outcome, is this just a noisy
instance, or is it an indication that the concept is beginning

to drift?

Nature has sotved this problem in humans and animals:
rats in classical conditioning experiments are able to tol-
erate noise and drift, even in extremely complex environ-
ments with many competing cues. However, few current
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machine learning systems are able to tolerate noise and
drift, and hence cannot deal with cormplex reactive envi-
ronments containing these qualities. We present a learning
method that tolerates noise and drift, and we offer an an-
alytical account of why it behaves as well as it does. The
method is able to keep track of, and hence distinguish be-
tween, different types of noisy instances. Via formula based
on Bayesian statistics, it tolerates systemalic noise, but not
random noise, distinguishes between noise and drift, and
is able to track changing concepts over tiine. We have
implemented this method in a computer program called
STAGGER, and have tested il in a variety of environments,
ranging from animal learning tasks to blocksworlds to chess
endgames. We present some empirical lindings reflecting
the program’s ability to track drifting concepts.

11 Related work

Many successful learning systems have failed to deal with
the issue of concept drift over time. Quinlan’s 1D3 (1986)
program, for example, constructs a discrimination tree to
characterize instances of a concepl. This representation
allows conjunctive, disjunctive, and negated characteriza-
tions. Quinlan has examined the ability of this method Lo
accommodate varying levels of noise, concluding that its
performance is close to optimal (Quinlan, 1986). However,
the method is nonincremental, for it requires examining
{and re-examining) a relative large number of instances
and does not have mechanisms for modifying an existing
tree Lo incorporate new instances. It is unable, therefore,

to track changes in concept definitions over time.

The incremental nature of a learning algorithm does not
guarantee that it will be able to deal with concept drift
over time. Mitchell (1982), for example, reports on the
version space learning method in which an appropriate de-
scription of observed instances is formed via a bidirectional
search through a space of possibilities. Though relational
information is utilized, the version space method assumes
the strong bias thal a conjunctive characterization can ac-
curately capture the concept Lo be learned. In later work



(Mitchell, Utgofl, & Banerji, 1983), a modification was pro-
posed which would form disjunctive descriptions or toler-
ate limnited noise in instances (but not both, interestingly).
Though this method is incremental, learned characteriza-
tions may not change and recross the search boundaries
previously established in the version space as the defini-
tion of a concept drifts over time.

Langley’s discrimination learning method (in press) is
able to track changes in a concept definition over time.
The learned concepts are expressed as a set of production
rules, one of which influences expectation at a time. If
the applicability conditions for an operator change, pre-
summably recently learned productions would be weakened
via strengthening while discrimination would propose new
ones.  lventually, the new characterizations would be
strengthened and overwheln any previous learning. Be-
cause this method is based on a strengthening evaluation
lunction, however, it does not distinguish between types of

noise.

IIT A new learning method: STAGGER

The heart of STAGGER’s learning method is based on
a distributed concept representation composed of a set of
dually weighted, symbolic characterizations. As cach new
instance is processed, a cumulative expectation of its iden-
tity is formed by using the pair of weights associated with
characterizations. lLearning occurs at two levels: adjust-
ment of the weights and generation of new Boolean char-
acterizations. This latter process constructs more general,
more specific, and inverted versions of existing concept de-
scription elements. These new characterizations compete
for inclusion in the concept description with the elements

that were combined to form them.

A. Concept representation and matching

Concepts are represented in STAGGER as a set of du-
ally weighted, symbolic characterizations. Each element of
the concept description is a Boolean function of attribute-
value pairs represented by a disjunct of conjuncts. An ex-
ample element matching either small blue figures or square
ones would would be represented as (size small and
color blue) or shape square. These characteri-
zations are dually weighted in order to capture positive and
negative implication. One weight represents the sufticiency
of a characterization for prediction, or (matched > pos),
and the other represents its necessity, or ( matched >

pus).

The mathematical measures chosen for the sufliciency
and necessity weights are based on psychological learning
results. In a classical conditioning experiment, a subject is

given repeated presentations of a novel cue (NC) and an
unpleasant stimulus (US). After extensive testing, Rescorla
(1968) formulated the contingency law which states that
subjects will tearn an association between the two events
only it the unpleasant stimulus is more likely following the
novel cue that without it, or p(US|NC) = p(US]|-NC).
In behavioral terms, this means that if one or the other

stimulus frequently occurs alone, the subject still learns an
association between the two cues. However, if each of the
stimuli occur alone even a few number of times, learning

about their association is severely impaired.

Real-world tasks also contain spurious events. For ex-
ample, the descriptions of instances be subject to either
random or systematic variation. An example of random
noise would be a temperature sensor which is accurate to
within 10% of its operating range. It may read too high on
one occasion and too low on another; the direction of its
error is random. Only a few authors have dealt with this
possibility (e.g., Quinlan, 1986). However, it may often be
the case that errors in description are the result of a sys-
tematic variation. For example, a rain gauge may leak and
sometimes read lower, but never higher, than it should.
The errors of this latter instrument are systeratically of
one type (only too low), though they may occur with an
unpredictable frequency. The contingency law states that
learning occurs in systetnatic cases but is dubious in situ-
ations with random variation.

With this in mind, STAGGER uses logical sufliciency
(L.S), or positive likelihood ratio, as a measure of suffi-
ciency (Duda, Gaschnig, & Hart, 1979). Similarly, logical
necessity (LN), or negative likelihood ratio, serves to mea-

sure necessity. They are defined as:

p(matched|pos) p( natched|pos)

LS

plmatched|neg) p(malched|neg)

LS ranges from zero to positive infinity and is interpreted
in terms of odds. (Odds may be easily converted to prob-
odds/(1 1 odds).) An LS value less than unity

indicates a negative correlation, unity indicates indepen-

ability p -

dence, and a value greater than unity indicales a positive
relationship. LN also represents odds and takes on values
from zero to positive infinity. However, an LN value near
zero indicales a positive correlation, and a value greater
than unity indicates negative correlation. For both LY and
LN, unity indicates irrelevance. The LS and LN measures
adhere to the contingency law, for it can be shown via al-
gebraic manipulations that LS I and LN < 1 if and
only if p{US|NC) = p({1S]| NC') (Schlimmer, 1986).

Given a list of attribute-value pairs describing an in-
stance, the distributed concepl representation as a whole
influences expectation of a positive or negative instance.
Following the mechanisin used by Duda, Gaschnig, and
Hart (1979), the dual weights associated with each charac-

terization are used together with estimated prior odds to
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calculate the odds that a given instance is positive. Expec-
tation is the product of the prior odds of a positive instance
and the LS values of all matched characterizations and the
LN values of all unmatched ones.

Odds{pos|inst) - Odds(pos) x II LS x H LN

: Vmatched V matched

The resulting number represents the odds in favor of a
positive instance. This holistic approach differs from most
rmachine learning systems in which a single characterization
completely influences concept prediction.

B. Learning mechanisims

In addition to representing concepts in a distributed
manner and using Bayesian measures to compute a holis-
Lic expeclation, STAGGER incrementally modifies both the
weights associated with individual characterizations and
the structure of the characterizations themselves. These
two latter abilities allow STAGGER to adapt its concept
description to better reflect the concept.

The sulliciency and necessily weights associated with
cach of the concept description elements may be easily
adjusted. Consider the possible situations that may arise
when matching a characterization against an instance. Fol-
lowing the terminology used by Bruner, Goodnow, and
Austin (1956), a positive instance is p()slllV(, evidence
which may either confirm the predictiveness of a charac-
terization (if it is matched in this instance) or tnfirm the
characterization’s predictiveness (if it is unmatched). Sim-
ilarly, a negative instance is negative evidence which either
conliris an unmatched element or infirms a matched one.
Table 1 summarizes these possibilities.

Table 1 Possible situations in matching a characterization

Lo an Histance.

| lnstance || Characterization [
| Matched Unmate hul I
I Positive (,onhrmmg ( ;p)“ lnhrmmg lp

| Negative || Infirming (l[\) » x)nflrmmg, (,N

{n terms of these matching events, the contingency law
itmplies that learning occurs in cases involving at most one
ty pe of infirming evidence. In situations with even small
amounts ol both positive and negative infirming evidence,
subjects fail to learn an association. The corresponding
definition of systematic variation is the presence of only
one type ol infirming evidence while random variation is
defined as both types of infirming evidence.

The weighting measures LS and LN may be easily cal-
culated by keeping counts for each characterization of the
possible situations listed in Table |
) (:])(.IN i Cn)

fp(l C
LS ! vl 1 Cr)
IN((IP | [p)

LN -
N(Cp t lp)
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The prior odds for a positive instance are easily estimated

as (Cp i ]p)/(IN t CN)

[f STAGGER limited its learning to adjustment of the
characterization weights, the distributed concept represen-
tation would be sufficient to accurately describe the class of
“linearly separable” concepts (Hampson & Kibler, 1983).
In this respect STAGGER is similar to connectionist models
of learning when those models do not have any “hidden”
units. The purpose of the hidden, internal units is to allow
the encoding of more complicated concepts. Search pro-
cesses in STAGGER serve an analogous purpose: individual
characterizations are combined into more complex Boolean
functions.

STAGGER searches through a space of possible charac-
terizations as it refines its initial distributed representation
of the concept into a unified, accurate one. Fach possible
Boolean characterization of atiribute-value pairs may be
viewed as a node in the space of all such functions. Fig-
ure | depicts a small portion of this space over a simple
domain (each ellipse represents a Boolean function). Any
two of the possible Boolean functions are partially ordered
along a dimension of generality (Mitchell, 1982).

MAXIMALLY
SPECIFIC

SMALL
and
CIRCLE

RED
or
CIRCLE
SMALL
MAXIMALLY
RED GENERAL

or

CIRCLE

I'igure 1: Partial characterization search space.

STAGGER’s initial concept description consists of the
simple characterizations in the middle of IFigure 1 each
with initially unbiased weights. Notice that this space
is more than twice the size of that typically searched by
a conjunclion-only method like version spaces (Mitchell,
1982). Another interesting difference is that the version
space method searches its space of characterizations from
both sides toward the middle; STAGGER beam-searches
from the simplest points in the middle outward toward
both boundaries.



STAGGER’s three search operators correspond to spe-
cializing, generalizing, or inverting characterizations. To
make a concept description element more specific, search
proceeds down a conjunctive path. Conversely, to make a
more general element, search proceeds to a new disjunc-
tion.  lLastly, a poorly scoring characterization may be
negated; this does not raise or lower its degree of generality.

The conjunction, disjunction, and negation operators are
not applied exhaustively; search is limited by proposing
new elements only when STAGGER makes an expectation
error. When a negative instance is predicted to be positive
{(an error of commission), the expectation is too general.
Thus search is expanded toward a more specific character-
ization. On the other hand, a guess that a positive instance
is negative (an error of omission) is overly specific; search
15 expanded to include a more general characterization. Ki-
ther type of error also causes STAGGER o expand scarch
by proposing the negation of a poor characterization. Ta-
ble 2 summarizes the operators’ preconditions.

Table 2: Search operator preconditions.

Search operator . ’
Speriéﬂizg ~ AND[c1,c2] |
Omission ‘ Generalize OR[c1,c¢2] ‘

b Invert NOT(cl ‘

Krror type l
Comimission i

|

|

P

!

\

| Bither
STAGGER follows a two-step process of choosing good ar-

guments for the operators; one set of heuristics nominates

potential arguments, and a second set elects the most pre-

dictive ones for inclusion in new characterizations.

The nomination heuristic specifies alternative groups of
characterizations from which to form compounds. After
STAGGER has. made an error of commission, character-
izations matched in this negative instance may be par-
tally necessary, but are clearly not suflicient. Some el-
cents must have suggested (via the matching process)
that this instance was likely to be positive, but because
this instance was negative, some necessary element was un-
matched. Conjunction combines two necessary elements,
so maltched characterizations are nominated along with un-
matched ones. If a disjunction is formed, elements which
are unmatched in this nonexample are nominated since
disjunction combines two sufficient characterizations, and
no suflicient characterizations were present. Negation is
used o invert characterizations which predict nonexaimn-
ples. Its component is nominated from those character-
izalions which are matched in this nonexample. Similar
heuristics apply lor an error of omission. Table 3 summa-
rizes STAGGER’s nomination heuristics.

The election heuristic uses the weighting measures to
narrow the possible operator arguments. Consider a sit-
uation leading STAGGER to appropriately propose a new
conjunction. For exarmple, the familiar concept father: a

Table 3: Nomination heuristic.
l Error type ' Function {'Cha'ractcriza;tiun nomination
[ AND[c1,c2] | Matched, Unmatched
i Commission | OR[c1,c2] Uninatched, Unriatched

|
i
\
AND[c1,c2] Matched; Matched }
j

| NOT[c] Matched
Ormuission OR[c1,c2] Matched, Unmatched
z ‘ NDT[;] | Unmatched

parent and a male. The two characterizations (parent and
male) are always matched in a positive instance (father)
though they sometimes occur alone (a brother is male).
This is negative infirming evidence (refer to Table 1).
LN tolerates negative infirming evidence, and therelore
elects criterial elements for conjunctions. By similar rea-
soning, the converse weighting measure, LS, elects high
scoring characterizations 1o be used in forming new, dis-
junctive characterizations. New negated characterizations
are elected equally by both measures. Table 4 summarizes
these second step candidate election heuristics.

Table 4: Election heuristic.
lection measure
LN(ct) < |

f Function 1 ]
|
LS(ci) > 1 t
|

AND{c1,c2]
OR[c1,c2]
NOT[c]

| LN(c) i»‘l or 7L5(c) < lr

New characterizations are introduced into the secarch
frontier in a generate-and-test manner. The scarch opera-
tors generate new characterizations which are then either
pruned from the frontier or established as part of it. To
avoid being pruned, a new characterization must be more
effective than its sponsoring components. If the new ele-
ment surpasses a weight threshold, it is established and its
components are pruned. Interim performance is assessed
by examining recent changes in its weights. These changes
are averaged, and if this average is very small, the element
appears to be reaching an asymptote. If it is still below

threshold, the characterization is pruned.

STAGGER will trigger backtracking when the weighting
measures indicate that the new characterization is perform-
ing worse than when it was established. lts pruned com-
ponents are reactivated and compete as the failing element
did before. This amounts to chronological backtracking
because moves through the search space are retracted in

the opposite order from which they were proposed.
IV Tracking concept drift

An important feature of a learning mechanism is its re-
sponsiveness Lo changes in the environment. For instance,
a fox learns to look for a changed coat color in his prey
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as the scasons change. First, the learner must distinguish
between randomness and genuine change. For a failed ex-
pectation, the question arises as to whether it was simply
a noisy instance, and should be tolerated, or whether it
indicates that the learned concept has drifted. STAGGER
uses the Bayesian weighting measures to distinguish be-
lween events that indicate a change in the definition of a
conceptl and those which are probably the result of noise.
Secondly, does the amount of previous learning about a
given concept definition affect subsequent relearning of a
new definition? In humans and animals it does. The adage
*It’s hard to teach an old dog new tricks” roughly captures
a main finding in learning (e.g., Siegel & Domjan, 1971).
These studies indicate that the resiliency of learned con-
ceptl definitions is inversely proportional to the amount of
training; briefly trained concepts are more readily aban-
doned tn the face of change than extensively trained ones.
Keeping counts of the evidence types in table 1 amounts
to retaining a history of association, allowing STAGGER to
model resiliency appropriately.

A. Ewmpirical performance

Iigure 2 depicts the performance of STAGGER on three
successive definitions for the same concept: (1) color
squarish, (2) size - small or
(blue or green). The

red and shape
shape circular, (3) color
dashed vertical lines indicate when the definition of the
concept was changed. Notice how performance falls im-
mediately following the change because the previously ac-
quired definition was not sullicient to characterize new,
changed instances. In each of the three cases STAGGER
formed the explicit, symbolic representation of the con-
cept’s definition and evaluated it as the best among those

on Lhe search frontier.

STAGGER addresses the noise versus change issue
through the use of its weighting measures. When LS and
LN indicate a change in the type of noise present, they
trigger backtracking as explained above. On the other
hand, more of the same type of noise does not lead to
the modification of characterizations.  Figure 3 depicts
STAGGER’s acquisition of the color red or size
squarish characterization as in figure 2. After the dashed
vertical line, positive instances were subjected to 25% neg-
ative inlirming, systematic noise. That is, 25% of the pos-
itive instances were randomly assigned to either the posi-
live or negative class; a situation similar to the leaky rain
ginge. Notice that unlike figure 2, performance is not ad-
versely allected, indicating that STAGGER is correctly dis-

tinguishing between noise and concept change.

Because STAGGER retains counts of situation Ly pes, it is
“In STPAGGER, positive transfer arises as previous learning is used
1o augnient the concept representation language (Schlimmer &

Ciranger, i press).
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Figure 2: Tracking concept drift.
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Figure 3: 25% systematic noise.

in effect keeping an abbreviated history of the correlation
between a characterization and a concept definition. This
allows the program to model the effects of varying amounts
of previous learning on relearning resiliency al a gross level.
Contrast figure 4 in which the program was given more
than four times the amount of training for each concept
before cach change than in figure 2. Notice that the recov-
ery learning i> considerably laster (higher resiliency) in the
minimal training case (figure 2).

In short, the heuristic demonstrated here is that briefly
trained conceptls are less likely to be stable and should
therefore be abandoned more quickly in the face of change.
On the other hand, extensively trained concepts are more
stable and have a longer history of past success; they should
be less resilient in the face of new evidence. Psychological
studies indicate that natural learning mechanisms behave

in this manner (Siegel & Domjan, 1971).
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Figure 4: "Tracking concept drift given overtraining.
V  Conclusions References

STAGGER is an incremental learning method which tol-
erates systematic noise and concept drift. It begins with
simple characterizations and learns complex characteriza-
tions by conducting a middle-out beam search through
the space ol possible conjunctive, disjunctive, and negated
characterizations. Backtracking allows tracking changes in
concept definitions over time. Furthermore, the use of the
Bayesian weighting measures atfords the proper distinction
hetween noise and genuine concept drift. By retaining nu-
ierical histories of events, STAGGER models the eflects of
overtraining seen in psychological experiments. The learn-
ing methods employed in STAGGER are far from a complete
solution to the problems of learning in complex, reactive
environments. So far, it is limited to learning Boolean
combinations of attribute values and cannot acquire rela-
tional descriptions of structured objects. STAGGER also
requires feedback, as all concept attainment systems do,
and is therefore unable to conceptually cluster its inputs.
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