
Factorization in Experiment Generation
Devika Subramanian

Joan Feigenbaum

Department of Computer Science
Stanford University
Stanford, CA 94305

ABSTRACT

Experiment generation is an important part of incremental
concept learning. One basic function of experimentation is to
gather data to refine the existing space of hypotheses[DB83].
Here we examine the class of experiments that accomplish this,
called discrimination experiments, and propose factoring as a
technique for generating them efficiently.

I Introduction

The need to generate experiments that discriminate between
sets of hypotheses arises in the context of a learner using the
version space algorithm[Mit78][Mit83]. Here we show how im-
plicit independence relations in the concept language can be
used to factor the version space of hypotheses. We analyze the
computational advantages gained by doing experiment genera-
tion using the factors.

This paper is organized as follows. Section II describes
the single concept learning problem that provides the set-
ting for our investigation of the discrimination-experiment-
generation(DEG) problem. Next, we introduce the blocks world
example that will be used throughout this paper. In Section IV
we characterize the DEG problem and explain why it is hard.
Section V briefly describes two sources of information that can
be used to make it tractable; one is domain-specific informa-
tion, the other is knowledge of independence between parts of
the concept being learned, which is domain-independent. In
this section we also outline how this independence allows us to
factor the version space and generate experiments by working
with the factors. The next two sections are a formal analysis of
factoring: Section VI demonstrates the conditions under which
a version space can be factored (under the independent credit
assignment (ICA) assumption) and provides an optimal strat-
egy for generating experiments in the factored space. Section
VII does a similar analysis for the case that ICA is not avail-
able. The tradeoffs associated with factoring along with a cost
comparison are presented in Section VIII. Experimental results
using our implementation of factoring are sketched in Section
IX. Finally, Section X highlights the main contributions of this
paper and concludes with a proposal for future work on this
problem.

II The Single Concept Learning
Problem

The single concept learning probZem[Mit78] is:
Given:

The first author is supported by an IBM fellowship.
author’s work was supported by a Xerox fellowship.

The second

l a first order concept language C,

l a first order instance language I,

0 a set P of sentences in I, containing
the concept to be learned,

positive instances of

l a set N of sentences in I, containing negative instances of
the concept to be learned,

l the TV relation between sentences in C and I that indicates
when an instance matches a concept (i k c).

l a biasing theory T that describes which of several alterna-
tive descriptions of a concept is more plausible.

Find: the concept description (represented as a sentence c in
C) that is consistent with (P,N), i.e.

l Vp.pEP*p~c

l Vn.nEN+npc

Typically, the learner is given sets P and N that fail to de-
termine c uniquely(that such a c exists follows from the rep-
resentability assumption made in the version space algorithm
[Mit78]), thus the learner constructs the set VS of descriptions
that are consistent with the observed instances. VS is called
the version space of the concept to be learned. The learner now
attempts to gather more information about the concept by us-
ing instances in I (that will be classified by a critic/teacher) to
eliminate some of the concept descriptions in VS. This process
is iterated until a single concept description survives. Finding
the sequence of instances in I that will accomplish this is the
discrimination-experiment-generation problem. If more than
one concept description remains and the instances in I do not
tell them apart, the learner uses T to select the most plausible
one.

III Blocks World Example

The single concept learning problem will be illustrated with
the following blocks world example. We define the vocabulary
of the concept language Cr. The constants of Cl are

l ⌧, Y, z, . . . (names of blocks)

l red, green, any-colour (colours of blocks)

l cube, brick, nedge,
blocks)

pyramid, any-shape (shapes of

The predicates of Cl are

l shape:

l colour

name of block x shape of block -+ {T,F)

: name of block x colour of block -+ {T,F}

The pure predicate language constructed from this vocabulary
is Cl. The following are relations between well-formed formulae
in Cl.

(if (shape $x brick) (shape $x wedge))

518 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

cube brick
red

\/ yv&d

green

any-colour

Figure 1

any-shape

red cube is a positive instance. The two possible updates to
the VS are shown in Figure 3.

Red Wedge

Any

0

Red Red Brick
Wedge Any

/
Any Any Any Brick

vs,+ vs;-

Figure 3

Formally,

l VSi’ = { c 1 c E VS and i b c }

l vs,- = VS - VSi+

V

Figure 2
This is called candidate elimination[Mit78].

IV The Discrimination Experiment
(if (shape $x cube) (shape $x wedge)) Generation (DEG) Problem
(if (shape $x wedge) (shape $x any-shape))

(if (shape $ x pyramid) (shape $x any-shape))

(if (colour $x red) (colour $I: any-colour))

(if (colour $x green) (colour $x any-colour))

They are used to construct generalizations/specializations of a
concept in Cl. If x logically implies y then z is said to be more-
specific than y. Logical implication defines a partial order on
the sentences of Cl. A concept is generalized by constructing its
logical consequences. A concept is specialized by constructing
the sentences in Cl that it can be deduced from.

The DEG problem is that of finding a minimal sequence
of instances in I that will cause the VS to converge to a single
concept description. We study this p;oblem under the following
assumption.

l All hypotheses in the VS are equally likely. This means
that the learner has no a priori basis for preferring one
hypothesis over another (i.e. T = 0).

A strategy for DEG is a policy for choosing the next instance
in the experiment sequence. [Sub841 gives a formal proof that
the general DEG problem is NP-hard and that the strategy
presented below is-optimal under the assumption above. We can express these relations with the directed acyclic graphs

(DAGs) in Figure 1.
Given that all hypotheses are equally likely, the probability

pi+ that an instance i in I is a positive instance of the concept
is:

pi+ = I”&’
-I-+

The probability that i is a negative instance of the concept
being learned is:

We use the shorthand notation cube for (shape $x cube) . . .
etc. and red for (colour $x red) . . . etc.

Without loss of generality, we assume I C C. This is referred to
as the single representation trick. However, we do not regard it
as a trick, because the only other alternative under the repre-
sentability assumption is for I to be the domain of an injective
mapping whose range is a subset of C. I can be regarded as the
observational component of C.

In our example,
I = {red cube, red brick, red pyramid, green cube, Pi- = 1 -pi+ = l- ‘\;;;;I = 1’;;;; I

green brick, green pyramid}

Suppose the learner is presented with C and I as above as well
as initial values:

The expected size of the version space if i is chosen as the next
instance in the experiment sequence is

0 P’{ red brick }

l N=0

E(i, VS)=p+ IVST I -I- P, lvsT 1

=&lVS;t12 + IVSJ2)

l T=0

The learner constructs the VS in Figure 2 using the relations
in Cl. Each node of the graph is a sentence in Cl. Each arc
stands for logical deducibility.

We describe how the version space is updated in response to a
labelled instance. Suppose the learner asks the teacher whether

Notice that an instance that all hypotheses match (resp.
don’t match) has pi+ = 1 (resp. pi- = 1). Such an instance
has E(i,VS) = IVSl, confirming our intuition that it has zero
discriminatory power. The function E(i,VS) has a minimum

value of y which is achieved when IVSi+l = IVSi-l. Thus
the best instance halves VS at every step resulting in an ex-
periment sequence of length O(roglVS(). Not every VS has a

LEARNING / 519

halving instance; if none exists, we choose one that has the
smallest value for E(i,VS).

Our strategy for DEG can now be stated simply as Select
the instance that minimizes E(i,VS).

The time complexity of a generate-and-test implementation
of DEG is lVSllIlt 1 w rere t is the time to compute the + rela-
tion. This computation is infeasible because the version space
is very large even for simple concepts in Cl.

This naive method can be improved by using the fact that
VS is partially ordered. The middle node w of the version space
(the concept that is the root of half the nodes) is found, and
then an instance which matches w - but matches no other
concept descriptions more specific than w - is selected. How-
ever not all version spaces have middle nodes - very branchy
partial orders still need fl(lVSllIlt) amount of processing for
the selection of the best instance.

Given the partial order on VS, we can try to generate the
next best instance by using the boundary sets (S and G in
[Mit78]) and the nature of the generalization mechanism (de-
duction). Estimation of E(i,VS) in the general case is very
difficult without constructing the entire version space. Hence
we have looked for sources of knowledge that reduce the size of
the version space, allowing the optimal instance sequence to be
constructed by the naive generation method in a smaller space.

V Exploiting the structure of the
version space

We will now show how the generation of the best instance
can be speeded up if we know some properties of the concept
to be learned. An example of such a property is that the blocks
world structure that is being learned, is a stable one. This
is a domain-specific property by which the size of the VS can
be reduced directly, without the use of instances in I. The
learner simply prunes those descriptions that do not conform
to its stability theory T.l DEG can then be used to learn the
concept in the smaller VS.

A domain-independent property of the concept that can be used
to make DEG more efficient is its factorability. The concept
red wedge is factorable into red and wedge. All the concepts in
our example VS are factorable into the colour component and
the shape component. This is because colour and shape are
independent relations in Cl. This suggests dividing the origi-
nal learning problem into two independent learning problems:
learning the shape and learning the colour. Two separate ver-
sion spaces can be maintained, one for each component, and
experiment design can be done by obtaining the best instance
in each factor (by the method indicated in section 2.2). If credit
or blame is assigned independently to each component of the
instance, we say that independent credit assignment (ICA) is
available. If the VS is factorable into k almost equal factors
of size n, and if the induced factors in I are each of size m,
then we have reduced a problem of size n”m”t to k problems of
size nmt, under ICA. This is clearly a significant computational
gain.

The factors of the VS can be collapsed into singletons in either
of two ways:

0 In Parallel
This is the optimal strategy to use if ICA is available. Each

‘However, after this pruning, the VS may no longer be repre-
sentable in terms of its boundary sets.

Red Any

Colour space

l-- --m---m-

Brick

TV Wedge

t Any

Shape space

factor will be guaranteed to reduce in size by the maximal
amount by DEG.

0 In Series
This is the basis for hierarchical learning as illustrated in
Figure 4. Because the factors are logically independent, the
order in which they are learned does not matter. If ICA
is not available, this is the preferred strategy. The learner
collapses one VS factor at a time. The negative instances
generated will be near-misses[Win70].

Red

J
Any

Brick

\

Wedge

Any

- hstract - - - --

% s ape

- - - - -j-,---“;

co our
away away

Figure 4

VI Formal analysis of factoring
under ICA

We will relate the structural property of Cartesian factora-
bility of VS to the logical independence of parts of the concept
being learned. We use graph theory to formalize the notion of
Cartesian factorability. We introduce the necessary definitions
first:

Definition 1: A theory T is factorable iff 3 Tr , T2,. . . , Tn such
that

If each of the Ti is unfactorable, we call them the irreducible
factors of T.

Definition 2: A partially ordered set VS of theories is fac-
torable iff 3 VS1, VS2,. . . , VSI, such that

l vs = (USI A US2 r\ . . . A vsk 1 VSl E VSl,VS2 E

vsz,.. .,VSk E vsk }

written as VS = VS1 X VS2 X . . . X VSI,
l vsl,vs2 ,..., vs~-~,vsj+~~.-.~vsI; k VS,, 15 i 5 k

l Each VSi respects the partial order on VS, i.e.
(VS~AVS2A...AVSiA...AVSn) 5 (VSlAVS2A...AVS’iA

. . . A VSn) * VSj <j US’,

Again, if each of the VS,‘s is unfactorable, they are called the
irreducible factors of VS.

520 / SCIENCE

Definition 3: If D1 and Dz are DAGs, then their Cartesian
product D (denoted as Dl x Dz) is defined as follows: The
vertex set V(D) is the Cartesian product of the vertex sets of
D1 and Dz. The arc set of D, A(D) = { (x,y) + (u,v) : (x
= u and y ---t v E A(D;1)) or (y = v and x -+ u E A(D1))
}. Clearly, this definition can be generalized to the product
of k factors D1, Dz,. . . , Dk. A DAG D is called cartesian-
factorableif there are two DAGs D1 and D2, both with IV(Di)l
> 2 such that D = D1 x D2. A DAG with no nontrivial
factorizations is called prime. Cartesian multiplication of DAGs
is a commutative operation. Every finite DAG has a unique set
of prime factors that can be found in polynomial time [Fei86].

The factors of a factorable concept can be generalized or
specialized independently. This requires that C be factorable.
Cl in our example is presented in factored form. If C is finite,
we can use the polynomial-time graph-factoring algorithm in
[FHS85] [Fei86] t o make the factorization explicit. This gives
us a way of discovering independence relations in the concept
language.

Observation 1: If we construct all generalizations and special-
izations of a factorable theory using a factored C, the resulting
(partially ordered) set of theories is factorable. The DAG that
represents this set of theories is Cartesian-factorable.
This means that the syntactic operation of graph factoring in
Definition 3 corresponds to the semantic notion of logical fac-
toring of the version space (Definition 2 above).

Observation 2: The initial version space of a factorable con-
cept is a Cartesian factorable DAG.
This is because the first positive instance is factorable and the
version space is constructed as in Observation 1 above.

Observation 3: Under ICA, the update operations on the
version space are guaranteed to preserve its factorability.
The update algorithm under ICA for the factored version space
is:

forj = 1 tokdo

if i, is positive then replace VS, by VSj+ else replace VS,
by VS,--

The updated unfactored version
updated factors.

space is the product of the

Observation 4: The best strategy for generating an instance
when the version space is factorable, is to choose the best in-
stance in each factor (i.e. the one that splits each factored space
in half).

Because all hypotheses in VS are equally likely and all factors
are logically independent, all hypotheses in VSi are also equally
likely. Thus the best strategy in each subspace is choosing an
instance with the minimal E(i,VS).

Observation 5: We can compute E(i,VS) of every instance
in the unfactored space from (II, lVSl+ 1, IV&-l) and (12,

IV&+l, (V&-I) tables.

Construction: Consider the instance i = il A i2.
We have IVS+j = IVS1+I. IVS2+l and IVS-I = IVSl- jVS+I.
We can then calculate E(i,VS) using IVS+I and IVS-I. The
table below shows this computation for our example. 2

2a is IVS+l, b is I1’S-(, c is lVSl+/, d is IVS,-I, e is IVS2tj,
f is jVS2-1

i a b E il c d El i2 e f Es
v-

RB 6 0 6 R 2 0 2 B 3 0 3
RC 4 2 lo

TX
G 1 1 1 C 2 1 5

RP 2 4 Ti- P 1 2 a g
GB 3 3 3
GC 2 4 lo

GP 1 5 $

Best i: GB Best il: G Best i2: C or P
This construction generalizes to the case where VS has more
than 2 factors.

Observation 6: The best instance in the unfactored space is
not the conjunction of the best instances in the factored spaces.

The nature of the feedback obtained from the teacher is differ-
ent in the two cases. In the unfactored space, if green brick
has been marked negative, then the version space is updated so
that all three possibilities(green is OK but brick isn’t, green
isn’t OK but brick is, green and brick are both not OK) are
kept. In the factored space, because of ICA, we get more in-
formation per instance from the teacher: thus only one of the
three possibilities above will be maintained.

VII Analysis for the non-ICA case

Usually, ICA is not available in the real world (e.g., digital
circuit diagnosis), and the analysis is complicated by the fact
that the learner has to do the credit assignment on negative ex-
amples by itself in order to update its factors. We now present
a strategy for the learner under these conditions.

1. Generate the instance i that is the conjunction of all i,‘s
where each ij is the best instance in each factor.

2. Ask teacher if i is positive or negative

3. If i is positive, replace every VS, by VS,+.

4. If i is negative,the learner needs to find which of the i,‘s
are negative: Let p = pl A p2 A.. . p, A . . . A pk be a known
positive instance.

l forj = 1 tokdo

l Ask teacher about pl A.. . pj-1 A i, A p,+l A.. . A pk.
If it is positive, replace VS, by VS, + else replace VS,
by VS, -

Because each i, is potentially faulty, the learner asks k ques-
tions to do the credit assignment. This credit assignment
method corresponds closely to Winston’s near-miss idea. A
more sophisticated credit assignment strategy uses binary
search. The learner replaces $ of the factors in a known posi-
tive instance. If that instance is labelled positive, it exonerates
k 7 of the factors in one fell swoop. If it is labelled negative,
further credit assignment instances need to be generated using
the same strategy.

Observation 7: The version space update algorithm does not
preserve factorability under non-ICA. The instances that the
learner generates to do the credit assignment are guaranteed to
restore factorability to the version space.

Without the credit assignment instances, under non-ICA, the
updated version space will be a disjunction (disjoint union, in
graph theoretic terms) of the 2k - 1 possible updates, where
k is the number of factors. This graph is prime, even though
each of its 2k - 1 components is factorable. The credit assign-
ment instances seek to isolate that update and hence restore
factorability to the version space.

LEARNING / 521

VIII Tradeoffs associated with
factoring

The problem above points to a tradeoff associated with fac-
toring: in general, the finer the factoring, the harder the ex-
periment generator has to work on the credit assignment. This
gives us a way of choosing how large k (the number of fac-
tors) should be, given that we don’t have to factor down to
irreducible factors. The formal cost comparison to be made is:

nkmkt + r(a + b) > kmnt + r(a + kb) + F

1. a is the number of positive instances needed to learn the
concept in the unfactored space,

2. b is the number of negative instances needed,

3. r is the cost of asking a question of the teacher.

4. F is the one-time cost of constructing the factored space.

applicability conditions for this technique and presented opti-
mal strategies for its use under a varying set of assumptions.
The effectiveness of this method has been experimentally veri-
fied on several examples.

This work gives computational justification for some well-
known maxims in the design of concept languages. The inde-
pendence between relations should be stated explicitly so that
they can be directly used to factor concepts. Also, the choice
of relations should be such that they reflect independences in
the world.

The results obtained here can be extended to handle partial
independence relations, in which some communication between
the factors is needed. The implementation in [Sub841 deals with
the sharing of variable bindings between factors. Further work
includes relaxing the uniform probability assumptions made in
the analysis of factoring and building a logical framework in
which intelligent experiment generation strategies can be de-
rived.

Acknowledgements
This equation characterizes the conditions under which factor-
ing is a good idea during experiment generation. Usually, the
one-time cost of factoring is much smaller than the expected
gain obtained by the use of factoring. In the ICA case, if the
cost of asking questions is small, factoring up to irreducible fac-
tors is optimal. Factoring in the non-ICA case is a win exactly
when the equation above holds: r will control how large k will
be. Since r may vary from example to example, we use an aver-
age r in the above equation to compute k. The savings obtained
by generating instances in the factored space are offset by the
cost of asking the credit assignment questions (the cost of gen-
erating these is negligible). A judicious choice of k (which is
constrained by the defmition for factorability) will ensure that
factoring leads to computational gains in the non-ICA case.

IX Implementation

The factoring method introduced in this paper has been used
in the context of an implementation (called VS) of the gener-
alized version space algorithm [Sub84]. VS is built on top of
MRS, a logic based representation system. VS was tried out on
several concept learning problems in the blocks world. The time
for learning a concept increased exponentially with the number
of conjuncts in it. Factoring instances and working with mul-
tiple version spaces proved to be a very powerful strategy. The
size of the unfactored version space for Winston’s arch prob-
lem[Win70] was approximately 3’. VS used the cost formula
in section 8 to determine the optimal number of factors(3 of
size 27 each), and the arch was learned using 9 instances which
were generated by the experiment generator in VS.

We thank Professor Genesereth and Stuart Russell for their
valuable criticisms on an early draft of this paper. David
Wilkins, Haym Hirsh, Chris Fraley and members of GRAIL
provided useful feedback. Thanks also to the anonymous re-
viewers for their comments. The experiment generator was im-
plemented on the SUMEX computer facilities at the Knowledge
Systems Laboratory, Stanford University.

References

[DB83] T.G. Dietterich, and B.G. Buchanan. “The Role of
Experimentation in Theory Formation”, in Proceedings of the
International Workshop on Muchine Learning, Univ. of Illinois
at Urbana-Champaign, pp. 147-155, June 1983.

[FHS85] J. Feigenbaum, J. Hershberger, and A.A SchZfTer.
“A Polynomial-time Algorithm for Finding the Prime Factors
of Cartesian-Product Graphs”, Discrete Applied Mathematics,
12,2(1985), 123-138.

[Fe&61 J. Feigenbaum. “Directed Cartesian-Product Graphs
have Unique Prime Factors that Can be Found in Polynomial
Time”, to appear in Discrete Applied Mathematics.

[Mit78] T. Mitchell. Version Spaces: An Approach 20 Concept
Learning, Ph.D. di ssertation, Stanford University, December
1978.

[Mit83] T. Mitchell, P. Utgoff, R. Banerji. “Learning by Exper-
imentation: Acquiring and Refining Problem-Solving Heuris-
tics”, in Machine Learning I, Mitchell, Michalski, CarboneIl
and MitcheIl(eds.), Tioga Publishing Company, 163-189.

[Sub841 D. Subramanian. “Experiment Generation with Ver-
sion Spaces”, HPP-84-45, December 1984, revised March 1986.

[Win701 P.H. Winston, “Learning Structural Descriptions from
Examples”, The Psychology of Computer Vision, Winston,
P.H. (ed.), McGraw Hill, NY, 1975.

The definition of factoring presented here hinges on the con-
junctive factorability of the concepts in the version space. We
have a similar notion of factoring that applies to disjunctions,
except that we use disjoint union (instead of Cartesian product)
as the composition operator. We have used this in the design of
experiments in digital circuit diagnosis. Only constant factor
speedups have been obtained in this case. These two definitions
can be combined to factor more complex version spaces.

X Conclusions

In this paper we proposed factoring as a technique for gen-
erating discrimination experiments efficiently. We analyzed the

522 I SCIENCE

