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Abstract Using relational information, the OPUS system elimi-

Work in conceptual clustering has focused on creating
classes from objects with a fixed set of features, such as
color or size. In this paper we describe a systemn which
uses relations between the objects being clustered as well
as features of the objects to form a hierarchy tree of classes.
Unlike previous conceptual clustering systems, this algo-
Using relational infor-
mation the system is able to find object classifications not

rithin can define new attributes.

possible with conventional conceptual clustering methods.

1. Introduction
Conceptual clustering involves grouping objects into con-
ceplually similar classes and producing a characterization
of those classes. In recent years there has been active re-
search in the area of conceptual clustering. For a survey
All of

these systems have focused on feature descriptions of the

of several conceptual clustering systems, see |2].

objects, such as color or size, to form a coherent classifi-
cation. Only Stepp & Michalski 7] have left this narrow
domain and used structural description of objects, i.e., at-
tributes of object components and the relationship among

these components to form classes.

However, no system thus far has used relational infor-
mation to classify the set of objects. This paper describes
a system called OPUS implemented in Prolog, which ad-
dresses this issue by using relations over the set of objects
(and not simply object components as in structural de-
scription), as well as features of objects, to form classes.
We thus extend the definition of conceptual clustering |6/

Lo include relational information.

Given:

A set of objects
A set of features describing the objects

A set of relations between the objects

e Criteria to evaluate the quality of a classification

Find:

e A hierarchy of classes and a characterization of the

classes
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nates a deficiency of previous conventional clustering sys-
temns; unlike the other systems, this system is able to dis-
tinguish between objects which have the same features but
different relations. For exatnple, in the domain of genetics,
OPUS is able to classify peas not only in terms of their
color but also in terms of their offspring, effectively defin-
ing the class of hybrids and purebreds. Another deficiency
of other conceptual clustering systems is the inability to
create new attributes; all attributes used to characterize
objects have Lo be given to such systems. In contrast,
OPUS is able to generate attributes if it determines that
the current description of the objects is not sufficient. New
attributes are defined as chunks formed from relations and
features.

In the next section we describe the OP US system, de-
tailing the use of relations to form a classification and the
generation of new attributes. In the third section we give
two applications to illustrate the systemn. We conclude with
two proposals for extending this work.

2. The OPUS System

The input to the OP US system consists of the objects
to be classified, a set of features describing the objects,
and a set of relations over the object set, such as eat or
parent. The system generates a hierarchical tree of classes,
cach class having a unique conceptual description. The sys-
temn divides the object set into mutually exclusive classes,
and recursively divides the classes until a final partition-
ing is found. At first, features such as color or size are
used as attributes to form classes. After the list of current
attributes is exhausted (i.e., all members of a given class
have the same value for the given features), new attributes
are generated. Using these new attributes, the cluster-
ing algorithm refines the previously formed classes until
all members of the classes have the same value for all cur-
rent attributes. OPUS continues the cycle of generating
attributes and refining classes until new attributes cannot
be used to further divide classes. OPUS consists of two
distinct parts, the clustering algorithm and the attribute
generator; these are described in detail ‘in the following

seclions.



2.1 The Clustering Algorithain

The OPUS clustering scheme is based on the RUM-
M A G5 clustering algorithim [1]. The goal of the algorithm
is to build a hierarchical trec of mutually exclusive classes
(clusters) for a given object set. Lach object of the set
has associated attribute/value pairs for a list of attributes.
The hierarchy tree is built in a top down fashion. At each
node in the tree, the algorithm selects an attribute which
best partitions the object set according to some clustering

criteria.

After an attribute has been selected, the object set is di-
vided into mutually exclusive classes whose members have
the same value for the chosen attribute. An arc in the hier-
archy tree is labeled with the value for the chosen attribute
at that node, and any other value for attributes which are
common to all members of that class. The procedure is
called recursively until the classes cannot be further di-
vided using the given attributes. At this point OPUS
once again defines new attributes and applies the cluster-
ing algorithm o refine the classes. If the new attributes
cannot further divide the classes, OP US decides that it
has determined the final classes and terminates.

2.1.1 The selection of an attribute

Giiven an object set and a list of attributes, we want to
select that attribute which best partitions the set over the
remaining attributes. In order to measure the quality of
a proposed clustering, OPUS forms a complex for each
value of an attribute. A complex is the logical implication
for the value of an attribute over the remaining attributes
|6]. Suppose thal we have the object set {K, L., M, N, O}
with associated attribute/value pairs for attributes A, B,

and, C as follows':

K { A - la, B = |z, C = |m,n|}
L { 4 lal, B - |y, € ~ |m|}
M { A 6], B - |z|, C = |m|}
N { A 6], B - |z|, ¢ - |n|}
0 { A la|, B ~ |y, C = |n]}

Given this data, the complexes for attribute A for values
la] and [b] over attributes B and C are:

(N fef > (B -yl vi]z]) A (C ~ |myn]v|m|vn])}
(2) bl > {(B -l A (¢ lm]vin))

That is, il an object has a value of [b] for attribute A, it
implies that it has a value of |z] for attribute B, and a value
of |n} or |m| for attribute C. OP US forms these complexes
for all values of all attributes. The complexes are used to
determine the quality of an attribute. OPUS uses two
clustering criteria, the simplicity of the cluster description
and the inter cluster difference, which we now discuss.

Ao the O PUS system, values of attributes are sets. (See section 2.2)

2.1.2 The clustering criteria

The simplicity criterion is used to choose a partition-
ing attribute which forms a simple description, so that it
is easy to characterize and differentiate classes. A second
criterion is used to avoid the trivial and arbitrary classifi-
cation which might occur if the above criterion were used
6
ness of two complexes. The less values overlap among the

; the inter cluster difference measures the disjoint-

alone

remaining attributes, the higher this degree of disjointness
will be. A good classification has simple class descriptions
and a high degree of inter cluster difference to maximize

the distance between classes.

The simplicity measure is a normalized value of the num-
ber of terms in the complexes of an attribute. A complex
consists of a logical product of selectors. lach selector is
a list of elements from the possible values of an attribute
linked by internal disjunction. The complexity of a selec-
tor is the number of terms of the selector divided by the
number of terms the selector could have, i.c., the number
of domain elements for the attribute of the selector. The
comnplezity of an altribute is the average of the complexity
values of all of the selectors of that attribute. The sim-
plicity of an attribute is defined to be the negative of the
complexity |6]. The complexity of the second selector of
complex (2) in our example is 2, because that selector has
two elements, (|| and |[m]), and there are three possible
values (|n],|m|, and |m,n|) that attribute C can have. In
complex (1), the second selector has a complexity value of

3 1. The value of complexity for attribute A is the av-

3
. p . . ¢ ™ . ..
erage ol 1,1, ,‘ll, and i which is ;i Thus the simplicity for
. . 19
atiribute A is 31

The computation of the inter cluster difference of two
complexes is more involved. We define a selector element
to be an element of a selector  that is, an element of the
domain of an attribute. (Values of attributes in the QP US
system are scts.) The simudarity between two selector el-

. . leyiies)
ements, ¢; and ey, is defined to be simn(e,ez) - pead

et

The rarimum similarity of a reference element e of a se-
lector S, to selector S, is max{sim(e,ex)}, lor all e, < S;.
The value £, is the average of the maximum similarities of
all selector elements of sclector S, to selector 5. Now, the
degree of similarity of complex Cy to €, denoted Sy, is
the average over all £, where i and j are all the selectors of
identical attribute parts. The degree of difference of com-
plex C¢ to complex €, denoted Difyy, is just L Simg.
Finally, the inter cluster difference degree of an attribute
X is the average ol all Dify, values, k 4 [, where & and {
are complexes of all values of the attribute X.

Referring again to the example, we calculate the follow-

ing values for the various computations to calculate the

ey es| denotes the cardinality of the intersection of set ¢ and set
¢y, while [¢) Uey| denotes the cardinality of the union of the two

sets.
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inter cluster difference degree for attribute A:

Ior the selectors of attribute B, we compute values
p max{sim(|y],[x])} ¢ max{sim(|x},|x]}}
12~ - B -
2
max{0} | nup(“} 1

2 2
Py mar{sen(|z), |y]), sim(| 2], |z])}
max{0,1} -1
For the selectors of attribule C, we compute in a similar
manner

5

max{},}} tmax{0,1} t max{1,0} _ 5

Py 3
max{ 0,1} tmax{! 1,0}
Py - = 9 = s=1

Thus we have a degree of degree of similarity of com-
plex (1) to complex (2) of attribute A of (y 1 J)/2 - 2
and a degree of simularity of complex (2) to complex (1) of
’,l' 1. Therefore the degree of differences are li and 0 re-
spectively. The inter cluster difference degree for attribute
Ais (4 1 0)/2 L

This computation of the inter cluster difference for an
attribute makes use of the fact that, in the OPUS sys-
tern, values of attributes are partially ordered. That is,
value |a,b] is further from value |b,¢,d| than it is from
value |a,b,c], and therefore sim(|a,b|,|b,c,d]) is less than
sim(la,b],|a,b,c]). Class descriptions should be as dis-
tinct as possible to ensure classes with different properties.
Maximizing the inter cluster difference will promote such
classes.

The idea of an asymmetric similarity measire may seem
counterintuitive at first. However, T'versky [8] supports an
asymmedtric similarity measure, and he provides evidence
that humans “tend to select the more salient stimulus . . . as
a referent, and the less salient stimulus ...as a subject.”
Referring once again to the complexes in the example, any
object satisfying the conditions of complex (2) also satisfies
the conditions of complex (1), but not vice versa. Therefore

Sy, has a higher value than St ..

O P US maximizes a trade off between the inter cluster
difference and the simplicity of a class description. At each
level in the expanding hierarchy tree, a quality value for
each altribute is computed. This value is the sum of

u + simplicity | v+ inter cluster difference
for some user specified coeflicients v and v. The user can
thus weigh the importance of these two criteria. OPUS
maxinizes the quality value of the attributes selected at
ecach node in the expanding tree.

2.2 Generating Attributes

New attributes have to be defined when current at-
tributes are not suflicient to distinguish between members

of the same class. New altributes are chunks composed of

relations and features. For this purpose, we define a com-
pler relation v £(X,Y,Z) to be the composition of a rela-
tion r(X,Y) and a feature £(Y,Z). For example in the food
chatn domain animals could be described by the feature
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size and the relationship eat. Thus the relation eat(X,Y)
and the feature size (Y, 2) are composed to form the com-
plex relation eat size(X,Y,Z), describing that X eats Y
and Y is of size Z. Note that the first and second argument
of a complex relation are members of the object set, while
the third is a value of the feature. Complex relations will
be used as attributes.

The value of an attribute is defined as follows. Given
a complex relation r _£(X,Y,2), the value of the attribute
r f for the object X is the set {Z, | dY > r £(X,Y,Z)}.
That is, the set of all Z’s, such that r £(X,Y,2) is sat-
isfied for some Y. For example, the value of eat size
for snakes in the food chain domain is [small, medium],
because eat size(snakes, Y, small) is satistied for Y
bound to mice and insects, and eat size(snakes, VY,
medium) is satisfied for Y bound to snakes. Thus, the
attribute eat size has a value of [small, medium] for
snakes, because snakes eat small and medium sized ani-

mals.

The system is supplied with a small set of binary re-
lations such as eat or parent. These primitive relations
involve only two objects, and there is a direct “link” be-
tween the two objects. In order to define more involved at-
tributes, relations consisting of several primitive relations
are formed. We define a level n relation as a relation us-
ing n primitive relations between two objects. A primitive
relation is a relation supplied to the system or the inverse
of that relation. The relation eaten(X,Y) describes the
level one relation eaten, meaning X is being eaten by Y,
while eat eat(X,Z) describes the level two relationship
of X eats some Y and Y eals Z. Relalions are defined in
increasing levels of order, starting at level one. Now, a
level n altribute is defined from a complex relation com-
posed of a level n relation and an existing feature. Each
time new attributes have to be defined the current level
k is increased and level ki I relations are defined. These
level ki 1 relations are composed with features to define
complex relations and thus level k ¢ 1 attributes. Relations
are not directly used in the clustering process, but rather
used to define attributes. Only attributes are used to clus-
ter objects. Thus, objects are first classified based upon
their features, then based upon attributes with increasing
complexity. If at any timme new relations cannot define at-
tributes which refine classes, the system terminates having

reached a tinal classification.

At each level k, new level k relations are defined. A level
k I relation is composed with a level one relation to form
a level k relation. All inverses of relations are defined. To
limit the combinatorial explosion of the number of possible
relations which can be defined at each level, only a limited
number of the k | relations are considered to define new
relations. Only the relations which delined attributes used
to refine classes at level k1 are used at the next level to

define new relations.



3. Two Examples

OPUS has applications in any domain where objects
are described by a set of features and a set of binary rela-
tions. T'wo examples of such domains are presented in the
following sections: the food chain domain and the genetics
domain.

3.1 The Food Chain Domain

{n the food chain domain, we characterize animals using
two features; size and locomotion, and relation, eat. For
example, we describe songbirds using the following facts:
size( songbirds, medium), locomotion(songbirds,
fly), eat(songbirds, worms), eat(songbirds,
insects), and eat(hawk, songbirds). All fourteen ob-
jecls are characterized by the same two features. Fifty-one
relational facts are asserted to describe the relationship eat
over the objects set.

At first, OP US uses features as attributes Lo classify the
objects. size has the same simplicity value as locomotion,
but a higher inter- cluster difference value. Therefore size
is chosen as the first attribute to divide the object set in the
hierarchy tree. For example, a class of medium sized ob-
jects is created with the following members: hawks, owls,
songbirds, and snakes. After the system has vused locomo-
tion Lo refine classes, there are no attributes left and new
attributes have to be defined.

In response to that OP US defines all possible level one
relations. The following complex relations and attributes
are formed: eat size, eat locomotion, eaten size,
eaten locomotion. The first two describe the size and
locomotion of animals eaten by an object, the latter two de-
scribe the size and locomotion of the animals that eat that
object. These four attributes are used to divide the exist-
ing classes. For example, the class of medium sized flying
objects is refined using the attribute eat size. Hawks and
owls eat medium and small animals, while songbirds only
eat small animals.

After the current attributes have been used to refine the
classes, there are only two classes with more than one ob-
ject left, the class of frogs and toads, and the class of hawks
and owls. The level two relations eat eat, eat eaten,
eaten eat and their inverses are formed, and concatenated
wilh the features to define level two attributes. Frogs and
toads have the same values for these new attributes, there-
fore that class is not refined. However hawks and owls have
different values for the attribute eat _eaten size, namely
[1arge, medium] and [large, medium, small]. That
is, hawks eal animals which are eaten by large and medium
sized animals, while owls eat animals which are eaten by
large, medium, and small animals. Thus, the attribute
eat eaten size is used to divide that class. The next level
relations cannot define attributes which refine the class of
frogs and toads, so the system terminates. The resulting
hierarchy tree is shown in Figure L.

3.2 The Genetics Domain

Let us now consider an example from the field of genet-
ics. The clustering problem in genetics consists of classi-
fying objects based not only on their observable features,
but also on features of their descendants and their ances-
tors. Gregor Mendel, the founding father of genetics, ob-
served that when a yellow garden pea was crossed with
a green garden pea the resulting offspring pea was yellow
[4]. When he self-fertilized that pea, it produced both yel-
low and green offspring. After he continued to self-fertilize
peas, he discovered that some of the yellow peas had yellow
and green offspring while other yellow peas only produced
yellow offspring. Green peas consistently had green off-
spring. Mendel thus hypothesized the class of purebreds,
peas which produce offspring with exactly the same fea-
tures as the parent, and the class of hybrids, peas which
produce some offspring with the same features and other
offspring with features different from their parent.

When OPUS is provided with information about the
color of each pea and the offspring each pea produces, it
defines the classes of hybrids and purebreds. At first, the
feature color is used as an attiribute to distinguish yellow
and green peas. Next, the attributes of fspring.color and
parent color are defined. For the class of yellow peas, the
inter -cluster difference and the simplicity value for these
attributes are equal. In the running system parent color
was picked to refine the class of yellow peas. At this point
all peas are correctly identified as either a yellow or green
purebred or a (yellow) hybrid. Furthermore, the character-
ization of these classes corresponds with Mendel’s charac-
terization. For example, the class of green purebreds only
has green offspring, while the class of hybrids contains only
yellow peas which have both yellow and green offspring.
OPUS continues to refine the classes --distinguishing, for
example, between purebreds with hybrids as parents and
purebreds with purebreds as parents.

Mendel continued his experiments, crossing peas with
two different traits, color and shape. He observed nine dif-
ferent classes, all having different dominant and recessive
traits. We supplied the O P US system with the color and
shape of each pea and asserted the relations over the object
set. Again OPUS correctly defined and characterized as
intermediate classes all nine classes which Mendel identi-
fied as the various hybrids and purebreds. For example,
OPUS defines two different classes of round green peas;
one class has members which only have round green peas as
ollspring, while the other class has members which produce

round green and wrinkled green offspring.

4. Summary and Further Research
In this paper, we presented a conceptual clustering sys-
tern which uses relations over the object set to define a
hierarchy of classes. Using the relational information, this
system is able to find classifications not possible with con-
ventional methods of conceptual clustering. We presented
an example from the domain of genetics where the system
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Figure 1 Classification Tree for food chain domain

is able to form the classes of hybrids and purebreds. Fur-
thermore, we introduced a method to define new attributes

used in the classification process.

T'his work can be extended in two ways. It is unrealis-
tic to assume that all the information describing objects is
available initially. An incremental version of O P US would
build the hierarchy tree using partial informaltion, predict-
ing missing properties of objects as well as missing objects.
As more data becomes available, predictions can either be
conlirmed, in which case the belief in other similar predic-
tions is reinforced, or they can be disconfirmed, in which

case a revision of classes occurs.

The present version of OP US can handle only binary
relations. An extension of the system working with n—ary
relations would greatly enhance its power. For example, in
the domain of chemistry, some compounds are classified as
acids, alkalis and salts depending on (among other prop-
erties) their reactive behavior. For example, alkalis react
with acids to form salts. Using ternary relations, these
classes could be formed in a way similar to GLAUBER
131, yet in a more efficient manner. At the moment, we are
actively engaged in working in these directions.
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