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ABSTRACT 

Experiment generation is an important part of incremental 
concept learning. One basic function of experimentation is to 
gather data to refine the existing space of hypotheses[DB83]. 
Here we examine the class of experiments that accomplish this, 
called discrimination experiments, and propose factoring as a 
technique for generating them efficiently. 

I Introduction 

The need to generate experiments that discriminate between 
sets of hypotheses arises in the context of a learner using the 
version space algorithm[Mit78][Mit83]. Here we show how im- 
plicit independence relations in the concept language can be 
used to factor the version space of hypotheses. We analyze the 
computational advantages gained by doing experiment genera- 
tion using the factors. 

This paper is organized as follows. Section II describes 
the single concept learning problem that provides the set- 
ting for our investigation of the discrimination-experiment- 
generation(DEG) problem. Next, we introduce the blocks world 
example that will be used throughout this paper. In Section IV 
we characterize the DEG problem and explain why it is hard. 
Section V briefly describes two sources of information that can 
be used to make it tractable; one is domain-specific informa- 
tion, the other is knowledge of independence between parts of 
the concept being learned, which is domain-independent. In 
this section we also outline how this independence allows us to 
factor the version space and generate experiments by working 
with the factors. The next two sections are a formal analysis of 
factoring: Section VI demonstrates the conditions under which 
a version space can be factored (under the independent credit 
assignment (ICA) assumption) and provides an optimal strat- 
egy for generating experiments in the factored space. Section 
VII does a similar analysis for the case that ICA is not avail- 
able. The tradeoffs associated with factoring along with a cost 
comparison are presented in Section VIII. Experimental results 
using our implementation of factoring are sketched in Section 
IX. Finally, Section X highlights the main contributions of this 
paper and concludes with a proposal for future work on this 
problem. 

II The Single Concept Learning 
Problem 

The single concept learning probZem[Mit78] is: 
Given: 
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The second 

l a first order concept language C, 

l a first order instance language I, 

0 a set P of sentences in I, containing 
the concept to be learned, 

positive instances of 

l a set N of sentences in I, containing negative instances of 
the concept to be learned, 

l the TV relation between sentences in C and I that indicates 
when an instance matches a concept (i k c). 

l a biasing theory T that describes which of several alterna- 
tive descriptions of a concept is more plausible. 

Find: the concept description (represented as a sentence c in 
C) that is consistent with (P,N), i.e. 

l Vp.pEP*p~c 

l Vn.nEN+npc 

Typically, the learner is given sets P and N that fail to de- 
termine c uniquely(that such a c exists follows from the rep- 
resentability assumption made in the version space algorithm 
[Mit78]), thus the learner constructs the set VS of descriptions 
that are consistent with the observed instances. VS is called 
the version space of the concept to be learned. The learner now 
attempts to gather more information about the concept by us- 
ing instances in I (that will be classified by a critic/teacher) to 
eliminate some of the concept descriptions in VS. This process 
is iterated until a single concept description survives. Finding 
the sequence of instances in I that will accomplish this is the 
discrimination-experiment-generation problem. If more than 
one concept description remains and the instances in I do not 
tell them apart, the learner uses T to select the most plausible 
one. 

III Blocks World Example 

The single concept learning problem will be illustrated with 
the following blocks world example. We define the vocabulary 
of the concept language Cr. The constants of Cl are 

l ⌧, Y, z, . . . (names of blocks) 

l red, green, any-colour (colours of blocks) 

l cube, brick, nedge, 
blocks) 

pyramid, any-shape (shapes of 

The predicates of Cl are 

l shape: 

l colour 

name of block x shape of block -+ {T,F) 

: name of block x colour of block -+ {T,F} 

The pure predicate language constructed from this vocabulary 
is Cl. The following are relations between well-formed formulae 
in Cl. 

(if (shape $x brick) (shape $x wedge)) 
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Figure 1 

any-shape 

red cube is a positive instance. The two possible updates to 
the VS are shown in Figure 3. 

Red Wedge 

Any 

0 

Red Red Brick 
Wedge Any 

/ 
Any Any Any Brick 

vs,+ vs;- 

Figure 3 

Formally, 

l VSi’ = { c 1 c E VS and i b c } 

l vs,- = VS - VSi+ 

V 

Figure 2 
This is called candidate elimination[Mit78]. 

IV The Discrimination Experiment 
(if (shape $x cube) (shape $x wedge)) Generation (DEG) Problem 
(if (shape $x wedge) (shape $x any-shape)) 

(if (shape $ x pyramid) (shape $x any-shape)) 

(if (colour $x red) (colour $I: any-colour)) 

(if (colour $x green) (colour $x any-colour)) 

They are used to construct generalizations/specializations of a 
concept in Cl. If x logically implies y then z is said to be more- 
specific than y. Logical implication defines a partial order on 
the sentences of Cl. A concept is generalized by constructing its 
logical consequences. A concept is specialized by constructing 
the sentences in Cl that it can be deduced from. 

The DEG problem is that of finding a minimal sequence 
of instances in I that will cause the VS to converge to a single 
concept description. We study this p;oblem under the following 
assumption. 

l All hypotheses in the VS are equally likely. This means 
that the learner has no a priori basis for preferring one 
hypothesis over another (i.e. T = 0). 

A strategy for DEG is a policy for choosing the next instance 
in the experiment sequence. [Sub841 gives a formal proof that 
the general DEG problem is NP-hard and that the strategy 
presented below is-optimal under the assumption above. We can express these relations with the directed acyclic graphs 

(DAGs) in Figure 1. 
Given that all hypotheses are equally likely, the probability 

pi+ that an instance i in I is a positive instance of the concept 
is: 

pi+ = I”&’ 
-I-+ 

The probability that i is a negative instance of the concept 
being learned is: 

We use the shorthand notation cube for (shape $x cube) . . . 
etc. and red for (colour $x red) . . . etc. 

Without loss of generality, we assume I C C. This is referred to 
as the single representation trick. However, we do not regard it 
as a trick, because the only other alternative under the repre- 
sentability assumption is for I to be the domain of an injective 
mapping whose range is a subset of C. I can be regarded as the 
observational component of C. 

In our example, 
I = {red cube, red brick, red pyramid, green cube, Pi- = 1 -pi+ = l- ‘\;;;;I = 1’;;;; I 

green brick, green pyramid} 

Suppose the learner is presented with C and I as above as well 
as initial values: 

The expected size of the version space if i is chosen as the next 
instance in the experiment sequence is 

0 P’{ red brick } 

l N=0 

E(i, VS)=p+ IVST I -I- P, lvsT 1 

=&lVS;t12 + IVSJ2) 

l T=0 

The learner constructs the VS in Figure 2 using the relations 
in Cl. Each node of the graph is a sentence in Cl. Each arc 
stands for logical deducibility. 

We describe how the version space is updated in response to a 
labelled instance. Suppose the learner asks the teacher whether 

Notice that an instance that all hypotheses match (resp. 
don’t match) has pi+ = 1 (resp. pi- = 1). Such an instance 
has E(i,VS) = IVSl, confirming our intuition that it has zero 
discriminatory power. The function E(i,VS) has a minimum 

value of y which is achieved when IVSi+l = IVSi-l. Thus 
the best instance halves VS at every step resulting in an ex- 
periment sequence of length O(roglVS(). Not every VS has a 
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halving instance; if none exists, we choose one that has the 
smallest value for E(i,VS). 

Our strategy for DEG can now be stated simply as Select 
the instance that minimizes E(i,VS). 

The time complexity of a generate-and-test implementation 
of DEG is lVSllIlt 1 w rere t is the time to compute the + rela- 
tion. This computation is infeasible because the version space 
is very large even for simple concepts in Cl. 

This naive method can be improved by using the fact that 
VS is partially ordered. The middle node w of the version space 
(the concept that is the root of half the nodes) is found, and 
then an instance which matches w - but matches no other 
concept descriptions more specific than w - is selected. How- 
ever not all version spaces have middle nodes - very branchy 
partial orders still need fl(lVSllIlt) amount of processing for 
the selection of the best instance. 

Given the partial order on VS, we can try to generate the 
next best instance by using the boundary sets (S and G in 
[Mit78]) and the nature of the generalization mechanism (de- 
duction). Estimation of E(i,VS) in the general case is very 
difficult without constructing the entire version space. Hence 
we have looked for sources of knowledge that reduce the size of 
the version space, allowing the optimal instance sequence to be 
constructed by the naive generation method in a smaller space. 

V Exploiting the structure of the 
version space 

We will now show how the generation of the best instance 
can be speeded up if we know some properties of the concept 
to be learned. An example of such a property is that the blocks 
world structure that is being learned, is a stable one. This 
is a domain-specific property by which the size of the VS can 
be reduced directly, without the use of instances in I. The 
learner simply prunes those descriptions that do not conform 
to its stability theory T.l DEG can then be used to learn the 
concept in the smaller VS. 

A domain-independent property of the concept that can be used 
to make DEG more efficient is its factorability. The concept 
red wedge is factorable into red and wedge. All the concepts in 
our example VS are factorable into the colour component and 
the shape component. This is because colour and shape are 
independent relations in Cl. This suggests dividing the origi- 
nal learning problem into two independent learning problems: 
learning the shape and learning the colour. Two separate ver- 
sion spaces can be maintained, one for each component, and 
experiment design can be done by obtaining the best instance 
in each factor (by the method indicated in section 2.2). If credit 
or blame is assigned independently to each component of the 
instance, we say that independent credit assignment (ICA) is 
available. If the VS is factorable into k almost equal factors 
of size n, and if the induced factors in I are each of size m, 
then we have reduced a problem of size n”m”t to k problems of 
size nmt, under ICA. This is clearly a significant computational 
gain. 

The factors of the VS can be collapsed into singletons in either 
of two ways: 

0 In Parallel 
This is the optimal strategy to use if ICA is available. Each 

‘However, after this pruning, the VS may no longer be repre- 
sentable in terms of its boundary sets. 

Red Any 

Colour space 

l-- --m---m- 

Brick 

TV Wedge 

t Any 

Shape space 

factor will be guaranteed to reduce in size by the maximal 
amount by DEG. 

0 In Series 
This is the basis for hierarchical learning as illustrated in 
Figure 4. Because the factors are logically independent, the 
order in which they are learned does not matter. If ICA 
is not available, this is the preferred strategy. The learner 
collapses one VS factor at a time. The negative instances 
generated will be near-misses[Win70]. 

Red 

J 
Any 

Brick 

\ 

Wedge 

Any 

- hstract - - - -- 

% s ape 

- - - - -j-,---“; 

co our 
away away 

Figure 4 

VI Formal analysis of factoring 
under ICA 

We will relate the structural property of Cartesian factora- 
bility of VS to the logical independence of parts of the concept 
being learned. We use graph theory to formalize the notion of 
Cartesian factorability. We introduce the necessary definitions 
first: 

Definition 1: A theory T is factorable iff 3 Tr , T2,. . . , Tn such 
that 

If each of the Ti is unfactorable, we call them the irreducible 
factors of T. 

Definition 2: A partially ordered set VS of theories is fac- 
torable iff 3 VS1, VS2,. . . , VSI, such that 

l vs = ( USI A US2 r\ . . . A vsk 1 VSl E VSl,VS2 E 

vsz,.. .,VSk E vsk } 

written as VS = VS1 X VS2 X . . . X VSI, 
l vsl,vs2 ,..., vs~-~,vsj+~~.-.~vsI; k VS,, 15 i 5 k 

l Each VSi respects the partial order on VS, i.e. 
(VS~AVS2A...AVSiA...AVSn) 5 (VSlAVS2A...AVS’iA 

. . . A VSn) * VSj <j US’, 

Again, if each of the VS,‘s is unfactorable, they are called the 
irreducible factors of VS. 
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Definition 3: If D1 and Dz are DAGs, then their Cartesian 
product D (denoted as Dl x Dz) is defined as follows: The 
vertex set V(D) is the Cartesian product of the vertex sets of 
D1 and Dz. The arc set of D, A(D) = { (x,y) + (u,v) : (x 
= u and y ---t v E A(D;1)) or (y = v and x -+ u E A(D1)) 
}. Clearly, this definition can be generalized to the product 
of k factors D1, Dz,. . . , Dk. A DAG D is called cartesian- 
factorableif there are two DAGs D1 and D2, both with IV(Di)l 
> 2 such that D = D1 x D2. A DAG with no nontrivial 
factorizations is called prime. Cartesian multiplication of DAGs 
is a commutative operation. Every finite DAG has a unique set 
of prime factors that can be found in polynomial time [Fei86]. 

The factors of a factorable concept can be generalized or 
specialized independently. This requires that C be factorable. 
Cl in our example is presented in factored form. If C is finite, 
we can use the polynomial-time graph-factoring algorithm in 
[FHS85] [Fei86] t o make the factorization explicit. This gives 
us a way of discovering independence relations in the concept 
language. 

Observation 1: If we construct all generalizations and special- 
izations of a factorable theory using a factored C, the resulting 
(partially ordered) set of theories is factorable. The DAG that 
represents this set of theories is Cartesian-factorable. 
This means that the syntactic operation of graph factoring in 
Definition 3 corresponds to the semantic notion of logical fac- 
toring of the version space (Definition 2 above). 

Observation 2: The initial version space of a factorable con- 
cept is a Cartesian factorable DAG. 
This is because the first positive instance is factorable and the 
version space is constructed as in Observation 1 above. 

Observation 3: Under ICA, the update operations on the 
version space are guaranteed to preserve its factorability. 
The update algorithm under ICA for the factored version space 
is: 

forj = 1 tokdo 

if i, is positive then replace VS, by VSj+ else replace VS, 
by VS,-- 

The updated unfactored version 
updated factors. 

space is the product of the 

Observation 4: The best strategy for generating an instance 
when the version space is factorable, is to choose the best in- 
stance in each factor (i.e. the one that splits each factored space 
in half). 

Because all hypotheses in VS are equally likely and all factors 
are logically independent, all hypotheses in VSi are also equally 
likely. Thus the best strategy in each subspace is choosing an 
instance with the minimal E(i,VS). 

Observation 5: We can compute E(i,VS) of every instance 
in the unfactored space from (II, lVSl+ 1, IV&-l) and (12, 

IV&+l, (V&-I) tables. 

Construction: Consider the instance i = il A i2. 
We have IVS+j = IVS1+I. IVS2+l and IVS-I = IVSl- jVS+I. 
We can then calculate E(i,VS) using IVS+I and IVS-I. The 
table below shows this computation for our example. 2 

2a is IVS+l, b is I1’S-(, c is lVSl+/, d is IVS,-I, e is IVS2tj, 
f is jVS2-1 

i a b E il c d El i2 e f Es 
v- 

RB 6 0 6 R 2 0 2 B 3 0 3 
RC 4 2 lo 

TX 
G 1 1 1 C 2 1 5 

RP 2 4 Ti- P 1 2 a g 
GB 3 3 3 
GC 2 4 lo 

GP 1 5 $ 

Best i: GB Best il: G Best i2: C or P 
This construction generalizes to the case where VS has more 
than 2 factors. 

Observation 6: The best instance in the unfactored space is 
not the conjunction of the best instances in the factored spaces. 

The nature of the feedback obtained from the teacher is differ- 
ent in the two cases. In the unfactored space, if green brick 
has been marked negative, then the version space is updated so 
that all three possibilities(green is OK but brick isn’t, green 
isn’t OK but brick is, green and brick are both not OK) are 
kept. In the factored space, because of ICA, we get more in- 
formation per instance from the teacher: thus only one of the 
three possibilities above will be maintained. 

VII Analysis for the non-ICA case 

Usually, ICA is not available in the real world (e.g., digital 
circuit diagnosis), and the analysis is complicated by the fact 
that the learner has to do the credit assignment on negative ex- 
amples by itself in order to update its factors. We now present 
a strategy for the learner under these conditions. 

1. Generate the instance i that is the conjunction of all i,‘s 
where each ij is the best instance in each factor. 

2. Ask teacher if i is positive or negative 

3. If i is positive, replace every VS, by VS,+. 

4. If i is negative,the learner needs to find which of the i,‘s 
are negative: Let p = pl A p2 A.. . p, A . . . A pk be a known 
positive instance. 

l forj = 1 tokdo 

l Ask teacher about pl A.. . pj-1 A i, A p,+l A.. . A pk. 
If it is positive, replace VS, by VS, + else replace VS, 
by VS, - 

Because each i, is potentially faulty, the learner asks k ques- 
tions to do the credit assignment. This credit assignment 
method corresponds closely to Winston’s near-miss idea. A 
more sophisticated credit assignment strategy uses binary 
search. The learner replaces $ of the factors in a known posi- 
tive instance. If that instance is labelled positive, it exonerates 
k 7 of the factors in one fell swoop. If it is labelled negative, 
further credit assignment instances need to be generated using 
the same strategy. 

Observation 7: The version space update algorithm does not 
preserve factorability under non-ICA. The instances that the 
learner generates to do the credit assignment are guaranteed to 
restore factorability to the version space. 

Without the credit assignment instances, under non-ICA, the 
updated version space will be a disjunction (disjoint union, in 
graph theoretic terms) of the 2k - 1 possible updates, where 
k is the number of factors. This graph is prime, even though 
each of its 2k - 1 components is factorable. The credit assign- 
ment instances seek to isolate that update and hence restore 
factorability to the version space. 
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VIII Tradeoffs associated with 
factoring 

The problem above points to a tradeoff associated with fac- 
toring: in general, the finer the factoring, the harder the ex- 
periment generator has to work on the credit assignment. This 
gives us a way of choosing how large k (the number of fac- 
tors) should be, given that we don’t have to factor down to 
irreducible factors. The formal cost comparison to be made is: 

nkmkt + r(a + b) > kmnt + r(a + kb) + F 

1. a is the number of positive instances needed to learn the 
concept in the unfactored space, 

2. b is the number of negative instances needed, 

3. r is the cost of asking a question of the teacher. 

4. F is the one-time cost of constructing the factored space. 

applicability conditions for this technique and presented opti- 
mal strategies for its use under a varying set of assumptions. 
The effectiveness of this method has been experimentally veri- 
fied on several examples. 

This work gives computational justification for some well- 
known maxims in the design of concept languages. The inde- 
pendence between relations should be stated explicitly so that 
they can be directly used to factor concepts. Also, the choice 
of relations should be such that they reflect independences in 
the world. 

The results obtained here can be extended to handle partial 
independence relations, in which some communication between 
the factors is needed. The implementation in [Sub841 deals with 
the sharing of variable bindings between factors. Further work 
includes relaxing the uniform probability assumptions made in 
the analysis of factoring and building a logical framework in 
which intelligent experiment generation strategies can be de- 
rived. 
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The definition of factoring presented here hinges on the con- 
junctive factorability of the concepts in the version space. We 
have a similar notion of factoring that applies to disjunctions, 
except that we use disjoint union (instead of Cartesian product) 
as the composition operator. We have used this in the design of 
experiments in digital circuit diagnosis. Only constant factor 
speedups have been obtained in this case. These two definitions 
can be combined to factor more complex version spaces. 

X Conclusions 

In this paper we proposed factoring as a technique for gen- 
erating discrimination experiments efficiently. We analyzed the 
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