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Abstract 

Recent work in the field of machine learning has demon- 
strated the utility of explanation formation as a guide to gen- 
eralization. Most of these investigations have concentrated on 
the formation of explanations from consistent domain theories. I 
present an approach to forming explanations from domain the- 
ories which are inconsistent due to the presence of abstractions 
which suppress potentially relevant detail. In this approach, ex- 
planations are constructed to support reasoning tasks and are 
refined in a failure-driven manner. The elaboration of explana- 
tions is guided by the structuring of domain theories into layers 
of abstractions. 

This work is part of a larger effort to develop a causal mod- 
elling system which forms explanations of the underlying causal 
relations in physical systems. This system utilizes an inconsis- 
tent, common-sense theory of the mechanisms which operate in 
physical systems. 

1 The Problem 

The field of machine learning has shown a recent shift towards 
knowledge intensive methods which utilize the construction of 
explanations as an important step in the generalization process. 

In these ezplanation-based learning methods /DeJong & 
Mooney 86, Mahadevan 85, Mitchell et al 86, W’inston et al 831, 
an explanation derived from a domain theory shows why a par- 
ticular example is an instance of some concept. After the critical 
constraints in the explanation are determined, its components 
are generalized while maintaining these constraints; the result is 
a generalized recognition rule for examples of the given concept. 

This approach is now well understood for domain theories 
which are consistent, or are at least assumed to be consistent. Ex- 
planations derived and generalized from consistent domain the- 
ories constitute proofs which can be taken to be correct in the 
context of all reasoning tasks they may subsequently support. 

However, most domain theories are not consistent - they 
incorporate defaults, they omit details, or they otherwise ab- 
stract away from a complete account of the constraints which 
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may be relevant to the reasoning tasks to which they are ap- 
plied, Explanations derived and generalized from inconsistent 
domain theories cannot be assumed to be always correct; their 
inherent abstractions may manifest when inferences derived from 
them are not corroborated. 

The problem addressed in this paper is how to construct 
justified, plausible explanations despite inconsistent domain the- 
ories; and how to refine those explanations or their generaliza- 
tions when they fail to support reasoning tasks to which they are 
applied. 

1.1 An Example 

Consider a domain theory which describes at a common-sense 
level the kinds of causal mechanisms that operate in physical 
systems: flows, mechanical couplings, etc. My system derives 
from this domain theory a simple causal model of a bathtub which 
describes two flow mechanism instances: water flows in at the tap 
and flows out at the drain. This simple model proves inadequate 
for the planning problem of how to fill the bathtub with water. 

This reasoning task becomes solvable after my system elaborates 
the model to describe a mechanical coupling between the plunger 
and the plug and how the plug blocks the flow of water at the 
drain. 

This elaborated causal explanation includes an interesting 
intersection between a flow mechanism and a mechanical coupling 
mechanism. A single physical object - the plug - plays dual roles: 
it serves both as one half of a mechanical coupling and as barrier 
to a flow. My system extracts this composed causal mechanism 
- which might be called “valve” - out of the causal model of 
the bathtub and generalizes it in the explanation-based learning 
manner, maintaining the constraint that one physical object plaj 
these two roles. 

My system next uses the valve mechanism to explain the 
causal relations in another physical system - a camera. In a 
camera, there is a mechanical coupling between the shutter re- 
lease and the shutter; furthermore the shutter plays the addi- 
tional role of barrier to the light flow between the photographed 

subject and the film. This causal model generates an incorrect 
prediction when a lens cap is inadvertently left on the lens. My 
system refines the model by instantiating the lens cap as another 
barrier to light flow. The model also cannot be used to explain 
why the shutter does not move when the safety latch on the 
shutter release is engaged. My system handles this situation by 
instantiating a latch as a type of barrier to a mechanical coupling 
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- a detail which never appeared in the original construction of 
the valve explanation in the context of the bathtub. 

1.2 The Proposed Solution 

I take the following view of explanation formation from inconsis- 
tent domain theories, as a tool for learning or otherwise: Expla- 
nations are constructed in the context of a reasoning task; they 
are refined, as needed, in an incremental failure-driven manner. 
The usefulness of an explanation is relative to the goal of its 
motivating reasoning task. Similarly, the consistency of an ex- 
planation is relative to the set of inferences it supports. 

In the example above, a planning problem motivates the 
elaboration of the bathtub model and prediction failures motivate 
the refinement of the camera model. 

In this paper, I focus on domain theories which are incon- 
sistent because they incorporate a particular kind of abstraction 
- the suppression of possibly relevant detail through approzima- 
tion. Approximations may be layered into several levels. Ex- 
planations derived from less approximate levels are less likely to 
support incorrect inferences. 

I argue that the minimum level to which an explanation must 
be instantiated depends on the goal of the motivating reasoning 
task. I present two means of refining failed explanations: rein- 
stantiation of the explanation into a situation which has changed, 
and elaboration of the explanation to a less approximate level in 
the domain theory with more explanatory power. This approach 
to refinement uses the layered structure of a domain theory to 
guide the familiar processes of dependency-directed backtracking 
and truth maintenance [Doyle 791. 

2 A Context for the Problem - Causal 
Modelling 

The issue of how to construct and refine explanations from an 
inconsistent domain theory comes up in my work on causal mod- 
efling [Doyle 861. My causal modelling system learns how physical 
systems work in the context of reasoning tasks such as planning or 
prediction. Given a description of how quantity values, structural 
relations, and geometrical relations in a physical system change 
over time, my system utilizes a common-sense theory of causal 
mechanisms to hypothesize underlying causal relations which can 
explain the observed behavior of the physical system. 

I have developed a representation for causality in physical 
systems which supports the description of these mechanisms or 
processes by which effects emerge from causes in this domain. 
This aspect of my work addresses issues first considered in ;Rieger 
& Grinberg 771. 

In my representation, mechanisms require the presence of 
some kind of medium, or structural link, between the site of the 
cause and the site of the effect. For example, flows require a chan- 
nel through which to transfer material and mechanical couplings 
require a physical connection through which to propagate mo- 
mentum. Causal mechanisms can be disrupted by barriers which 
decouple cause from effect. For example, flows can be inhibited 

by a blocked channel and mechanical couplings can be disabled 
by a broken physical connection. 

This representation for causality and a vocabulary of causal 
mechanisms describable within it are currently under develop- 
ment and are being tested in the modelling of a number of phys- 
ical systems. A generalization hierarchy for these mechanisms is 
shown in Figure 1. 
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Figure 1: Generalization Hierarchy for Causal Mechanisms 

The relevant aspect of this domain theory of causal mech- 
anisms for the purposes of this paper is its inconsistency. The 
theory does not describe all the relevant aspects of the various 
mechanisms which operate in physical systems. Furthermore, the 
representation of causality underlying this domain theory sug- 
gests a decomposition of the mechanism descriptions into several 
layers of approximation. I describe these levels of explanation in 
the next section. 

2.1 Layers of Explanation in a Domain Theory 

There are several levels of causal explanation available in the 
representation for causality described above: each drawing on the 
notion of mechanism to a different degree. Each more detailed 
level introduces additional constraints which are meaningful only 

in the context provided by the more abstract levels. The higher 
levels of explanation do not employ a coarser grain size, rather 
they ignore certain potentially relevant conditions. 

The most abstract level of explanation in the representation 
does not incorporate the notion of causal mechanism at all. This 
explanation merely notes the co-occurrence of two events and 
verifies that the effect does not precede the cause. 

CO-OCCURRENCE EXPLANATION 

(Changes(zq, tl) A Changes(dq, t2) A 2 (tl, t2)) 
===+ 

FunctaonalDependence(aq, dq) 

The next level of explanation verifies that the quantities 
whose values are correlated are of the appropriate type for the 
mechanism. For example, flows are causal links between amount 
quantities and mechanical couplings are causal links between po- 
sition quantities. 2 
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QUANTITY TYPES EXPLANATION 

(Changes(iq, tl) f\ Changes(dq, t2) A 2 (tl, t2) A 

IndependentQuantityType(iq) A DependentQuantityType(dq)) 
===+ 

FunctzonalDependence(iq, dq) 

This explanation is an approximation of one which identifies 
the enabling medium between the physical objects of the quan- 
tities whose values are correlated. 

MEDIUM EXPLANATION 

(Changes(zq, tl) A Chunges(dq, t2) A > (tl, 12) A 
IndependentQuantityType(iq) A 
DependentQuuntztyType(dq) A 

34 
(Between(m, PhyslculOb~ectOf(zq), PhyszculObjectOf(dq), 

tl : t2) A MediumType(m 

===+ 

FunctionulDependence(iq, dq) 
Enables(m, FunctionalDependence(iq, dq)) 

Note that the medium must be maintained throughout the 
causal interaction. 

This explanation in turn approximates one which states that 
there must be no barriers which disrupt the structural link and 
disable the causal mechanism. 

BARRIER EXPLANATION 

(Changes(iq, tl) A Ghunges(dq, t2) A 2 (tl, t2) A 

IndependentQuantityType(iq) A 
DependentQuantityType(dq) A 

3(m) 
(Between(m, Physicu10bjectOf(iq), PhysaculObjectOf(dq), 

tl : t2) A MedzumType(m) A 

3(b) 

(Along(b, m, tl : t2) A BarrzerType(b)))) 
_ 

FunctionulDependence(iq, dq) 
Enables(m, FunctzonulDependence(iq, dq)) 
Disubles(b, FunctionalDependence(iq, dq)) 

Finally, this description of barriers can be elaborated to one 
which states that in general the effectiveness of a barrier depends 
on how much of the medium it blocks. 

VARIABLE BARRIER EXPLANATION 3 

(Changes(iq, tl) A Chunges(dq, t2) A 2 (tl, t2) A 
IndependentQuantityType(iq) A 

DependentQuuntityType(dq) A 

3b-4 
(Between(m, PhyszculObjectOf(iq), PhysicuZObJectOf(dq), 

tl : t2) A MediumType A 

‘Flows and mechanical couplings are instances of a class of causal mech- 
anisms I call propagattons; they involve similar co-occurring events at dif- 
ferent sites. There are also tranc~ormat:ons (e.g. photochemical on film, 
electrophotic in a light bulb, electrothermal in a toaster) involving different 
co-occurring events at a single site. 

3This level of explanation remove- P a different type of abstraction than the 
other levels. This difference is discussed in the section on types of abstraction. 

3(b) 
(Along(b, m, tl : t2) A BurrzerType(b) A 

3(k) 
(QuantztyOf(bq, b) A IsA(bq, Posztion))))) 

===+ 
FunctionulDependence(iq, dq) 
Enubles(m, FunctionulDependence(iq, dq)) 
FunctionulDependence(bq, dq) 
Enubles(b, FunctionulDependence(bq, dq)) 

Note that this level of explanation describes a dependence 
(between a quantity associated with a barrier and the quantity 
associated with the effect) which does not appear at any of the 
other levels. 

These levels of explanation are defined for causal mechanisms 
in general; the particular most detailed levels of explanation of 
flows and mechanical couplings needed for the bathtub and cam- 
era examples are shown below. 

MATERIAL FLOW (VARIABLE BARRIER) 

(Changes(iq, tl) A Changes(dq, t2) A 2 (tl, t2) A 

IsA(zq, Amount) A IsA(dq, Amount) A 

3b-4 
(Touches(PhyszculObjectOf(iq), PhyszculObjectOf(dq), 

tl : t2) A 

3(b) 
(Along(b, m, tl : t2) A Blocks(b, PhysicalObjectOf(zq)) A 

3(h) 
(QuuntityOf(bq, b) A IsA(bq, Position))))) 

e 
FunctzonulDependence(zq, dq) 
Enables(m, FunctzonulDependence(zq, dq)) 
FunctionulDependence(bq, dq) 
Enables(b, FunctionulDependence(bq, dq)) 

LIGHT TRANSMISSION (VARIABLE BARRIER) 

(Changes(zq, tl) A Chunges(dq, t2) A 2 (tl, t2) A 

IsA(zq, Amount) A IsA(dq, Amount) A 

+-4 
(StraightLznePuth(PhysiculObjectOf(zq), 

PhysiculObjectOf(dq), tl : t2) A 

3(b) 
(Along(b, m, tl : t2) A Opaque(b) A 

Wq) 
(QuuntztyOf(bq, h) A IsA(bq, Posztzon))))) 

===+ 
FunctzonulDependence(zq, dq) 
Enables(m, FunctaonulDependence(iq, dq)) 
FunctzonalDependence(bq, dq) 
Enubles(b, FunctzonuIDependence(bq, dq)) 

MECHANICAL COUPLING (BARRIER) 

(Chunges(iq, tl) A -Change$(dq, t2) A > (tl, t2) A 

IsA(aq, Positton) A IsA(dq, Posztzon) A 

3(m) 
(AttuchedTo(Phy szculOb~ect0 j(lq), PhysaculOb3ectOj(dq), 

t1 : t2) A 
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(AttachedTo(b, m) A Anchored(b)))) 
J 

Funct~onalDe~tndence(zq, dq) 
Enables(n, FunctzonalDependence(zq, dq)) 
Disables(b, FunctionalDependence(og, dq)) 

This last explanation describes a latch barrier to a mechan- 
ical coupling. 

Although this presentation of levels in the causal mechanism 
descriptions suggests fixed approximation hierarchies, in general 
there may be several ways to elaborate any level of explanation. 
For example, a non-rigid physical connection as well as a latch 
may disable a mechanical coupling. 

3 Constructing and Refining Explanations 

In this section. I show how the causal explanations of the bathtub 
and camera are constructed and incrementally refined from the 
layered, approximate, inconsistent domain theory described in 
the previous section. 

3.1 Construction of an Explanation 

Consider the problem of constructing a causal model of a bathtub 
in the context of a planning problem to fill a tub with water. A 

first attempt instantiates a model at the medium level of expla- 
nation of the material flow mechanism. This causal explanation 
is shown in Figure 2. 4 

___-- __-.- - - QIIANTITICS AND FUNCTIONAL DEPENDENCIES 

_--.-_ PHYSICAL OBJECTS AND RELATIONS 

Figure 2: Medium Level Explanation of Material Flows in a Bath- 
tub 

Water flows from the tap through the tub and out of the 
drain. 

It is not yet possible to generate a plan for filling the tub 
with water. Starting a flow at the tap into the tub does not work 
because of the presence of the drain, an additional medium for 
flow from the tub. This unsolved planning problem motivates 
the further expansion of the bathtub model to a more detailed 
level of explanation, as shown in Figure 3. 

The model now reveals how the plug can block flow at the 
drain and how the position of the plug is affected by the plunger. 

4Temporal, enabling, and disabling relations are mostly suppressed in 

------ET 
/ 

-A 

‘. ALONG 
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ATTACHED TO \4 

Figure 3: Variable Barrier Level Explanation of a Material Flow 
and Medium Level Explanation of a Mechanical Coupling in a 
Bathtub 

A plan can now be generated for filling the bathtub with water: 
Start a flow of water at the tap and move the plunger to place 
the plug in the drain. 

This example of explanation construction illustrates how the 
needed level of explanation depends on the motivating reasoning 

task. In this case, a barrier was needed to solve the planning 
problem; hence the causal explanation of the bathtub had to go 
to the barrier level. 

3.2 Generalization of an Explanation 

A material flow mechanism and a mechanical coupling mecha- 
nism intersect in the expanded bathtub model at the plug. My 
causal modelling system notes such intersections because they 
may provide opportunities for extracting and generalizing use- 
ful compositions of causal mechanisms. This particular complex 
mechanism might be called “valve”. 

Using the hierarchy in Figure 1, my system generalizes the 
valve concept to other kinds of flows. The definitions of media, 
barriers, etc. for other types of flow are substituted while main- 
taining the constraint that a single physical object must serve as 
both one half of the mechanical coupling and as barrier to the 
flow. The generalized valve mechanism for light transmission is 
shown in Figure 4. 

ALONG / /Y 

ATTACHED TO 
I/ 

the figures to avoid clutter; such information 
explanation descriptions. 

used ZLP indicated in the Figure 4: The Learned Valve Mechanism for Light Transmission 
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This learned complex mechanism is used in the construction 

of a causal model for another physical system - a camera. This 
causal model is shown in Figure 5. 

ALONG / 

OPAQUE <, 

Figure 5: Valve Explanation of a Camera 

All of the valve explanations combine the variable barrier 
explanation level of a flow mechanism and the medium expla- 
nation level of the mechanical coupling mechanism. The origins 
of composed mechanism explanations are recorded, as in Figure 
6, so that more detailed levels of explanation in the constituent 
mechanisms can be accessed if needed. 

~- 
iv!ECHkNICAL COUPLla 

Figure 6: Origins of the Valve Explanation for Light Transmis- 
sion 

3.3 Refinement of an Explanation through Rein- 
stantiation 

When a lens cap is placed on a camera this model supports an 
incorrect prediction - that light will continue to reach the film. 
In this case, the level of explanation needed to handle the new 
situation already appears in the model; the lens cap, like the 
shutter, is a barrier to light flow. My system instantiates this 
additional barrier, as in Figure 7. The refined explanation now 

supports the correct prediction that light does not reach the film 
in the altered camera. 

ALONG / I 
OPAQUE 

Figure 7: Reinstantiated Explanation of a Camera 

3.4 Refinement of an Explanation through Elabo- 
rat ion 

In some cases: refinement of a failed explanation requires elab- 
orating to a level of explanation which calls on details not yet 
considered. This kind of refinement is needed in the camera 
model to handle the situation where a safety latch on the shut- 
ter release is engaged. As is, the model supports the incorrect 

inference that the shutter moves whenever the release moves. 

The model is repaired when my system recognizes the latch 
barrier to the mechanical coupling between the release and the 
shutter, as in Figure 8. The shutter does not move when the 
anchored release latch is attached. My system formed this ex- 
planation by elaborating to the barrier explanation level of the 
mechanical coupling constituent of the valve mechanism for light 
transmission (see Figure 6). Although this level of explanation 
was never reached in the bathtub model, it is accessible in the 
learned valve mechanism for light transmission used in the cam- 
era model. 

1 RELEASE ATTACHED TO 
IT1 

ATTACHED TO 
/ 

ANCHORED \< 
\&W 

Figure 8: Elaborated Explanation of a Camera 

4 Issues 

In this section, I discuss a set of issues relevant to the problem 
of constructing and refining explanations from a domain theory 
which is inconsistent. 
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4.1 Limits on Perception and Use of Empirical Ev- 
gas behavior in terms of the motions of molecules and in terms of 

idence 
the macroscopic properties of volume, temperature, and pressure. 
Aggregations currently do not appear in the causal mechanism 

The justification for employing an explanation to support rea- 
domain theory; the theory stops short of a full physical account- 

soning in a given situation comes partially from the explanation 
ing of the laws which govern the behavior of physical systems. 

schema used, and partially from the perceptions which instanti- This enumeration of abstraction types is admittedly prelim- 

ate the existentially quantified terms in that explanation schema. inary. A recent investigation [Smith et al 85: also has described 

The justification due to the explanation schema may be compro- different abstraction types, and has investigated how explana- 

mised by approximations. The justification due to perception tions fail because of them. I have described in this paper an ap- 

may be compromised when the instantiations of terms in an ex- preach to explanation construction and refinement from domain 

planation are unobsetoable due to limits in the available 
tion equipment. 

percep- theories which incorporate approximations and qualitizations. 

For example, air, which may be unobservable, serves as a 4.3 Incomplete and Intractable Domain Theories 
thermal conducting medium for heat flow in a toaster. A causal 
explanation for a toaster based on heat flow might be only par- Even the lowest level of explanation in a domain theory may 

tially instantiated. incorporate abstractions. This is true of the causal mechanism 

The loss of justification due to an uninstantiable term can 
theory. For example, a barrier may be selective, e.g. a UV filter 

be countered by gathering empirical evidence that an explana- 
on a camera. Abstractions at the lowest level of a domain theory 

tion is consistent, e.g., confirming that bread placed in a toaster 
imply missing knowledge. 

does indeed become hotter. This is one way in which analytical, The method of explanation refinement described in this pa- 

i.e., explanation-based, methods can be combined with empirical per has no recourse when an incomplete domain theory ‘Lbottoms 

methods. out”. A possible course of action in this circumstance is to resort 
to an inductive method. Another is to invoke some other means 

Uninstantiable terms in an explanation also can be countered 
by elaborating an explanation. More detailed levels of explana- 

of accessing applicable knowledge, perhaps analogy. Simply giv- 

tion can suggest how to obtain indirect empirical evidence for 
ing up may also be arguably appropriate. 

the uninstantiable term. For example, the barrier level of ex- Even complete domain theories might make use of layered ap- 

planation in the heat flow mechanism indicates that heat flow proximations. A complete domain theory may involve so much 

in a toaster should be disabled when a thermal insulator exists detail as to be intractable. A structuring of such a theory into 

between the coils and the bread. Confirming observations at this several approximating levels of explanation allows plausible ex- 

level can strongly suggest the presence of the unobservable ther- planations to be constructed, and maintains a capability for re- 

ma1 conducting medium. fining those explanations [Tadepalli 851. 

4.2 Types of Abstraction 4.4 Learning from Experiments 

Approximation is the most prevalent type of abstraction appear- Given an inconsistent domain theory, it is possible to derive more 

ing between levels of explanation in the causal mechanism do- than one plausible, partially justified explanation in many situa- 

main theory. Approximations are assumptions that some con- tions. For example, a glowing taillight on an automobile might be 

dition holds or that some constraint is satisfied. For example, explained either by the electrical system of the car or by reflected 

the approximation between the quantity types and medium lev- light from the sun. 

els of explanation is that an appropriate medium to support a 
causal mechanism is in place. A more detailed explanation may 

I am developing an experiment design capability for distin- 

be correct in situations where an approximate explanation is not. 
guishing multiple explanations. This capability utilizes the ex- 
planation refinement method described in this paper. It appears 

A different kind of abstraction appears between t,he barrier 
and variable barrier levels. Here a continuous description is col- 
lapsed into a discrete one. At the barrier level, a barrier either 
completely disables a mechanism or has no effect at all. At the 
variable barrier level a barrier may also partially affect a mech- 
anism. This kind of abstraction might be called qualitization. 
Some situations may not even be describable, much less correctly 
described, by explanations which incorporate qualitizations. For 
example, the variable flow out of a bathtub drain or the way the 
aperture in a camera lens affects light flow cannot be described 
by the on/off barrier explanation. 

Under aggregation, complex structures at one level of ex- 
planation are subsumed under simpler structures, perhaps even 
single terms, at higher levels. Aggregations involve changes in 
grain size. The oft-used example is the alternate explanations of 

similar in spirit to that proposed in [Rajamoney et al 851. In 
my method, refinements are proposed to one or more of a set of 
competing explanations until the explanations support divergent 
predictions. The refinements specify further instantiations at the 
same or at an elaborated level. For example, an experiment to 
distinguish the glowing taillight explanations might elaborate the 
light flow explanation from the medium level and specify the in- 
stantiation of an opaque barrier to disable the hypothesized light 
transmission. This barrier, importantly, would have no predicted 
effect on the electrical system of the car. 

This approach to experiment design applies equally well to 
single explanations. Even an explanation with no rivals may be 
only partially justified because of perception limits. Empirical 
evidence for the correctness of such an explanation may be gath- 
ered via experiments which specify refinements involving addi- 
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tional observable instantiations of terms in the explanation. Such 
an experiment, involving a toaster, is described in the section on 
perception above. 

Experimenting can be viewed as the active gathering of 
greater justification for fewer and fewer plausible explanations. 

completeness of a domain theory, and designing experiments to 
distinguish and gather justification for plausible explanations. In 
addition, a better understanding is needed of the kinds of domain 
theories which admit to decomposition via layered abstractions. 
and of the principles which govern the placement of orderings on 
abstractions. 

5 Relation to Other Work 
7 Acknowledgements 

Patil has investigated multi-level causal explanation in a medical 
domain [Patil et al 811. He identifies five levels of explanation and 
describes methods for moving between levels in both directions. 
The kind of abstraction employed by Patil’s system ABEL is ag- 
gregation; nodes and/or causal links at one level are condensed 
into fewer nodes and links at the next higher level. Elaboration 
in ABEL supports confirmation of diagnoses to greater resolution 
and allows the reasoning of the system to be revealed in greater 
detail to a user. Elaboration in ABEL is not intended to support 
failure-driven refinement of explanations through 
approximations, as described in this paper. 

the removal of 

Davis’ hardware troubleshooting system expands both aggre- 
gations and approximations [Davis 841. The structure and behav- 
ior of digital circuits are described at several levels of aggregation; 

this provides the troubleshooting system with different grain sizes 
at which to examine a circuit. Fault models indicate how to lift 
approximations concerning the possible “paths of interaction” in 
circuits. Davis’ fault models appear to be well-described in my 
representation for causality. His notions of spurious and inhib- 
ited causal pathways correspond to my concepts of medium and 
barrier. 

In general, there may be many ways to repair failed approx- 
imate explanations. Smith et al [Smith et al 851 have explored 
how the task of isolating the source of an explanation failure can 
be constrained. They show how different types of abstraction 
in an explanation schema propagate along dependency links to 
instantiated explanations and lead to different types of failure. 

6 Conclusions 

I have presented an approach to explanation construction and 
refinement from inconsistent domain theories which incorporate 
two types of abstraction - the suppression of potentially relevant 
constraints and the discretization of continuous representations. 
In this approach, explanations are elaborated to support new 
reasoning tasks and to recover from failures. The elaboration 
process is guided by the structuring of domain theories into layers 
of abstractions. 

This work is taking place in the context of an investigation 
into the formation of causal models of physical systems. Causal 
modelling involves the construction and refinement of causal ex- 
planations of the behavior of physical systems from a domain 
theory describing the mechanisms which operate in such systems. 
The levels of explanation in this domain theory are derived from 
a representation for causality in physical systems. 

Some of the issues related to explanation formation from in- 
consistent domain theories include: using empirical evidence to 
complement explanation, understanding the types of abstraction 
which render a domain theory inconsistent, dealing with the in- 
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