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Abstract 
A large portion of the research in machine learning has involved 

a paradigm of comparing many examples and analyzing them in 
terms of similarities and differences, assuming that the resulting 
generalizations will have applicability to new examples. While such 
research has been very successful, it is by no means obvious why 
similarity-based generalizations should be useful, since they may 
simply reflect coincidences. Proponents of explanation-based 
learning, a new, knowledge-intensive method of examining single 
examples to derive generalizations based on underlying causal 
models, could contend that their methods are more fundamentally 
grounded, and that there is no need to look for similarities across 
examples. In this paper, we present the issues, and then show why 
similarity-based methods are important. We present four reasons 
why robust machine learning must involve the integration of 
similarity-based and explanation-based methods. We argue that: 1) 
it may not always be practical or even possible to determine a 
causal explanation; 2) similarity usually implies causality; 3) 
similarity-based generalizations can be refined over time; 4) 
similarity-based and explanation-based methods complement each 
other in important ways. 

1 Introduction 
Until recently, machine learning has focused upon a single 

paradigm -- the generalization of concepts through the comparison 
of examples. The assumption has been made, though often tacitly, 
that the generalization of similarities will lead to concepts that can 
be applied in other contexts. Despite its ubiquity there is one real 
problem with this paradigm: there is no obvious reason why the 
underlying assumption should hold. In other fields people have 
called into doubt the utility of noticing similarities in the world and 
assuming them to be important. Naturalist Stephen Jay Gould, in 
discussing the nature of scientific discovery comments that: 

The human mind delights in finding pattern -- so much so that 
we often mistake coincidence or forced analogy for profound 
meaning. No other habit of thought lies so deeply within the 
soul of a small creature trying to make sense of a complex 
world not constructed for it. 

‘Into this Universe, and why not knowing N Nor whence, like 
water willy-nilly flowing’ as the Rubaiyatsays. No other habit of 
thought stands so doggedly in the way of any forthright attempt 
to understand some of the world’s most essential aspects -- the 
tortuous paths of history, the unpredictability of complex 
systems, and the lack of causal connection among events 
superficially similar. 

Numerical coincidence is a common path to intellectual 
perdition in our quest for meaning. [Gould 841 

Further doubt has been cast upon the use of similarity-based 
learning by a new methodology that has been developed in the last 
few years: the extensive application of knowledge to single 
examples to determine the underlying mechanism behind an 

‘This research was supported in part by the Defense Advanced Research Projects 
Agency under contract N00039-84-C-0165 and in part by the United States Army 
Research Institute under contract MDA903-850103. Comments by Kathy McKeown 
on an earlier draft of this paper were quite useful. 

example, and the use of this causal explanation to derive 
generalized concepts. By learning from single examples, this 
knowledge-based approach calls into question the necessity of 
similarity-based approaches. 

Despite Gould’s warning and the recent successes of 
explanation-based methods, learning methods that concentrate on 
seeking out coincidences have had remarkable success across a 
variety of tasks. Furthermore, as Gould implies above, people (and 
other creatures) do seem to be optimized for such learning. Given 
this evidence, it worth trying to explain why such methods work. In 
this paper we will explain why similarity-based learning not only 
works, but is a crucial part of learning. 

2 EBL and SBL 
Considerable research has been done involving similarity-based 

learning (SBL). [Winston 72; Winston 80; Michalski 80; Michalski 83; 
Dietterich and Michalski 86; Lebowitz 83; Lebowitz 86a] are just a 
few examples. (See also, [Michalski et al. 83; Michalski et al. 861.) 
While there are many variations to such learning research, the basic 
idea is that a program takes a number of examples, compares them 
in terms of similarities and differences, and creates a generalized 
description by abstracting out similarities. A program given 
descriptions of Columbia University and Yale University and told 
that they were Ivy League universities and that the University of 
Massachusetts was not would define “Ivy League university” in 
terms of the properties that the first two examples had and that the 
third did not -- e.g., as being private, expensive and old. Similarity- 
based learning has been studied for cases where the input is 
specially prepared by a teacher; for unprepared input; where there 
are only positive examples; where there are both positive and 
negative examples; for a few examples; for many examples; for 
determining only a single concept at a time; and for determining 
multiple concepts. In a practical sense, SBL programs have learned 
by comparing examples more or less syntactically, using little “high 
level” knowledge of their domains (other than in deciding how to 
represent each example initially). 

Explanation-based learning (EBL), in contrast, views learning as 
a knowledge-intensive activity, much like other tasks in Artificial 
Intelligence. [DeJong 86; Ellman 85; Mitchell 83a; Mostow 83; 
Minton 84; Silver 861 are a few examples of explanation-based 
learning research. (See also [Michalski et al. 861.) An EBL program 
takes a single example, builds up an explanation of how the various 
components relate to each other at a low level of detail by using 
traditional Al understanding or planning methods, and then 
generalizes the properties of various components of the example so 
long as the explanation remains valid. What is left is then viewed as 
a generalized description of the example that can be applied in 
.understanding further examples. This kind of learning is 
tremendously useful, as it allows generalized concepts to be 
determined on the basis of a single example. On the other hand, 
the building and analysis of explanations does require extremely 
detailed knowledge of the domain (which may minimize the need to 
learn). In addition, virtually all current EBL work is in the “perfect 
learner” paradigm that assumes that all input is noise-free and fits 
the correct final generalization. 
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It is important to make clear here exactly the sense in which EBL is 
concept learning. It might be contended that all that is being done is 
the application of pre-existing information to a problem, unlike SBL, 
which is clearly a form of inductive learning. The key is in the 
generalization phase, where the EBL learner loosens constraints on 
its representation and determines whether the explanation that it 
has built up still holds. This generalized concept can then setve as 
a form of compiled knowledge that simplifies the processing of later 
input. This may be a way to learn structures such as frames 
[Minsky 751 and scripts [Schank and Abelson 771. The view of 

using EBL to produce knowledge structures that make later 
processing more efficient has been called operationalization 
[Mostow 831. Even though it might in some sense be possible to 

understand later examples just using low-levei rules, realistically it is 
crucial to have a set of knowledge structures at various levels of 
complexity. 

3 The goal of learning 
It does not make sense to consider learning in isolation from 

other elements of intelligent processing. While certain aspects of 
learning may not be in service of an immediate goal (e.g., curiosity), 
at some point there must be a task involved to make use of what is 
learned. In general, the idea is for an organism or program to be 
able to carry out a task better (either be able to do more examples 
or do examples more efficiently) than it did before learning. It is 
particularly important to keep in mind the task nature of learning 
when considering concept learning, which has often been studied 
without regard to the future utility of the concepts created. 

For most tasks that people or intelligent programs will carry out, 
the most obvious way to be able to improve performance is to 
attempt to develop a causal model that explains how elements of 
the domain work. Such a model will allow the learner to predict what 
is likely to happen in later situations, which will clearly be useful. 
The model will allow the learner to understand further input. 
Although we will consider later whether it is possible in all domains, 
the construction of a causal model is clearly a worthy goal in 
learning. [Schank 75; Schank 841 present reasons for constructing 
such models even in domains with incomplete models. Explanation- 
based learning methods strike directly at the problem of creating 
causal models. Similarity-based methods do not, but yet seem to 
lead to useful generalizations. This leads us to the central mystery 
of this paper. 

4 The puzzle 
Having decided that the construction of a causal model for a 

domain is important, or perhaps even crucial, as part of learning, we 
are left with the key question, “Is there any role for similarity-based 
learning in a full learning modei, and if so, why?” Even if we 
assume that there must be something to SBL, since, after all, so 
many people have worked on it with impressive results, we must 
ask why it works; why it helps a learner perform better. That 
generalizations from explanation-based learning are valid and useful 
makes sense intuitively, since they are derived from causal 
analyses. Similarity-based generalizations could just be the result 
of the coincidences that arise in a complex world. 

Note that similarity-based learning is not merely an artifact of 
researchers in machine learning. As pointed out in the Gould quote 
above, people delight in noticing similarities in disparate situations. 
Indeed, in many ways human processing seems to be optimized for 
such learning. An anecdotal example immediately comes to mind: 
On the Eastern Air Shuttle between New York and Boston, 
passengers are given a sequence number for boarding. On one 
roundtrip, I received the same sequence number going in each 
direction. I noticed the similarity immediately, even though the first 
number was not in front of me when I received the second, despite 
the apparent irrelevance of the coincidence to my performance on 
later shuttle trips. Virtually everyone has experienced, and noticed, 

similar coincidences. When nature provides such a powerful 
cognitive mechanism, there always seems to be a good reason. We 
will see shortly why the recognition of similarities is important, 
though, to reiterate, the utility is not obvious and should not simply 
be assumed by SBL researchers. 

5 A similarity-based learning program 
We can most easily look at the utility of SBL in the context of a 

specific learning program. UNIMEM [Lebowitz 82; Lebowitz 86a; 
Lebowitz 86b] takes examples represented as sets of features 
(essentially property/value pairs) and automatically builds up a 
generalization hierarchy using similarity-based methods. It is not 
told in advance which examples to compare or concepts to form, but 
instead learns by observation. One domain on which we have tested 
UNIMEM involves data about universities that was collected from 
students in an Artificial Intelligence class at Columbia.* 

Figure 1 shows the information used by UNIMEM for two 
universities, Columbia and Carnegie-Mellon. Each university is 
represented by a set of triples that describe features of the 
university, the first two providing a property name and the third its 
value. So, Columbia is in New York State while Carnegie-Mellon is 
in Pennsylvania. Both are urban and private and Columbia has a 7/3 
male/female ratio compared to Carnegie-Mellon’s 6/4. Some 
features, like quality of life, involve arbitrary numeric scales. 

FEATURE: COLUMBIA: CMU: 
------------------------------------------------- 
STATE VALUE NEW-YORK PENNSYLVANIA 
LOCATION VALUE URBAN URBAN 
CONTROL VALUE PRIVATE PRIVATE 
MALE:FFJ4ALE VALUE RATIO:7:3 RATIO:6:4 
NO-OF-STUDENTS VALUE THOUS:5- THOUS:S- 
STUDBNT:FACULTYVALUE RATIO:g:l RATIO:lo:l 
SAT VERBAL 625 600 

MATH 650 650 
EXPENSES VALUE THOUS$:lO+ THOUS$:lO+ 
%-FINANCIAL-AID VALUE 60 70 
NO-APPLICANTS VALUE THOUS:4-7 THOUS:4-7 
%-ADMITTANCE VALUE 30 40 
%-ENROLLED VALUE 50 50 
ACADEMICS SCALE:l-5 5 4 
SOCIAL SCALE:l-5 3 3 
QUALITY-OF-LIFE SCALE:l-5 3 3 
ACAD-EMPHASIS VALUE LIB-ARTS ENGINEERING 

Figure 1: Information about two universities 

The first question we have to address concerning the examples 
in Figure 1 is precisely what it means to “understand” them, or to 
learn from them. While the exact nature of understanding would 
depend on the ultimate task that we had in mind, j3resumably what a 
person or system learning from these examples would be after is a 
causal model that refates the various features to each other. 

As an example, in understanding Figure 1 we might wish to 
know how the fact that both universities are private relates to the 
fact that they are both expensive or why Carnegie-Mellon offers 
financial aid to more people. A causal model that answers 
questions of this sort would be extremely useful for almost any task 
involving universities. Typical of the causation that we would look 
for is, for example, that private universities get less government 
support and hence have to raise more money through tuition. (At 
least that is how private universities explain it!) Similarly, a model 

%ther domains UNIMEM has been tested on include: information about states of 
the United States, Congressional voting records, software evaluations, biological 
data, football plays, universities, and terrorism stories. 
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might indicate that Carnegie-Mellon’s emphasis on engineering 
leads to the acceptance of more students who need financial aid. 
Notice, however, that it will certainly not be possible to build a 
complete causal model solely from the information in Figure 1, but 
will require additional domain knowledge. 

An EBL program would create a low-level causal model of a 
university using whatever methods were available and then would 
use the model to develop a generalized concept. For example, it 
might decide that the Columbia explanation could be generalized by 
removing the requirement of being in New York State and by 
allowing the numeric values to vary within ranges, if none of these 
changes would affect the underlying explanation. It might be, 
however, that the liberal arts emphasis is crucial for some aspect of 
the explanation. In any case, by relaxing constraints in the 
representation, an EBL program would develop, using a single, 
causally motivated example, a generalized concept that ought to 
apply to a wide range of situations. 

Let us now compare the desired causal explanation with the 
kind of generalization made using similarity-based methods. Figure 
2 shows the generalization that is made by UNIMEM, GNDl, from 
the two university representations in Figure 1 ,3 We see in Figure 2 
that UNIMEM has generalized Columbia and Carnegie-Mellon by 
retaining the features that have identical values (like social level and 
quality of life), averaging feature values that are close (such as SAT 
verbal score) and eliminating features that are substantially 
different, such as the state where the university is located and the 
percentage of financial aid.4 The resulting set of features can be 
viewed as a generalization of the two examples, as it describes both 
of them, as well as, presumably, other universities that differ in other 
features. 

GNDl 
SOCIAL 
QUALITY-OF-LIFE 
LOCATION 
CONTROL 
NO-OF-STUDENTS 
STUDENT:FACULTY 
SAT 
SAT 
EXPENSES 
NO-APPLICANTS 
%-ENROLLED 
[CARNEGIE-MELLON 

ScALE:l-5 
SCALEi:l-5 
VALUE 
VALUE 
VALUE 
VALUE 
MATH 
VERBAL 
VALUE 
VALUE 
VALUE 

COLUMBIA] 

3 
5 

LAN 
PRIVATE 
THOUS:S- 
RATIO:g:l 
650 
612.5 
THOUS$:lo+ 
THOUS:4-7 
50 

Figure 2: Generalizing Columbia and Carnegie-Mellon 

What would the generalization in Figure 2 be used for once it 
had been made? Presumably it would be used in processing 
information about other universities. If we identified a situation 
where GNDl was thought to be relevant, we would assume that any 
of its features that were not known would indeed be present. The 
assumption is made by all similarity-based learning programs, 
including UNIMEM, that they have created usable concepts from 
which default values may be inherited. 

We can now state our problem quite clearly in terms of this 
example: What reason do we have to believe that a new example 
that fits part of the generalization of Columbia and Carnegie-Mellon 
will fit the rest? With explanation-based methods we at least have 

3Actually, UNIMEM also had to decide that these hvo examples should even be 
compared and that they had a substantial amount in common before doing the actual 
generalization. 

*Exactly what constitutes “substantially different” is a parameter of the program. 

the underlying causal model as justification for believing the 
generalization. But what is the support of similarity-based learning? 

6 Elements of an answer 
There are four main elements to our explanation as to why SBL 

produces generalized concepts that can be profitably applied to 
other problems and why it should be so used: 

l While the goal of learning is indeed a causal model, it is 
often not possible to determine underlying causality and 
even where it is possible it may not be practical. 

l Similarity usually 
to determine. 

implies causality and is much easier 

l There are ways to refine 
effects of coincidence. 

l Explanation-based and similarity-based 
complement each other in crucial ways. 

generalizations to mitigate the 

methods 

6.1 Causality cannot always be determined 
In order to achieve their impressive results, the EBL methods 

that have been developed to date assume that a complete model of 
a domain is available and thus a full causal explanation can be 
constructed. In addition, it is assumed that it is ahvays 
computationally feasible to determine the explanation of any given 
example. While these assumptions may be acceptable for some 
learning tasks, they do not appear reasonable for situations where 
we are dealing with noisy, complex, uncertain data -- characteristics 
of most real-world problems. It is also unreasonable to expect to 
have a complete domain model available for a new domain that we 
are just beginning to explore. Even in our university example, it is 
hard imagine all the information being available to build a complete 
model. 

Most EBL work has not addressed these issues. Some of the 
domains used, like integration problems [Mitchell 83a], logic circuits 
[Mitchell 83b; Ellman 851 or chess games [Minton 841 do indeed 

have complete domain models and the examples used are small 
enough for the explanation construction to be tractable. Even in a 
domain such as the news stories of [DeJong 861, the assumption is 
made, perhaps less validly, that it is always possible to build up a 
complete explanation. 

In domains where a detailed explanation cannot reasonably be 
constructed, a learner can only rely on similarity-based methods. 
By looking for similarities it is at least possible for the learner to 
bring some regularity to its knowledge base. The noticing of co- 
occurrence is possible even the absence of a complete domain 
model. Further, much research, including our own, has shown that 
SBL can be done efficiently in a variety of different prbblem 
situations. In the university example of Section 5, UNIMEM was 
able to come up with a variety of similarity-based generalizations 
with minimal domain information. Further, as we noted above, 
people seem to be optimized for SBL. 

6.2 Similarity usually implies causality 
The regularity that is detected using SBL is not worthwhile if it 

cannot be used to help cope with further examples. Such help is not 
likely if there is no connection between the similarities and the 
underlying causal explanation. Fortunately, such a connection will 
usually exist. 

Put as simply as is possible, similarities among examples 
usually occur because of some underlying causal mechanism. 
Clearly if there is a consistent mechanism, it will produce consistent 
results that can be observed as similarities. While the infinite variety 
of the world will also produce many coincidental similarities, it is 
nonetheless true that among the observed similarities are the 
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mechanisms that we desire. 

So, in the Eastern Shuttle example used above, while it is 
almost certain that the duplicate seat numbers I received were 
coincidental, if there was a mechanism involving seat numbers (say 
the .numbers were distributed in alphabetical order) it would manifest 
itself in this sort of coincidence. Similarly, in the university 
generalization GNDl (Figure 2) we indicated possible of 
mechanisms that would lead to the kind of expensive private school 
that is described. 

Two recent examples illustrate how causal understanding 
frequently relates to similarity-based processing. The first involves 
scientific research, an attempt to understand a complex 
meteorological phenomenon, and the second an investigation into a 
mysterious crime. 

In recent years weather researchers have been trying to explain 
a set of possibly related facts. Specifically: 1) the average 
temperature in 1981 was very high; 2) the El Chichon volcano 
erupted spectacularly in early 1982; 3) El Nino (a warm Pacific 
current) lasted an exceptionally long time starting in mid-1982; 4) 
there have been severe droughts in Africa since 1982. 

One might expect researchers to immediately attempt to 
construct a causal model that explains all these phenomena. 
However, weather systems are extremely complex, and by no 
means fully understood. Author Gordon Williams, writing in Atlantic, 
discusses the attempt to gain understanding as follows: “How could 
so much human misery in Africa be caused by an errant current in 
the Pacific? Records going back more than a century show that the 
worst African droughts often come in N Nino years.” (Emphasis 
added.) Furthermore, Williams quotes climate analyst Eugene 
Rasmussen as saying, “It’s disturbing because we don’t understand 
the process” [Williams 861. 

We can see clearly in this example that although the ultimate 
learning goal is a causal model, the construction of such a model is 
not immediately possible. So, researchers began by looking for 
correlations. However, they expect correlations to lead eventually to 
deeper understanding. 

The second example involves investigators trying to determine 
how certain extra-strength Tylenol capsules became laced with 
poison. The New York Times of February 16,1986 reported: 

Investigators tracing the routes of two bottles of Extra-Strength 
Tylenol containing cyanide-laced capsules have found that 
both were handled at the same distribution center in 
Pennsylvania two weeks apart last summer. Federal officials 
and the product’s manufacturer said that the chance that the 
tainting occurred at the distribution facility was remote! but the 
finding prompted investigators to examine the possrbrlrty as 
part of their inquiry.” 

Again we have a case where a causal explanation is desired 
and yet there is not enough information available to construct one. 
So, the investigators began by looking for commonalities among the 
various poisoned capsules. When they found the distribution facility 
in common, that became an immediate possible contributor to the 
explanation. Although no final explanation had been discovered as 
this is written, it is clear that the explanation process attempted 
began with the noticing of similarities. 

There is one further connection between noticing similarities 
and generating explanations that is worth making. This involves the 
idea of predictabi/ity. It turns out that the kinds of similarities that 
are noticed provide clues not only to what features should be 
involved in an explanation, but what the direction of causality might 
be (e.g., what causes what). As we have described elsewhere 
[Lebowitz 83; Lebowitz 86c], features that appear in just a few 

generalizations, which we call predictive, are the only ones that 
indicate a generalization’s relevance to a given situation, and, 

further, are those likely to be the causes in an underlying 
explanation. This becomes clear when we realize that a feature 
present in many different situations cannot cause the other features 
in any single generalization, or it would cause the same features to 
appear in all the other generalizations that it is in. 

In the weather example above, if we knew of many 
generalizations involving droughts, but only one with both warm 
currents and a volcano, then the volcano might cause the drought, 
but the drought could not cause the volcano. Of course, it may be 
that neither direction of causality is right, there being a common 
cause of both, but at least predictability provides a starting point. 

The power of predictability is that it can be determined quite 
simply, basically as a byproduct of the normal SBL process. The 
various indexing schemes used in a generalization-based memory 
[Lebowitz 83; Lebowitz 86a] allow the simple counting of features in 

context. While there are many problems to be explored, particularly 
that of predictive combinations of features, the ability to know the 
likely initial causes when determining a mechanism is an important 
advantage of SBL. Further, even when no explanation can be 
found, the use of predictability often allows us to make predictions 
from a generalization at the correct moments, even without any 
deep understanding of the generalization 

6.3 Refining generalizations 
The third part of our explanation as to the utility of similarity- 

based learning is that generalizations, once made, are not 
immutable -- they can be refined in the light of later information. This 
means that the aspects of a generalizations that are due to 
coincidence can be removed. We have developed various 
techniques for doing this [Lebowitz 821 that work essentially by 
noticing during processing when various elements of a 
generalization are contradicted by new examples. If we remove the 
features that are frequently contradicted we can have a concept that 
is more widely applicable and contain meaningful information. 

As an example of this, we will look again at our university 
generalization (Figure 2). Suppose that there were a wide range of 
universities with most of the features of GNDl, but with different 
levels of social life. This contradiction of the social level value that 
was derived from the coincidental value that both Columbia and 
Carnegie-Mellon have might seem to invalidate the generalization. 
However, our refinement methods would allow UNIMEM (or a 
similar system) to remove this feature, leaving a more widely 
applicable generalization that describes high-quality private schools. 
In this way similarity-based methods can overcome some of the 
coincidences that might seem to require explanation-based 
methods. Notice, however, that UNIMEM makes this refinement 
without having any real idea of why it is doing so, other than the 
pragmatic rationale that it allows the generalization to fit more 
examples, but does not reduce it so much that it carries no 
information. 

6.4 Integrated learning 
The final element of our explanation for the importance of 

similarity-based methods lies in the need for an integrated approach 
employing both similarity-based and explanation-based approaches. 
This point is really a corollary of the relation between similarity and 
causality described in Section 6.2. 

The basic idea is to use EBL primarily upon the generalizations 
that are found using SBL rather than trying to explain everything in 
sight. This drastically cuts down the search necessary for 
constructing an explanation, particularly in domains where we have 
very little specific knowledge and have to rely on general rules for 
the explanations. Basically, we use SBL as a bottom-up control on 
the top-down processing of EBL. 

The “real world” weather and crime investigation examples in 
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Section 6.2 illustrate clearly how human problem solvers make use 
of this form of integrated learning -- trying to explain the 
coincidences that are noted, rather than explaining every element of 
a situation from scratch. We have described how a simple form of 
such integrated learning has been implemented for UNIMEM in 
[Lebowitz 86~1. For the university example in Figure 5, the main 

point is that we would only try to build up an explanation for the 
generalization GNDl (actually, the version of GNDl refined over 
time), and not the specific examples that made it up. Explaining the 
generalization is likely to be much easier than explaining the 
features of Columbia and Carnegie-Mellon and provide almost as 
much information. 

7 Conclusion 
We have shown in this paper a number of ways that similarity- 

based learning can contribute to the ultimate learning goal of 
building a coherent causal explanation of a situation. From this 
analysis it is not surprising that people seem to be optimized for 
noticing similarities, as such processing leads to the understanding 
that helps deal with the world. Our computer programs should be 
equally well equipped. Similarity-based learning is definitely not the 
path to perdition. 
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