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ABSTRACT 

A domain independent technique for generalizing a broad 
class of explanations is described. This method is compared and 
contrasted with other approaches to generalizing explanations, 
including an abstract version of the algorithm used in the 
STRIPS system and the EBG technique recently developed by 
Mitchell, Keller, and Kedar-Cabelli. We have tested this gen- 
eralization technique on a number examples in different 
domains. and present detailed descriptions of several of these. 

I INTRODUCTION 

If one considers many of the different Explanation-Based 
Learning (EBL) systems under construction [Mitchell83, 
Mitchell85. Mooney85. O’Rorke84. Winston831. certain com- 
monalities become evident in the generalization phase of the 
learning process. Such systems work by first constructing an 
explanation for an example being processed. Next, this explana- 
tion is generalized. This latter process can be characterized in a 
domain independent way. 

Recent work on the generalization phase of EBL is under- 
way at Rutgers [Mitchell861 and here at the University of Illi- 
nois [DeJong86]. In this paper, we present a technique called 
Explanation Generalization using Global Substitution (EGGS) 
which we believe provides a natural way for conducting this 
generalization. This method is quite similar to both the EBG 
technique introduced in [Mitchell&] and to the MACROP 
learning process used in STRIPS [Fikes72]. Consequently, the 
generalization technique used in STRIPS and the regression tech- 
nique used in EBG are outlined and contrasted with EGGS. 
Lastly, a few of the examples to which EGGS has been applied 
are presented with their resulting generalizations. 

II EXPLANATIONS 

In different domains. various types of explanations are 
appropriate. In [Mitchell%], an explanation is defined as a logi- 
cal proof which demonstrates how an example meets a set of 
sufficient conditions defining a particular concept. This type of 
explanation is very appropriate for learning classic concept 
definitions, such as learning a structural specification of a cup, 
an example introduced in [Winston831 and discussed in 
[Mitchell86]. H owever. when learning general plans in a prob- 
lem solving domain (as in STRIPS [Fikes72] or GENESIS [Moo- 
ney85]). it is more appropriate to consider an explanation to be 
a set of causally connected actions which demonstrate how a 
goal state was achieved. 

Consequently, in this paper, we will take a very broad 
definition of the term explanation and consider it to be a con- 
nected set of units, where a unit is set of related patterns. A 
unit for an inference rule has patterns for its antecedents and 
its consequent, while a unit for an action or operator has 
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Light(Obj1) 
PartOf(Handlel,Objl) 
Handle(Handlel> 

and the following inference rules: 

Stable(?x) A Liftable A Open\‘essel(?x) + Cup(?x) 
Bottom(?y) A PartOf(?y,?x) A Flat(?y) + Stable(?x) 
Graspable A Light(?x) - Liftable 
Handle(?y) A PartOf(?y,?x) + Graspable 
Concavity(7y) A PartOf(?y,?x) A UpurardPointing(?y) 

+ Open\‘essel(?x) 

a proof tree (explanation) can be constructed for the goal 
Cup(Obj1) as shown in Figure 1. The explanation structure for 
this proof is shown in Figure 2. The edges between patterns in 
a unit are assumed to be directed so that an explanation forms a 
directed acyclic graph. These directed edges define certain pat- 
terns in a unit as the support for other patterns in the unit. For 
example, the support for the consequent of an inference rule is 
its antecedents and the support for the effects of an action are 
its preconditions. 

Stable(Obj1) 
III 

Liftable(Obj1) 
III 

OpenC’esselfObjl) 
Ill 

PartOf(Bl,Objl) 

” PartOf(Bl.Objl) / 

Graspable(Obj1) 
Ill 

Light(Obj1) 
II 

Graspablr(Obj1) Light(Objl) 

Handie 

HandIe 

PartOf(Hl.Objl) 
II 

PartOf(Hl,Objl) 

Figure 1: Explanation for Cup(Obj1) 
Triple edges indicate equalities between unit patterns. 
Double edges indicate equalities to initial assertions. 
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The task of explanation-based generalization is to take an 
explanation and its associated explanation structure and gen- 
erate a generalized explanation. which is the most general ver- 
sion which still maintains the structural validity of the original 
explanation. This means that substitutions must be applied to 
the patterns in the explanation structure so that it is con- 
strained in such a way that equated patterns unify directly 
without requiring any substitutions. The generalized explana- 
tion of the cup example is shown in figure 3. This generalized 
explanation can then be used to extract the following general 
definition of a cup: 

Bottom(?yl) A PartOf(?yl .?xl> A Flat(?yl> A Handle(?y2) 
A PartOf(?y2.?xl) A Light(?xl) A Concavity(?y3) 
A PartOf (?y3.?x 1) A UpwardPointing(?y3) + Cup(?x 1) 

In problem solving domains, the generalized explanation 
represents a general plan schema or MACROP for achieving a 

Stable(?xl) 
III 

Stable(?x2) 

Liftablee(?xl) 
III 

Liftable(?x3) 

OpenVessel(?xl) 
III 

Graspable(?x3) 
Ill 

Lighk?x3) 

Graspable(?x4) 

Handle(?yZ) PartOfVy2,?x4) 

Figure 2: Explanation Structure for Cup Example 
Triple edges indicate equalities between unit patterns. 

Stable(?xl) 
Ill 

Stable(?xl) 

Lif table(?xl ) 
ill 

Liftable(?xl) 

OpenVessel(?xl) 
Ill 

parrOf(:yl,?xl) / \ PartOfhWxl) 
Graspable(?xl) 

III 
Light(?xl) 

Graspable(?xl) 

Handlk?y2) PartOf(?yZ,?xl) 

Figure 3: Generalized Explanation for Cup Example 
Triple edges indicate equalities between unit patterns. 

particular class of goals. 

III EXPLANATION GENERALIZING ALGORITHMS 

Several algorithms have been developed for generalizing 
various types of explanations. The STRIPS system [Fikes72] 
incorporated a method for generalizing blocks-world plans into 
MACROPS. The EBG method [Mitchell%] uses a modified ver- 
sion of goal-regression [Waldinger77] to generalize proofs of 
concept membership. Concurrently with Mitchell et. al’s 
development of EBG. we developed a method [DeJong86] 
(which we now call EGGS) which generalizes the broad class of 
explanations defined in the previous section. However. the gen- 
eral techniques used by the other two methods can be 
abstracted to apply to the class of explanations defined above. 
Consequently, this section is devoted to presenting and compar- 
ing algorithmic descriptions of all three methods as applied to 
this class of explanations. All of the algorithms rely on 

unification pattern matching and we will use the unification 
notation described in [NilssonSO]. 

A. STRIPS MACROP Learning 

The first work on generalizing explanations was the learn- 
ing of robot plans in STRIPS [Fikes72]. STRIPS worked in a 
“blocks world” domain and after its problem solving com- 
ponent generated a plan for achieving a particular state, it gen- 
eralized the plan into a problem solving schema (a MACROP) 
which could be used to efficiently solve similar problems in the 
future. Work on the STRIPS system was the first to point out 
that generalizing a causally connected set of actions or infer- 
ences could not be done by simply replacing each constant by a 
variable. This method happens to work on the cup example 
given above. The proper generalized explanation can be 
obtained by replacing Objl by ?xl, Bl by ?yl. Hl by ?y2, and 
Cl by ?y3. However, in general, such a simplistic approach can 
result in a structure which is either more general or more 
specific than what is actually supported by the system’s domain 
knowledge. 

The following examples are given in [Fikes72] to illustrate 
that simply replacing constants with variables can result in 
improper generalizations. The following operators are used in 
these examples: GoThru(?d, ?rl, ?r2) {Go through door ?d from 
room ?rl to room ?r2) PushThru(?b. ?d, ?rl. ?r2) {Push box ?b 
through door ?d from room ?rl to room ?r2) SpecialPush 
{Specific operator for pushing box ?b from Room2 to Rooml). 
Given the plan: GoThru(Door1, Rooml, Room2Z), 
SpecialPush(Boxl>. simply replacing constants by variables 
results in the plan: GoThru(?d, ?rl, ?r2). SpecialPush( This 
plan is too general since SpecialPush is only applicable when 
starting in Room2. so having a variable ?r2 as the destination of 
the GoThru is too general and ?r2 should be replaced by Room2. 
Given the plan: GoThru(Door1, Rooml. Room2 >, 
PushThru(Box1. Doorl, Room2. Room1 > simply replacing 

constants by variables results in the plan: GoThru(?d, ?rl, ?r2). 
PushThru(?b, ?d. ?r2. ?rl). This plan is too specific since the 
operators themselves do not demand that the room in which the 
robot begins (?rl) be the same room into which the box is 
pushed. The correct generalization is: GoThru(?d. ?rl. ?r2). 
PushThru(?b, ?d. ?r2. ?r3). 

The exact process STRIPS uses to avoid these problems and 
correctly generalize an example is dependent on its particular 
representations and inferencing techniques: however, the basic 
technique is easily captured using the representations discussed 
in section II. How STRIPS problems are represented with inter- 
connecting units will be clarified with an example later in the 
paper. However, assuming they are represented in this fashion. 
a description of the explanation generalizing algorithm is shown 
in Table 1. It should be noted that the generalization process in 
STRIPS was constructed specifically for generalizing robot plans 
represented in triangle tables and using resolution to prove 
preconditions. There was no attempt to present a general learn- 
ing method based on generalizing explanations in any domain. 
However, the algorithm in Table 1 is a straight-forward gen- 
eralization of the basic process used in STRIPS. The basic tech- 
nique is to unify each pair of matching patterns in the explana- 
tion structure and apply each resulting substitution to all of the 

for each equality between pi and p, in the explanation structure do 
let 8 be the MGU of p, and p 
for each pattern pk in the exblanation structure do 

replace p, with p,6 

Table 1: STRIPS Explanation Generalization Algorithm 
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patterns in the explanation structure. After all of the 
unifications and substitutions have been made, the result is the 
generalized explanation since each pattern has been replaced by 
the most general pattern which allows all of the equality 
matches in the explanation to be satisfied. 

B. EBG 

Mitchell, Keller, and Kedar-Cabelli [Mitchell861 outline a 
technique for generalizing a logical proof that a particular 
example satisfies the definition of a concept. An example of such 
a proof is the one in Figure 1 explaining how a particular object 
satisfies the functional requirements of a cup. Unlike the 
STRIPS MACROP learning method. EBG is meant to be a gen- 
eral method for learning by generalizing explanations of why 
an example is a member of a concept. The EBG algorithm is 
based on regression [Waldinger77] and involves back- 
propagating constraints from the goal pattern through the 
explanation back to the leaves of the explanation structure. 
This process obtains the appropriate generalized antecedents of 
the proof: however, as pointed out in [DeJong86], it fails to 
obtain the appropriately generalized goal pattern and remaining 
explanation. As indicated in [DeJong86] and as originally 
specified in [Mahadevan85]. the remaining generalized explana- 
tion must be obtained by starting with the generalized 
antecedents obtained from regression and rederiving the proof. 
This propagates constraints forward from the generalized 
antecedents to the final generalized goal concept. Hence, the 
correct EBG algorithm involves both a back-propagate and a 
forward-propagate step as is shown in the abstract algorithm in 
Table 2. Once again, the result of the EBG algorithm is the gen- 
eralized explanation since each pattern has been replaced by the 
most general pattern which allows all of the equality matches 
in the explanation to be satisfied. 

let g be the goal pattern in the explanation structure 
BackPropagate(g 1 
ForwardPropagate 

procedure BackPropagate 
for each pattern pi suPporting p do 

if p, is equated to some pattern 
then 

let e be the pattern equated to p, 
let 0 be the MGU of e and p, 
replace p with p0 
for each pattern p, supporting p do 

replace p, with p,B 
for each pattern pi supporting p do 

if p, is equated to some pattern 
then 

let e be the pattern equated to pi 
let 8 be the MGU of e and p, 
replace e with e0 
for each pattern p, supporting e do 

replace pi with p,0 
BackPropagate 

procedure ForuardPropagate(p) 
for each pattern pi supporting p do 

if p, is equated to some pattern 
then 

let e be the pattern equated to p, 
ForwardPropagate 
let 8 be the MGU of p, and e 
replace p, with p,0 
replace p with p0 

Table 2: EBG Explanation Generalization Algorithm 

C. EGGS 

Finally, there is the EGGS algorithm which we developed 
to generalize explanations of the very abstract form defined and 
used in this paper. The algorithm is quite similar to the 
abstract STRIPS algorithm and is shown in Table 3. The 
difference between EGGS and the abstract STRIPS algorithm is 
that instead of applying the substitutions throughout the expla- 
nation at each step, all the substitutions are composed into one 
substitution 7. After all the unifications have been done, one 
sweep through the explanation applying the accumulated sub- 
stitution y results in the generalized explanation. Table 4 
demonstrates this technique as applied to the cup example 
above. It shows how y changes as it is composed with the sub- 
stitutions resulting from each equality. Applying the final 

let y be the null substitution {} 
for each equality between p, and pj in the explanation structure do 

let 8 be the MGU of pI and p, 
J 

let y be ye 
for each pattern p, in the explanation structure do 

replace pr. with pky 

Table 3: EGGS Explanation Generalization Algorithm 

Table 4: EGGS Applied To the Cup Example 

substitution 7 to the explanation structure in Figure 2 results in 
the generalized explanation in Figure 3. 

D. Comparison of Explanation Generalizing Algorithms 

It is reasonably clear that all of the above algorithms com- 
pute the same desired generalized explanation. They all per- 
form a set of unifications and substitutions to constrain the 
explanation structure into one in which which equated patterns 
unify directly without requiring any substitutions. The 
difference between them lies in the number of unifications and 
substitutions required and the order in which they are per- 
formed. 

Assuming there are e equalities and p patterns in an expla- 
nation (p > e), the STRIPS method requires e unifications each 
resulting in p applications of a substitution (i.e. ep substitu- 
tions). The EBG method does a unification for each equality in 
both the back-propagating and forward-propagating steps for a 
total of 2e unifications. The number of substitution applica- 
tions required by EBG depends on the number of antecedents 
for each rule, but in the best case (in which each rule has only 
one antecedent) it requires one substitution for each pattern in 
both the back-propagating and forward-propagating steps for a 
total of 2p substitutions. Finally, EGGS requires e unifications 
to build the global substitution (y) and p substitutions to apply 
y to the explanation structure. Each composition of a substitu- 
tion with 7 also requires a substitution, so there are really e+p 
overall substitutions. 

Therefore, EGGS does less unifications and substitutions 
than either the abstract STRIPS method or EBG. However, this 
may be misleading since the complexity of each unification or 
substitution depends on the nature of the patterns involved. 
Consequently, these figures are not absolute complexity results, 
but only rough indications of overall complexity. 
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As described in [O’Rorke85]. generalizing explanations can 
be viewed as a process of posting and propagating constraints. 
Neither the abstract STRIPS algorithm nor EGGS impose any 
order on the posting of constraints (equalities between patterns) 
and both simultaneously propagate constraints in all directions. 
EBG. on the other hand, imposes an unnecessary ordering on the 
posting and propagation of constraints. First, constraints are 
propagated back through the explanation, and then a second 
pass is required to propagate constraints forward to obtain the 
appropriate generalized goal concept. We believe this adds undo 
complexity to the generalizing algorithm as is obvious from 
comparing the algorithmic descriptions in Tables 1-3. 

IV Application of EGGS to Several Domains 

The EGGS technique, which has been fully implemented, 
has generalized explanations in several domains. This set of 
examples currently includes narrative understanding [Moo- 
ney85], generating physical descriptions of objects from func- 
tional information [Winston83]. designing logic circuits 
[Mahadevan85, Mitchell851, solving integration problems 
[Mitchell831 [Mitchell86]. proving theorems in mathematical 
logic [O’Rorke84]. the Safe-To-Stack problem from 
[Mitchell86], th e suicide example from [DeJong86]. and STRIPS 
robot planning [Fikes72]. The Cup example was discussed in 
detail in section 2. In this section, we will describe the applica- 
tion of EGGS to the logic circuit design, STRIPS robot planning, 
and narrative understanding examples. All of the examples are 
discussed in a longer version of this paper [Mooney86]. 

A. LEAP example 

The LEAP system in [Mitchell851 is a learning apprentice 
in VLSI design which observes the behavior of a circuit 
designer. It attempts to learn in an explanation-based fashion 
from circuit examples it observes. Given the task of 
implementing a circuit which computes the logical function: (a 
V b) A (c V d), a circuit designer creates a circuit consisting of 
three NOR gates computing the function: -(-(a V b) V -(c V d)). 
The system attempts to verify that the given circuit actually 
computes the desired function. The explanation proving that the 
function the circuit computes is equivalent to the desired func- 
tion is shown in Figure 4. Since equated patterns are always 
identical in specific and generalized explanations, only one of 
each pair will be shown in this and future figures. In this 
example, the domain knowledge available to the system is: 

Equiv(?x,?y) ---) Equiv(-t(y(?x)).?y> 
Equiv((y?xAy?y),?a) + Equiv(-(?xV?y),?a) 
Equiv(?x.?a) A Equiv(?y.?b) + Equiv(?xA?y .?aA?b) 
Equiv(?x,?x) 

The generalized form of this proof is shown in Figure 5. Had 
constants simply been replaced by variables, the result would 
have been overly specific. As a result of the explanation-based 
approach, the resulting generalization is not sensitive to the fact 
that the first stage of the circuit involved an aVb and a cVd. For 
example, the generalization would support using two NAND 
gates and a NOR gate to AND four things together. 

Equiv(-(&Vb)),aVb) Equiv(-(&Vd)),cVd) 

f e 
Equiv(aVb,aVb) Equiv(cVd,cVd) 

Figure 4: LEAP Example -- Specific Explanation 

Esuiv(-(-(?al))A-(7(?bl)).?alA?bl) 

Equiv(T(-(?bl)),?bl) 

Equiv(?al,?al) Equiv(?bl,?bl) 

Figure 5: LEAP Example -- Generalized Explanation 

B. STRIPS Example 

The STRIPS example [Fikes72], as discussed earlier, 
involves a robot, located in Rooml, moving to Room2 through 
Doorl. picking up a box, and moving back to Room1 with the 
box. An explanation is constructed for the example using the 
following action definitions: 

Action 
GoThru(?a,?d,?rl ,?r2) 

Preconditions Effects 
InRoom(?a,?rl) InRoom(?a,?rZl 
Connects(?d.?rl.%2 1 

PushThru(7a,?o,?d,?rl,‘?r2) InRoom(?a,?rl) InRoom(?a,%2) 
InRoom(?o,?r 1) InRoom(?o,?r2) 
Connects(?d,?rl .?r2) 

An inference rule used in this example is: Connects(?d. ?rl. ?r2) 
+ Connects(?d, ?r2, ?rl). The specific explanation for this plan 
is shown in Figure 6. The resulting generalization, shown in 
Figure 7, doesn’t constrain the final destination of the robot to 
be the same as its room of origin. The generalized plan would 
support having the robot move the box to a Room3 connected to 
Room2 rather than back to Rooml. 

lnRoom(Robot,Rooml) 

PushThru(Robot,Box,Drl,Rwm2,Rooml) 

InRoom(Robot,Room2) Connects(Doarl,Room2,Rooml) 

InRoom(Robot,Rooml) ConnectdDcarl,Rooml,Room2) 

Figure 6: STRIPS Example -- Specific Explanation 

InRoom(?a2,?y27) 

PushThru(?a2,?bl,7d2,?x27,?y27) 

lnRoom(?a2,?x27) Connectsf?d2,?x27,?y27) 

t 
GoThru(?aZ,?dl,?xZl,?x27) Connects(?d2,?y27,?x27) 

InRoom(?a2,?x21) Connects(?dl.?x21,?x27) 

Figure 7: STRIPS -- Generalized Explanation 

C. GENESIS Example 

The arson example from the GENESIS system[Mooney85] 
is a more complicated one in which domain specific generaliza- 
tion rules are used to augment the normal EGGS procedure. 
The specific explanation structure shown in Figure 8 is con- 
structed from the following story which is presented to the 
narrative understanding system: 

Stan owned a warehouse. He insured it against fire for 
$100,000. Stan burned the warehouse. He called Prudential 
and told them it was burnt. Prudential paid him $100,000. 

The explanation is that, since Stan s goal was to get money, he 
insured an unburnt warehouse he owned with Prudential. He 
then proceeded to burn down the flammable warehouse and to 
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Figure 8: GENESIS -- Specific Explanation 

Ina(?tl,Charaeter) Believe(!tl,Burnt(~4)) 

Flsmmsble(li4) 
Ias(!tl,Charaeter) Possess(ltl,?il) Isa(?i4,Inanimate) Isa(lcl,r.nsuranceCo) 

Figure 9: GENESIS - Generalized Explanation 

telephone Prudential to tell them about it. Since Prudential [Fikes72] R. E. Fikes, P. E. Hart and N. J. Nilsson, “Learning and 
believed the warehouse was burnt, the building was insured Executing Generalized Robot Plans,” Artificial 

with them, and they had the requisite money to reimburse Stan, Intelligence 3, (19721, pp. 251-288. 

they paid him the indemnity. [Mahadevan85] S. Mahadevan, “Verification-Based Learning: A 

The generalized explanation can be seen in Figure 9. In 
addition to the normal EGGS generalization process, hierarchical 
class inferences (ISA inferences) have been pruned to arrive at 
an appropriate generalization. The rule is to prune any facts 
supporting only ISA inferences. For instance. in this example, 
including the fact that the object burned was a warehouse 
would make the resulting generalization overly specific and less 
useful in understanding future narratives. However. it was 
important to include warehouse in the specific explanation in 
order to infer that it could be burned. Since the fact that the 
object was a warehouse only supports the fact that it is a build- 
ing, this fact is removed from the generalized explanation. Like- 
wise, the fact that the object is a building is also pruned. The 
fact that the object is an inanimate object cannot be pruned 
because it is a precondition for burn, insure-object, and indem- 
nify. Consequently, it becomes part of the generalized struc- 
ture. 

Generalization Strategy for Inferring Problem- 
Reduction Methods,” Proceedings of the Ninth 

International Joint Conference on Artificial 

Intelligence, Los Angeles, CA, August 1985, pp. 616- 
623. 

[Mitchell831 

[Mitchell851 

T. M. Mitchell, “Learning and Problem Solving,w 
Proceedings of the Eighth International Joint 

Conference on Artificial Intelligence, Karlsruhe, West 
Germany, i\ugust 1983, pp. 1139-1151. 

T. M. Mitchell, S. Mahadevan and L. I. Steinberg, 
‘LEAP: A Learning Apprentice for VLSI Design,” 
Proceedings of the Ninth International Joint 

Conference on Artificiul Intelligence, Los Angeles, CA, 
-4ugust 1985, pp. 573-580. 

[Mitchell861 

[Mooney851 

V CONCLUSION 

In an attempt to formulate a general framework for 
explanation-based generalization, we have developed a represen- 
tation and an algorithm which we believe are well suited for 
learning in a wide variety of domains. The representation of 
explanations defined in this paper has allowed easy representa- 
tion of a wide variety of examples from various domains. The 
EGGS algorithm is an efficient and concise algorithm which we 
have used to generalize each of these examples with the same 
generalizing system. Future research issues include techniques 
for improving generality. such as the pruning of hierarchical 
class inferences discussed above, and methods for dealing with 
imperfect and intractable domain theories and other problems 
outlined in [Mitchell%]. 

[Mooney861 

T. M. Mitchell, R. Keller and S. Kedar-Cabelli, 
“Explanation-Based Generalization: A Unifying L’iew,” 
.Ilachine Learning 1, 1 (January 19861, . 

R. J. Mooney and G. F. DeJong, “Learning Schemata 
for Natural Language Processing,” Proceedings of the 

Ninth International Joint Conference on Artificial 

Intelligence, Los Angeles, CA, August 1985. 

R. Mooney and S. Bennett, “A Domain Independent 
Explanation-based Generalizer,” Working Paper 7 1, ii1 
Research Group, Coordinated Science Laboratory, 
University of Illinois, Urbana, Il., May 1986. 

[Nilsson80] 

[O’Rorke84] 

N. J. Nilsson, Principles of .4rtifzcial Intelligence, 

Tioga Publishing Company, Palo Alto, CA, 1980. 

P. V. O’Rorke, ‘Generalization for Explanation-based 
Schema Acquisition,” Proceedings of the National 

Conference on 4rtifrcial Intelligence, Austin, TX, 
August 1984, pp. 260-263. 
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