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Abstract 
Work in conceptual clustering has focused on creating 

~Iasscs from objects with a fixed set of features, such as 
color or size. In this paper we describe a system which 
uses relations between the objects being clustered as well 
ah fcal,ures of the objects to form a hierarchy tree of classes. 
Ilrllikc~ previous conceptual clustering systems, this algo- 
rithlrl can define new attributes. Using relational infor- 
rnatiolk the system is able to find object classifications not 
possible with conventional conceptual clustering methods. 

1. Introduction 
(:onceptual clustering involves grouping objects into con- 

c~~p~,uaIly similar classes and producing a characterization 
of Lhose classes. In recent years there has been active re- 
search in the area of conceptual clustering. For a survey 
of’ staveral conceptual clustering systems, see /Xl. All of 
thcscl systetns have focused on feature descriptions of the 
objcc.ts, such as color or size, to form a coherent classifi- 
cation. Only Stepp & Michalski 171 have left this narrow 
ttorlrdirl and used structural description of objects, i.e., at- 
tributcls of object cotnponents and the relalionship among 
thc>sch corrlponer~ts to form classes. 

liowever, no systeti1 thus far has used relationul infor- 
mation to classify the set of objects. This paper describes 
a systt~rn called 0 PIJ S implemented in Prolog, which ad- 
dresses this issue by using relations over the set of objects 
(acid uot sirnply object components as in structural de- 
scriptioll), as well as features of objects, to form classes. 
We thus extend the definition of conceptual clustering [6] 
lo include relational informalion. 

(i ivc>Il : 

0 A set of objrcts 
l A set of features describing the objects 
l A set of relations between the objects 
0 <:riteria to evaluate Lhe quality of a classification 

t”illd: 

l A tlierarchy of classes and a characterization of the 
c I asses 

Usirlg relational information, the 0 P TJ S system elitni- 
nates a deficiency of previous conventional clustering sys- 
tems; unlike the other systerns, this system is able to dis- 
tinguish between objects which have the same features but 
different relations. I;or exatnpte, in the domain of genetics, 
0 1’ US is able to classify peas not only in terms of their 
color but also in terms of their offspring, effectively defin- 
ing the class of hybrids and purebreds. Another deficiency 
of other conceptual clustering systems is the inability to 
create new att,ributes; all attributes used to characterize 
objects have to be given to such systems. In contrast, 
0 1’ US is able to generate attributes if it determines that 
the current description of the objects is not sufficient. New 
attributes are defined as chunks formed from relations and 
features. 

In the next section we describe the 0 P IJ S system, de- 
tailing the use of relations to form a classification and the 
generation of new attributes. In the third section we give 
two applications to illustrate the system. We conclude with 
two proposals for extending this work. 

2. The OPUS System 

The input to the 0 1’ IJ S system consists of the objects 
to be classified, a set of features describing the objects, 
and a set of relations over the object set, such as eclt or 
parent. The system generates a hierarchical tree of classes, 
each class having a unique conceptual description. The sys- 
tem divides the object set into mutually exclusive classes, 
and recursively divides the classes until a final partition- 
ing is found. At first, features such as coio~ or size arr 
used as attributes to form classes. After the list of current 
attributes is exhausted (i.e., all members of a given class 
have the same value for the given features), new attributes 
are gener.Lted. llsirlg these new attributes, the cluster- 
ilig algorithrrl refines tl~e previously formed classes until 
all rrletribers of the classes have the same value for all cur- 
rent att,ributes. 0 I’ II S continues the cycle of generating 
attributes and refining classes until new attributes cannot 
be used to further divide classes. 0 I’ II S consists of two 
distinct parts, the clustering algorithm and the attribute 
generutor; these are described in detail ‘in the following 
sections. 
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‘l‘t1tl 0 I’ IJ S clustering schetrle is based on the It CJ M- 

M A G t4: cluslering atgorithrri Ii/. The goat of the algorithm 
is to build a hierarchical trtbcb of mutually exclusive classes 
(clusters) for a given object set. Each object of the set 
has associated attribute/value pairs for a list of altributes. 
‘t’tttb IIic~rarchy tree is built in a top down fashion. At each 
Ilotltb iI1 the tree, the algorithm selects an attribute which 
btlst partitions the object set according to some clustering 
critchria. 

‘I’tle simpficity criterion is used to choostl a partitiori- 
illg at,tribute wllich forms a sitrlple description, so that it 
is easy to characterize and differentiate classes. A second 
criterion is used to avoid the trivial and arbitrary classifi- 
cation which might occur if the above criterion were used 
alone /6j/; the rnter cluster diflerence measures the disjoint- 
nt’ss of two complexes. ‘I’he less values overlap among the 
remaining attributes, the higher this degree of disjointness 
will t,ch. A good classification has simple class descriptions 
iirlci a tligh dt>gree of inter clusler difference to maxirriize 
the distance between classes. 

Af’ter an attribute has been selected, the objcict, set is di- 
vided inLo mutually exclusive classes whose rt~embers have 
the same value for the chosen attribute. An arc in the hier- 
archy tree is labeled with ttle value for the chosen attribute 
at that node, and any other value for attributes which are 
common to all members of that, class. The procedure is 
calIt recursively until thtt classes cannot be further di- 
vided using the given attributes. At this point 0 1’ US 
once again defines rlew attributes and applies the rluster- 
irig algorithtn to refine the classes. If the new attributes 
cannot further divide the classes, 0 P II S decides that it 
has determined the final classes and tertninates. 

‘l‘lre simplicity measure is a norrrialixed value of the tiunl- 
her of terms in the complexes of an attribute. A cotttplex 
consists of a logical product of selectors. Il:acti selector is 
a list of elerrierlts from ttre possible values of an attribute 
linkclti by internal disjurlctiou. The complexity of u selec- 
tor is t tie nurnl,rAr of trrrns of’ t Ile selector divided by the 
number of terms the selector could have, i.e., the number 
of domain elcmc~nts for the attribute of the selector. The 
complexity of UPL uttribute is the average of’ the complexity 
values of all of the selectors of that attribute. The sim- 
plicity 01 an uttribute is defined to be the negative of the 
complexity 161. ‘I‘he complexity of the second selector of 
complex (2) in our example is :~, ’ because that selector has 
two elements, (1711 and [rn]), and there are three possible 
values (In], jrnj, and lm,7~j) that attribute C can have. In 
complex (I), the second selector has a complexity value of 
:I 
:1 I. The value of complexity for attribute A is the av- 

er-age of 1, I, i, and i which is ii. Thus the silllplicity for 

attribute A is - 1:. 

2.1.1 The selection of an attribute 

(liven an object set and a list of attributes, we want to 
sehbct that attribute which best partitions the set over the 
reruaiuing attributes. In order to measure the quality of 
a proposed clustering, 0 1’ US forms a complex for each 
value of an attribute. A cotnplex is the logical implication 
for the value of an attribute over the remaining attributes 
I6jj. Suppose that we have the object set {K, I,, M, N, O} 
with associated attribute/value pairs for attributes A, B, 
alrd, C as follows’: 

(;ivtrrl this data, the complexes for attribute A for values 
lu/ and lb] over attributes B and C are: 

‘t‘he computat,ion of the inter cluster difference of two 
complexes is more involved. We dcfiric a selector element 

to be an elcmcri t of a selector that is, an element of the 
domain of an attrib\rte. (Values of attributes in t II<> 0 [‘IT s 
systetri are sets.) ‘l’tir srrrlilurity bt:twt*t~rr two selector el- 
ements, cl and ez, is defilletl to be 5111~(c,, cz) i::l:::~ ..* 
The rfonirtt~i?rl sirrlilurrty of’ a rc~f’erenco elenlellt e of a sc- 
Iector .S1 to selector S, is trIax{ sirri(e, c:k)}, for all ek L .S,. 
‘I’tle value t:, is the avtbrage of Lhe tilaxinIuIr1 similarities of 

(I) j(Lj > {(I) - lyj v 1x1) A (C - j771,7L] v jllll J illI)> 

(2) /h( > {(U - 1x1) A (C Im] v InJ)} 

‘I’llaL is, if an object has a value of 111 for attribute A, it 
implies that it has a value of 121 f i>r attribute B, and a value 
of / ?I/ or I ~nj t ‘or aLtribute C. 0 1’ II S forms thtlsta cornptexes 
for all values of all attributes. The corriplexc3 are used to 
dt~l~~rt~~inc? the quality of a11 attributts. 0 t’ II S uses two 
clusLc:rirlg criteria, the simplicity of the cluster descriptiorl 
alld t.he itIter cluster difference, which we 110~ discuss. 

all selector t:lt:rrlerits of selc>cLor S, to selector S,. Now, thtl 
degree of srrrlifurzty of’ co~~~plcx (,“k to Cl, denoted .Sl~rlk~, is 
the avcragct ov(lr at I I’,, , w tlcrcl i and j art’ all t he selectors ot 
idcrlticat attril)utc parl>. ‘l’htl tfeyrcl: uj ciifleretwe of coin- 
pteX Ck LO COlIl~JlcX (,‘i, dc!IlOtXd fjljk[, k ,jIiSt I Sirrl~/. 

Finally, the lrftrr clrlster ififlkrerlc’e tfeyree of arl attribute 
X is the avt’rdg:” 01 dll /l~f’~~ values, k- / 1, wticlre k and f 
are corriptexc5 01‘ ill1 Vatut5 of’ Lhe attri bultl X. 

Referring ag$ri to ttie t~xartlple, wc calculate Ltle follow- 
irig valuc5 for the various computatiorls to calculate the 

of 
dlld set 

the two 
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inttlr (‘luster diff’erenct> degree for attribute A: 

b’or the selectors of attribute C, we compute iri a similar 

1’12 IIlLlX{ ; ) .I, } t 111clx(0, I} t l,l,X{ l,O} 5 1a X 3 
IIl‘lX( ; ,O) 1 } t IIIILX{ f ,l ,I)} 

s 
1’2, - - 1 2 1 

‘I’IIIIS we have a degree of deyree oj similurity of corn- 
[JteX (I) lo c-orrt~Jtex (a) of’ att,rit)ute A of (i t :)/2 5 
;irl(l ii deyrcr o/ sirrdurrty of’ complex (2) to cotriplex (I) of 
I I 1 1 
2 I. ‘I’her&re the rlqret: u/ ctr#t!rences are :( and 0 re- 

SJJN~ ivtlly. ‘I‘t ie inter cluster drflerence deyree for attribute 
A is (:: I O),‘:! :,. 

‘I’llis computation of the irrter clustcar difference for an 
at tribute makes use of Lhe fact that, irl the 0 1’ II S sys- 
tt~rri, values of attributes are partially ordered. That is, 
value (~,6] is further from value (b,c,ct[ than it is from 
value l~,I,cl, and therefore si~rl( [u, 61, 16, c, dl) is less than 
sm(1u, 61, [a, 6, cl). Class descriptions should be as dis- 
tirict, as possible to ensure classes with different properties. 
Maxirrlixing the inter cluster difference will prorrrotc such 

The idea of an asyrrirrietric similarity rneasirre may seem 
c‘or~rrtcrirrt,uitive at first. llowever, ‘I’versky 181 supports a11 

asyrrIrrit~t.ri(~ similarity riieasur-e, and tie provides evidence 
that hurr~arrs “terid to st~1t~c.t. the Itlore salient slimulus . . . as 
a rc~l’ert~rrl, and t.lit~ less salient stimulus . . . as a subject.” 
I<eferririg once again to thrh complexes irr the example, any 
object satisfying t,he conditions of corriplex (2) also satisfies 
thtb c~orlditions of corrlplex ( I ), but riot vice versa. Therefore 
.Si911:!, has a higher value ttiari Sz’rr~,~. 

0 I’ 11 S rriaxirrii~t3 a t,rade off bc~tween the inter cluster 
tlifft!rc~rlc~c~ arid the sirrlplicity of a class description. At eaclr 
Ievc>l in the expanding hierarchy tree, a quality value for 
tAac.tI al,tribut,e is c~orriputed. This value is the sum of 

u 4 sirriplicit,y / II* inter cluster difference 

for hoirit’ user spc~citied cot~lfic~ierrls u and 2/. ‘I‘he user can 
thus wcbigli lhe irriport4ir.e of these two criteria. 0 1’ US 
rrraxirtlizchs the qualit,y valutt of the attributes selected at 
t>iL(.tI rlotlt’ in the eX~>i~l~dillg tree. 

2.2 (kneratirlg Att,ril)utc!s 

.Nc~w attributes havtk to I)e defined when current at- 
trit,il tc5 are not sufficierlt. to distinguish betweerr rrierribers 
of Ltlc sarnr class. New at tribut.cs are chunks composed of 
rtbl;lt ioIls arid features. lt‘or I tris purpost’, we define a co4r&- 
~~frx relutr‘o~i r f (X, Y, 2) Lo t )(’ ttrc composition of a rela- 
t iorr r(X ,Y> and in feature f (Y ,Z>. lcor exarr~ple iri the /0od 
r/mirL tlorriairr airirrrals could I,(1 tit3,c-ri bed by the feature 

size and the relationship eat. Thus the relation eat(X .Y> 
and the feature size (Y, 2) are composed to form the com- 
plex relation eat size (X ,Y, Z>, describing that X eats Y 
and Y is of sixe Z. Note that the first and second argument 
of a complex relation are members of the object, set, while 
the third is a value of the feature. Complex relations will 
be used as attributes. 

The value of an attribute is defined as follows. Given 
a complex relation r-f (X, Y, Z), the value of the attribute 
r f for the object X is the set {Z, 1 -1 Y 3 r f (X, Y,Z,)}. 
That is, the set of all Z’s, such that r f (X,Y .Z) is sat- 
isfied for sorrie Y. For exarripte, the value of eat size 
for snake?, in the food chain domain is [small, medium], 
because eat sizecsnakes. Y, small) is satisfied for Y 
bound t,o mice and insects, and eat size(snakes, Y, 
medium) is satisfied for Y bound to snakes. Thus, the 
attribute eat size has a value of [small. medium] for 
snakes, because snakes eat small and medium sized ani- 
rr1als. 

The systerrr is supplied with a small set of binary re- 
lations such as cut or parent. These primitive relations 
involve only two objects, and there is a direct “link” be- 
tween t Ire two objet ts. In order to define more involved at- 
tributes, relations consisting of several primitive relations 
are formed. We deline a feuel n relution as a relation us- 
ing YL primitive relations between two objects. A primitive 
relation is a relation supplied to the system or the inverse 
of t.tlirlL relation. ‘I‘htl rcllatiorl eaten(X,Y) describes the 
level one relation eden, meaning X is being eaten by Y, 
while eat eat (X ,Z> describes the level two relationship 
of X eats SOIIK~ Y and Y eats Z. Relations are defined in 
i~rcreasirrg levels of order, starting at level one. Now, a 
It:& 91 attribute is defined frorrr a complex relation com- 
posc~l of a level n retatiori and an existing feature. Each 
tinit> new attributes have to be defined the current level 
k is increased and level k / 1 relations are defined. These 
Itbvel k t 1 relCltions are corrlposed with features to define 
corrIpt(bx relations anti thuh level k t I attributes. Relations 
arc’ not. directly us4 in the clustering process, but rather 
used to define attributes. Only attributes are used to clus- 
ter objet ts. ‘l‘hus, objects are first classified based upon 
their features, ttrct~ based upon attributes with increasing 
corriplcxity. If at, any tirrlcs ilow relations cannot define at- 
tributes which rcbfine class~hs, the system terminates having 
reacht~d a final ctassilicatiorl. 

At each level k, new level k relations are defined. A level 
k 1 relation is composed with a level one relation to form 
a level k ret&ion. All inverses of retatiorls are defined. To 
limit the combinatorial clxptosion of the number of possible 
relations which carI be dt~fined at each level, only a limited 
nurrrber of the k I relatiorls arc considered to define new 
relations. 011ly t,tIe relatiorrs wtrich dtJlirred attributes used 
to refine classc:, at level k 1 are used at t,he rlext level to 
define new relations. 
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3. Two Examples 

0 1’ II S has applications in any domain where objects 
ale described by a set of features and a set of binary rela- 

tjons. Two examples of such domains are presented in the 
following sections: the food chain dornain and the genetics 
tiorriain. 

In the food chain domain, we characterize anilnals using 
two features, size and locorrrotion, and relation, eat. I+‘or 
example, we describe songbirds using the following facts: 
size( songbirds, medium), locomotion(songbirds, 
fly) * eatcsongbirds. worms), eat(songbirds, 
insects), and eat (hawk, songbirds). All fourt,een ob- 
jects are characterized by the same two features. Fifty one 
rc>lational facts are asserted to describe the relationship cut 
ovc’r the objects set. 

At first, 0 E’lJ S uses features as attributes to classify the 
objects. size has the sanle siniplicity value as locomotion, 
but. a higher inter cluster difference value. Therefore size 
is chosen as the first attribute to divide the object set, in the 
hierarchy tree. For example, a class of rnediurn sized ob- 
jcc.ts is created with the following members: hawks, owls, 
songbirds, and snakes. After the system has used locomo- 
tion LO refine classes, there are no attributes left, and new 
attributes have to be defined. 

In response to that 01’1JY defirles all possible level one 
relations. The following coulplex relations and attributes 
are forrned : eat size, eat locomotion, eaten size, 
eaten locomotion. The first two describe the size and 
locomotion of anirnals eaten by an object, the latter two de- 
scribe the size and loc.ornotion of the animals that eat that 
object. ‘I‘hese four attributes are used to divide the exist- 
ing classes. For exarnplt:, the class of rnediurn sized flying 
objects is refined using the attribute eat size. llawks and 
owls eat rnediurn and small animals, while songbirds only 
eat small animals. 

After the current attributes have been used to refine the 
classes, there are only two classes with more than one ob- 
ject left, the class of frogs and toads, and the class of hawks 

and owls. The level two relations eat eat, eat eaten, 
eaten eat and their inverses are formed, and concatenated 
with the features to define level two attributes. Frogs and 
toads have the same values for these new attributes, there- 
fore that class is Itot refined. llowever hawks and owls have 
diKerent values for the attribute eat eaten size, namely 
[large, medium] and [large, medium, small]. ‘1’hal 
is, hawks chat animals which are eaten by large alld medium 
sized allirIlals, while owls eat animals which are eaten by 

large, ~IIC~~UIJI, and small animals. Thus, the attribute 
eat eaten size is used to divide that class. The next level 
relations cannot define attributes which refine t,he class of 

frogs and loads, so the systern terrrlinates. The resulting 
hierarchy tree is shown in Figure 1. 

3.2 The Genetics Domain 

I,et us now consider an example from the field of genet- 
ics. The clust,ering problem in genetics consists of classi- 
fying objects based not orlly 011 their observable features, 
but also or1 features of their descendants and their ances- 
tors. Cregor Mendel, the founding father of genetics, ob- 
served that when a yellow garden pea was crossed with 
a green garden pea the resulting offspring pea was yellow 
141. When he self -fertilized that pea, it produced both yel- 
low and green offspring. After he continued to self-fertilize 
peas, he discovered that some of the yellow peas had yellow 
and green offspring while other yellow peas only produced 
yellow offspring. Green peas consistently had green off- 
spring. Mendel thus hypothesized the class of purebreds, 
peas which produce offspring with exactly the same fea- 
tures as the parent, and the class of hybrids, peas which 
produce some offspring with the same features and other 
offspring with features different from their parent. 

When 0 1’ [JS is provided with inforrnation about the 
color of each pea and the oj’spriny each pea produces, it 
defines the classes of hybrids and purebreds. At first, the 
feature color is used as an attribute to distinguish yellow 
alld green peas. Next, the attributes off spring color and 
parent color are defined. For the class of yellow peas, the 
inter cluster difference and the simplicity value for these 
attributes are equal. In the running system parent -color 
was picked to refine the class of yellow peas. At this point 
all peas are correctly identified as either a yellow or green 
purebred or a (yellow) hybrid. Furthermore, the character- 
ixation of these classes corresponds with Mendel’s charac- 
terization. For cxarnple, the class of green purebreds only 
has green offspring, while the class of hybrids contains only 
yellow peas which have both yellow and green offspring. 
0 1’ IJ S continues to refine the classes distinguishing, for 
example, between purebreds with hybrids as parents and 
purebreds with purebreds as parents. 

Mendel continued his experiments, crossing peas with 
two different traits, color and shape. He observed nine dif- 
ferent classes, all having different dominant and recessive 
traits. We supplied the 0 t’ IJ S system with the color and 
shape of each pea and asserted the relations over the object 
set. Again 0 I’ II S correctly defined and characterized as 
intermediate classes all nine classes which Mendel identi- 
fic:d as the various hybrids and purebreds. For example, 
0 I’ IJ S defines two different classes of round green peas; 
one class has Inembers which orlly have round green peas as 
ofl’spring, while the other class has members which produce 
round green and wrinkled green ofFspring. 

4. Summary and Further Research 
lo this paper, we presented a conceptual clustering sys- 

tem which uses relations over the object set to define a 

hierarchy of classes. llsing the relational information, this 
system is able to find classifications not possible with con- 
ventional methods of conceptual clustering. We presented 
an example from the domain of genetics where the system 
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Figure 1 Classification Tree for food chain domain 

is ahIt: to form the classes of hybrids and purekreds. Fur- 
thtlrrnorr, we introduced a method to define new attributes 
uscti in the classification process. 

‘I‘hi:, work can be ext,ended in two ways. It is unrealis- 
tic LO assume that all the information describing objects is 
available initially. An incremental version of 0 I’ IJ S would 
buil(l the hierarchy Iret> using partial information, predict- 
ing rllissing properties of objects as well as missing objects. 
As IIWW data becomes available, predictions can either he 
conlirr~led, in wtiich cast‘ t,tit: t,elief in other si~~iilar predic- 
tion:, i, reinforced, or ~,hey call be disc.onfirrned, in which 
cast a rclvisiorl of classtlb OCCURS. 

‘i‘tlc~ present version of Ol’tJS can handle only binary 
relat iorls. An exlension of the system working with 11. ary 
relations would great,ly enhance its power. For example, in 
thrt domain of chemistry, some compounds are classified as 
itcitlb, alkalis a11d salts depending on (among other prop- 
chrtit:s) 1,ticir reactive behavior. For example, alkalis react. 
wil tI cLc.ids to forrrl salts. Using 1,ernary relaliolis, these 
clax,t?, could be formed in a wdy similar to c; 1,11 IJ 13 l<K 
IY, yet iI1 a more efficient manner. At the moment, we are 
;tct ivc>ly (~llgagt~d irl working in these directions. 
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