
A DOMAIN INDEPENDENT EXPLANATION-BASED GENERALIZER

Raymond J. Mooney
Scott W. Bennett

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 W. Springfield Ave. Urbana, IL 61801

ABSTRACT

A domain independent technique for generalizing a broad
class of explanations is described. This method is compared and
contrasted with other approaches to generalizing explanations,
including an abstract version of the algorithm used in the
STRIPS system and the EBG technique recently developed by
Mitchell, Keller, and Kedar-Cabelli. We have tested this gen-
eralization technique on a number examples in different
domains. and present detailed descriptions of several of these.

I INTRODUCTION

If one considers many of the different Explanation-Based
Learning (EBL) systems under construction [Mitchell83,
Mitchell85. Mooney85. O’Rorke84. Winston831. certain com-
monalities become evident in the generalization phase of the
learning process. Such systems work by first constructing an
explanation for an example being processed. Next, this explana-
tion is generalized. This latter process can be characterized in a
domain independent way.

Recent work on the generalization phase of EBL is under-
way at Rutgers [Mitchell861 and here at the University of Illi-
nois [DeJong86]. In this paper, we present a technique called
Explanation Generalization using Global Substitution (EGGS)
which we believe provides a natural way for conducting this
generalization. This method is quite similar to both the EBG
technique introduced in [Mitchell&] and to the MACROP
learning process used in STRIPS [Fikes72]. Consequently, the
generalization technique used in STRIPS and the regression tech-
nique used in EBG are outlined and contrasted with EGGS.
Lastly, a few of the examples to which EGGS has been applied
are presented with their resulting generalizations.

II EXPLANATIONS

In different domains. various types of explanations are
appropriate. In [Mitchell%], an explanation is defined as a logi-
cal proof which demonstrates how an example meets a set of
sufficient conditions defining a particular concept. This type of
explanation is very appropriate for learning classic concept
definitions, such as learning a structural specification of a cup,
an example introduced in [Winston831 and discussed in
[Mitchell86]. H owever. when learning general plans in a prob-
lem solving domain (as in STRIPS [Fikes72] or GENESIS [Moo-
ney85]). it is more appropriate to consider an explanation to be
a set of causally connected actions which demonstrate how a
goal state was achieved.

Consequently, in this paper, we will take a very broad
definition of the term explanation and consider it to be a con-
nected set of units, where a unit is set of related patterns. A
unit for an inference rule has patterns for its antecedents and
its consequent, while a unit for an action or operator has

ThiS research was supported by
grant NSF IST 83 17889.

the Natlonal Science Foundation under

Light(Obj1)
PartOf(Handlel,Objl)
Handle(Handlel>

and the following inference rules:

Stable(?x) A Liftable A Open\‘essel(?x) + Cup(?x)
Bottom(?y) A PartOf(?y,?x) A Flat(?y) + Stable(?x)
Graspable A Light(?x) - Liftable
Handle(?y) A PartOf(?y,?x) + Graspable
Concavity(7y) A PartOf(?y,?x) A UpurardPointing(?y)

+ Open\‘essel(?x)

a proof tree (explanation) can be constructed for the goal
Cup(Obj1) as shown in Figure 1. The explanation structure for
this proof is shown in Figure 2. The edges between patterns in
a unit are assumed to be directed so that an explanation forms a
directed acyclic graph. These directed edges define certain pat-
terns in a unit as the support for other patterns in the unit. For
example, the support for the consequent of an inference rule is
its antecedents and the support for the effects of an action are
its preconditions.

Stable(Obj1)
III

Liftable(Obj1)
III

OpenC’esselfObjl)
Ill

PartOf(Bl,Objl)

” PartOf(Bl.Objl) /

Graspable(Obj1)
Ill

Light(Obj1)
II

Graspablr(Obj1) Light(Objl)

Handie

HandIe

PartOf(Hl.Objl)
II

PartOf(Hl,Objl)

Figure 1: Explanation for Cup(Obj1)
Triple edges indicate equalities between unit patterns.
Double edges indicate equalities to initial assertions.

LEARNING / 551

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The task of explanation-based generalization is to take an
explanation and its associated explanation structure and gen-
erate a generalized explanation. which is the most general ver-
sion which still maintains the structural validity of the original
explanation. This means that substitutions must be applied to
the patterns in the explanation structure so that it is con-
strained in such a way that equated patterns unify directly
without requiring any substitutions. The generalized explana-
tion of the cup example is shown in figure 3. This generalized
explanation can then be used to extract the following general
definition of a cup:

Bottom(?yl) A PartOf(?yl .?xl> A Flat(?yl> A Handle(?y2)
A PartOf(?y2.?xl) A Light(?xl) A Concavity(?y3)
A PartOf (?y3.?x 1) A UpwardPointing(?y3) + Cup(?x 1)

In problem solving domains, the generalized explanation
represents a general plan schema or MACROP for achieving a

Stable(?xl)
III

Stable(?x2)

Liftablee(?xl)
III

Liftable(?x3)

OpenVessel(?xl)
III

Graspable(?x3)
Ill

Lighk?x3)

Graspable(?x4)

Handle(?yZ) PartOfVy2,?x4)

Figure 2: Explanation Structure for Cup Example
Triple edges indicate equalities between unit patterns.

Stable(?xl)
Ill

Stable(?xl)

Lif table(?xl)
ill

Liftable(?xl)

OpenVessel(?xl)
Ill

parrOf(:yl,?xl) / \ PartOfhWxl)
Graspable(?xl)

III
Light(?xl)

Graspable(?xl)

Handlk?y2) PartOf(?yZ,?xl)

Figure 3: Generalized Explanation for Cup Example
Triple edges indicate equalities between unit patterns.

particular class of goals.

III EXPLANATION GENERALIZING ALGORITHMS

Several algorithms have been developed for generalizing
various types of explanations. The STRIPS system [Fikes72]
incorporated a method for generalizing blocks-world plans into
MACROPS. The EBG method [Mitchell%] uses a modified ver-
sion of goal-regression [Waldinger77] to generalize proofs of
concept membership. Concurrently with Mitchell et. al’s
development of EBG. we developed a method [DeJong86]
(which we now call EGGS) which generalizes the broad class of
explanations defined in the previous section. However. the gen-
eral techniques used by the other two methods can be
abstracted to apply to the class of explanations defined above.
Consequently, this section is devoted to presenting and compar-
ing algorithmic descriptions of all three methods as applied to
this class of explanations. All of the algorithms rely on

unification pattern matching and we will use the unification
notation described in [NilssonSO].

A. STRIPS MACROP Learning

The first work on generalizing explanations was the learn-
ing of robot plans in STRIPS [Fikes72]. STRIPS worked in a
“blocks world” domain and after its problem solving com-
ponent generated a plan for achieving a particular state, it gen-
eralized the plan into a problem solving schema (a MACROP)
which could be used to efficiently solve similar problems in the
future. Work on the STRIPS system was the first to point out
that generalizing a causally connected set of actions or infer-
ences could not be done by simply replacing each constant by a
variable. This method happens to work on the cup example
given above. The proper generalized explanation can be
obtained by replacing Objl by ?xl, Bl by ?yl. Hl by ?y2, and
Cl by ?y3. However, in general, such a simplistic approach can
result in a structure which is either more general or more
specific than what is actually supported by the system’s domain
knowledge.

The following examples are given in [Fikes72] to illustrate
that simply replacing constants with variables can result in
improper generalizations. The following operators are used in
these examples: GoThru(?d, ?rl, ?r2) {Go through door ?d from
room ?rl to room ?r2) PushThru(?b. ?d, ?rl. ?r2) {Push box ?b
through door ?d from room ?rl to room ?r2) SpecialPush
{Specific operator for pushing box ?b from Room2 to Rooml).
Given the plan: GoThru(Door1, Rooml, Room2Z),
SpecialPush(Boxl>. simply replacing constants by variables
results in the plan: GoThru(?d, ?rl, ?r2). SpecialPush(This
plan is too general since SpecialPush is only applicable when
starting in Room2. so having a variable ?r2 as the destination of
the GoThru is too general and ?r2 should be replaced by Room2.
Given the plan: GoThru(Door1, Rooml. Room2 >,
PushThru(Box1. Doorl, Room2. Room1 > simply replacing

constants by variables results in the plan: GoThru(?d, ?rl, ?r2).
PushThru(?b, ?d. ?r2. ?rl). This plan is too specific since the
operators themselves do not demand that the room in which the
robot begins (?rl) be the same room into which the box is
pushed. The correct generalization is: GoThru(?d. ?rl. ?r2).
PushThru(?b, ?d. ?r2. ?r3).

The exact process STRIPS uses to avoid these problems and
correctly generalize an example is dependent on its particular
representations and inferencing techniques: however, the basic
technique is easily captured using the representations discussed
in section II. How STRIPS problems are represented with inter-
connecting units will be clarified with an example later in the
paper. However, assuming they are represented in this fashion.
a description of the explanation generalizing algorithm is shown
in Table 1. It should be noted that the generalization process in
STRIPS was constructed specifically for generalizing robot plans
represented in triangle tables and using resolution to prove
preconditions. There was no attempt to present a general learn-
ing method based on generalizing explanations in any domain.
However, the algorithm in Table 1 is a straight-forward gen-
eralization of the basic process used in STRIPS. The basic tech-
nique is to unify each pair of matching patterns in the explana-
tion structure and apply each resulting substitution to all of the

for each equality between pi and p, in the explanation structure do
let 8 be the MGU of p, and p
for each pattern pk in the exblanation structure do

replace p, with p,6

Table 1: STRIPS Explanation Generalization Algorithm

552 / SCIENCE

patterns in the explanation structure. After all of the
unifications and substitutions have been made, the result is the
generalized explanation since each pattern has been replaced by
the most general pattern which allows all of the equality
matches in the explanation to be satisfied.

B. EBG

Mitchell, Keller, and Kedar-Cabelli [Mitchell861 outline a
technique for generalizing a logical proof that a particular
example satisfies the definition of a concept. An example of such
a proof is the one in Figure 1 explaining how a particular object
satisfies the functional requirements of a cup. Unlike the
STRIPS MACROP learning method. EBG is meant to be a gen-
eral method for learning by generalizing explanations of why
an example is a member of a concept. The EBG algorithm is
based on regression [Waldinger77] and involves back-
propagating constraints from the goal pattern through the
explanation back to the leaves of the explanation structure.
This process obtains the appropriate generalized antecedents of
the proof: however, as pointed out in [DeJong86], it fails to
obtain the appropriately generalized goal pattern and remaining
explanation. As indicated in [DeJong86] and as originally
specified in [Mahadevan85]. the remaining generalized explana-
tion must be obtained by starting with the generalized
antecedents obtained from regression and rederiving the proof.
This propagates constraints forward from the generalized
antecedents to the final generalized goal concept. Hence, the
correct EBG algorithm involves both a back-propagate and a
forward-propagate step as is shown in the abstract algorithm in
Table 2. Once again, the result of the EBG algorithm is the gen-
eralized explanation since each pattern has been replaced by the
most general pattern which allows all of the equality matches
in the explanation to be satisfied.

let g be the goal pattern in the explanation structure
BackPropagate(g 1
ForwardPropagate

procedure BackPropagate
for each pattern pi suPporting p do

if p, is equated to some pattern
then

let e be the pattern equated to p,
let 0 be the MGU of e and p,
replace p with p0
for each pattern p, supporting p do

replace p, with p,B
for each pattern pi supporting p do

if p, is equated to some pattern
then

let e be the pattern equated to pi
let 8 be the MGU of e and p,
replace e with e0
for each pattern p, supporting e do

replace pi with p,0
BackPropagate

procedure ForuardPropagate(p)
for each pattern pi supporting p do

if p, is equated to some pattern
then

let e be the pattern equated to p,
ForwardPropagate
let 8 be the MGU of p, and e
replace p, with p,0
replace p with p0

Table 2: EBG Explanation Generalization Algorithm

C. EGGS

Finally, there is the EGGS algorithm which we developed
to generalize explanations of the very abstract form defined and
used in this paper. The algorithm is quite similar to the
abstract STRIPS algorithm and is shown in Table 3. The
difference between EGGS and the abstract STRIPS algorithm is
that instead of applying the substitutions throughout the expla-
nation at each step, all the substitutions are composed into one
substitution 7. After all the unifications have been done, one
sweep through the explanation applying the accumulated sub-
stitution y results in the generalized explanation. Table 4
demonstrates this technique as applied to the cup example
above. It shows how y changes as it is composed with the sub-
stitutions resulting from each equality. Applying the final

let y be the null substitution {}
for each equality between p, and pj in the explanation structure do

let 8 be the MGU of pI and p,
J

let y be ye
for each pattern p, in the explanation structure do

replace pr. with pky

Table 3: EGGS Explanation Generalization Algorithm

Table 4: EGGS Applied To the Cup Example

substitution 7 to the explanation structure in Figure 2 results in
the generalized explanation in Figure 3.

D. Comparison of Explanation Generalizing Algorithms

It is reasonably clear that all of the above algorithms com-
pute the same desired generalized explanation. They all per-
form a set of unifications and substitutions to constrain the
explanation structure into one in which which equated patterns
unify directly without requiring any substitutions. The
difference between them lies in the number of unifications and
substitutions required and the order in which they are per-
formed.

Assuming there are e equalities and p patterns in an expla-
nation (p > e), the STRIPS method requires e unifications each
resulting in p applications of a substitution (i.e. ep substitu-
tions). The EBG method does a unification for each equality in
both the back-propagating and forward-propagating steps for a
total of 2e unifications. The number of substitution applica-
tions required by EBG depends on the number of antecedents
for each rule, but in the best case (in which each rule has only
one antecedent) it requires one substitution for each pattern in
both the back-propagating and forward-propagating steps for a
total of 2p substitutions. Finally, EGGS requires e unifications
to build the global substitution (y) and p substitutions to apply
y to the explanation structure. Each composition of a substitu-
tion with 7 also requires a substitution, so there are really e+p
overall substitutions.

Therefore, EGGS does less unifications and substitutions
than either the abstract STRIPS method or EBG. However, this
may be misleading since the complexity of each unification or
substitution depends on the nature of the patterns involved.
Consequently, these figures are not absolute complexity results,
but only rough indications of overall complexity.

LEARNING / 553

As described in [O’Rorke85]. generalizing explanations can
be viewed as a process of posting and propagating constraints.
Neither the abstract STRIPS algorithm nor EGGS impose any
order on the posting of constraints (equalities between patterns)
and both simultaneously propagate constraints in all directions.
EBG. on the other hand, imposes an unnecessary ordering on the
posting and propagation of constraints. First, constraints are
propagated back through the explanation, and then a second
pass is required to propagate constraints forward to obtain the
appropriate generalized goal concept. We believe this adds undo
complexity to the generalizing algorithm as is obvious from
comparing the algorithmic descriptions in Tables 1-3.

IV Application of EGGS to Several Domains

The EGGS technique, which has been fully implemented,
has generalized explanations in several domains. This set of
examples currently includes narrative understanding [Moo-
ney85], generating physical descriptions of objects from func-
tional information [Winston83]. designing logic circuits
[Mahadevan85, Mitchell851, solving integration problems
[Mitchell831 [Mitchell86]. proving theorems in mathematical
logic [O’Rorke84]. the Safe-To-Stack problem from
[Mitchell86], th e suicide example from [DeJong86]. and STRIPS
robot planning [Fikes72]. The Cup example was discussed in
detail in section 2. In this section, we will describe the applica-
tion of EGGS to the logic circuit design, STRIPS robot planning,
and narrative understanding examples. All of the examples are
discussed in a longer version of this paper [Mooney86].

A. LEAP example

The LEAP system in [Mitchell851 is a learning apprentice
in VLSI design which observes the behavior of a circuit
designer. It attempts to learn in an explanation-based fashion
from circuit examples it observes. Given the task of
implementing a circuit which computes the logical function: (a
V b) A (c V d), a circuit designer creates a circuit consisting of
three NOR gates computing the function: -(-(a V b) V -(c V d)).
The system attempts to verify that the given circuit actually
computes the desired function. The explanation proving that the
function the circuit computes is equivalent to the desired func-
tion is shown in Figure 4. Since equated patterns are always
identical in specific and generalized explanations, only one of
each pair will be shown in this and future figures. In this
example, the domain knowledge available to the system is:

Equiv(?x,?y) ---) Equiv(-t(y(?x)).?y>
Equiv((y?xAy?y),?a) + Equiv(-(?xV?y),?a)
Equiv(?x.?a) A Equiv(?y.?b) + Equiv(?xA?y .?aA?b)
Equiv(?x,?x)

The generalized form of this proof is shown in Figure 5. Had
constants simply been replaced by variables, the result would
have been overly specific. As a result of the explanation-based
approach, the resulting generalization is not sensitive to the fact
that the first stage of the circuit involved an aVb and a cVd. For
example, the generalization would support using two NAND
gates and a NOR gate to AND four things together.

Equiv(-(&Vb)),aVb) Equiv(-(&Vd)),cVd)

f e
Equiv(aVb,aVb) Equiv(cVd,cVd)

Figure 4: LEAP Example -- Specific Explanation

Esuiv(-(-(?al))A-(7(?bl)).?alA?bl)

Equiv(T(-(?bl)),?bl)

Equiv(?al,?al) Equiv(?bl,?bl)

Figure 5: LEAP Example -- Generalized Explanation

B. STRIPS Example

The STRIPS example [Fikes72], as discussed earlier,
involves a robot, located in Rooml, moving to Room2 through
Doorl. picking up a box, and moving back to Room1 with the
box. An explanation is constructed for the example using the
following action definitions:

Action
GoThru(?a,?d,?rl ,?r2)

Preconditions Effects
InRoom(?a,?rl) InRoom(?a,?rZl
Connects(?d.?rl.%2 1

PushThru(7a,?o,?d,?rl,‘?r2) InRoom(?a,?rl) InRoom(?a,%2)
InRoom(?o,?r 1) InRoom(?o,?r2)
Connects(?d,?rl .?r2)

An inference rule used in this example is: Connects(?d. ?rl. ?r2)
+ Connects(?d, ?r2, ?rl). The specific explanation for this plan
is shown in Figure 6. The resulting generalization, shown in
Figure 7, doesn’t constrain the final destination of the robot to
be the same as its room of origin. The generalized plan would
support having the robot move the box to a Room3 connected to
Room2 rather than back to Rooml.

lnRoom(Robot,Rooml)

PushThru(Robot,Box,Drl,Rwm2,Rooml)

InRoom(Robot,Room2) Connects(Doarl,Room2,Rooml)

InRoom(Robot,Rooml) ConnectdDcarl,Rooml,Room2)

Figure 6: STRIPS Example -- Specific Explanation

InRoom(?a2,?y27)

PushThru(?a2,?bl,7d2,?x27,?y27)

lnRoom(?a2,?x27) Connectsf?d2,?x27,?y27)

t
GoThru(?aZ,?dl,?xZl,?x27) Connects(?d2,?y27,?x27)

InRoom(?a2,?x21) Connects(?dl.?x21,?x27)

Figure 7: STRIPS -- Generalized Explanation

C. GENESIS Example

The arson example from the GENESIS system[Mooney85]
is a more complicated one in which domain specific generaliza-
tion rules are used to augment the normal EGGS procedure.
The specific explanation structure shown in Figure 8 is con-
structed from the following story which is presented to the
narrative understanding system:

Stan owned a warehouse. He insured it against fire for
$100,000. Stan burned the warehouse. He called Prudential
and told them it was burnt. Prudential paid him $100,000.

The explanation is that, since Stan s goal was to get money, he
insured an unburnt warehouse he owned with Prudential. He
then proceeded to burn down the flammable warehouse and to

554 / SCIENCE

Figure 8: GENESIS -- Specific Explanation

Ina(?tl,Charaeter) Believe(!tl,Burnt(~4))

Flsmmsble(li4)
Ias(!tl,Charaeter) Possess(ltl,?il) Isa(?i4,Inanimate) Isa(lcl,r.nsuranceCo)

Figure 9: GENESIS - Generalized Explanation

telephone Prudential to tell them about it. Since Prudential [Fikes72] R. E. Fikes, P. E. Hart and N. J. Nilsson, “Learning and
believed the warehouse was burnt, the building was insured Executing Generalized Robot Plans,” Artificial

with them, and they had the requisite money to reimburse Stan, Intelligence 3, (19721, pp. 251-288.

they paid him the indemnity. [Mahadevan85] S. Mahadevan, “Verification-Based Learning: A

The generalized explanation can be seen in Figure 9. In
addition to the normal EGGS generalization process, hierarchical
class inferences (ISA inferences) have been pruned to arrive at
an appropriate generalization. The rule is to prune any facts
supporting only ISA inferences. For instance. in this example,
including the fact that the object burned was a warehouse
would make the resulting generalization overly specific and less
useful in understanding future narratives. However. it was
important to include warehouse in the specific explanation in
order to infer that it could be burned. Since the fact that the
object was a warehouse only supports the fact that it is a build-
ing, this fact is removed from the generalized explanation. Like-
wise, the fact that the object is a building is also pruned. The
fact that the object is an inanimate object cannot be pruned
because it is a precondition for burn, insure-object, and indem-
nify. Consequently, it becomes part of the generalized struc-
ture.

Generalization Strategy for Inferring Problem-
Reduction Methods,” Proceedings of the Ninth

International Joint Conference on Artificial

Intelligence, Los Angeles, CA, August 1985, pp. 616-
623.

[Mitchell831

[Mitchell851

T. M. Mitchell, “Learning and Problem Solving,w
Proceedings of the Eighth International Joint

Conference on Artificial Intelligence, Karlsruhe, West
Germany, i\ugust 1983, pp. 1139-1151.

T. M. Mitchell, S. Mahadevan and L. I. Steinberg,
‘LEAP: A Learning Apprentice for VLSI Design,”
Proceedings of the Ninth International Joint

Conference on Artificiul Intelligence, Los Angeles, CA,
-4ugust 1985, pp. 573-580.

[Mitchell861

[Mooney851

V CONCLUSION

In an attempt to formulate a general framework for
explanation-based generalization, we have developed a represen-
tation and an algorithm which we believe are well suited for
learning in a wide variety of domains. The representation of
explanations defined in this paper has allowed easy representa-
tion of a wide variety of examples from various domains. The
EGGS algorithm is an efficient and concise algorithm which we
have used to generalize each of these examples with the same
generalizing system. Future research issues include techniques
for improving generality. such as the pruning of hierarchical
class inferences discussed above, and methods for dealing with
imperfect and intractable domain theories and other problems
outlined in [Mitchell%].

[Mooney861

T. M. Mitchell, R. Keller and S. Kedar-Cabelli,
“Explanation-Based Generalization: A Unifying L’iew,”
.Ilachine Learning 1, 1 (January 19861, .

R. J. Mooney and G. F. DeJong, “Learning Schemata
for Natural Language Processing,” Proceedings of the

Ninth International Joint Conference on Artificial

Intelligence, Los Angeles, CA, August 1985.

R. Mooney and S. Bennett, “A Domain Independent
Explanation-based Generalizer,” Working Paper 7 1, ii1
Research Group, Coordinated Science Laboratory,
University of Illinois, Urbana, Il., May 1986.

[Nilsson80]

[O’Rorke84]

N. J. Nilsson, Principles of .4rtifzcial Intelligence,

Tioga Publishing Company, Palo Alto, CA, 1980.

P. V. O’Rorke, ‘Generalization for Explanation-based
Schema Acquisition,” Proceedings of the National

Conference on 4rtifrcial Intelligence, Austin, TX,
August 1984, pp. 260-263.

[O’RorkeSS]

ACKNOWLEDGEMENTS

This research benefitted greatly from discussions with
Paul O’Rorke and the direction of Gerald DeJong.

P. V. O’Rorke, “Constraint Posting and Propagation in
Explanation-Based Learning,” Working Paper 70, AI
Research Group, Coordinated Science Laboratory,
University of Illinois, Urbana, IL, November 1985.

[U’aldinger77] R. Waldinger, “.4chieving Several Goals
Simultaneously,” in .Ilachine Intelligenge 8, E. Elcock
and D. Michie (ed.1, Ellis Horu-ood Limited, London,
1977.

[DeJong86]

REFERENCES

G. F. DeJong and R. J. Mooney, “Explanation-Based
Learning: An Alternative \‘iew,” Machine Learning I,

2 (April 1986), .

[Winston831 P. H. UTinston, T. 0. Binford, B. Katz and M. Lowry,
“Learning Physical Descriptions from Functional
Definitions, Examples, and Precedents,” Proceedings of
the National Conference on .4rtificial Intelligence,

Washington, D.C., August 1983, pp. 433-439.

LEARNING I 555

