
Mapping Explanation-Based Generalization onto Soar’

Paul S. Rosenbloom
Knowledge Systems Laboratory

Department of Computer Science
Stanford University

701 Welch Road (Bldg. C)
Palo Alto, CA 94304

ABSTRACT

Explanation-based generalization (EBG) is a powerful ap-
proach to concept formation in which a justifiable concept
definition is acquired from a single training example and an un-
derlying theory of how the example is an instance of the concept.
Soar is an attempt to build a general cognitive architecture com-
bining general learning, problem solving, and memory
capabilities. It includes an independently developed learning
mechanism, called chunking, that is similar to but not the same
as explanation-based generalization. In this article we clarify the
relationship between the explanation-based generalization
framework and the Soar/chunking combination by showing how
the EBG framework maps onto Soar, how several EBG concept-
formation tasks are implemented in Soar, and how the Soar ap-
proach suggests answers to some of the outstanding issues in
explanation-based generalization.

I INTRODUCTION

Explanation-based generalization (EBG) is an approach to
concept acquisition in which a justifiable concept definition is
acquired from a single training example plus an underlying
theory of how the example is an instance of the
concept [l, 15,261. Because of its power, EBG is currently one
of the most actively investigated topics in machine learning
[3, 5, 6, 12, 13, 14, 16, 17, 18, 23, 24, 251. Recently, a unifying

framework for explanation-based generalization has been
developed under which many of the earlier formulations can be
subsumed [15].

Soar is an attempt to build a general cognitive architecture
combining general learning, problem solving, and memory
capabilities [9]. Numerous results have been generated with
Soar to date in the areas of learning [lo, 111, problem
solving [7, 81, and expert systems [21]. Of particular importance
for this article is that Soar includes an independently developed
learning mechanism, called chunking, that is similar to but not
the same as explanation-based generalization.

The goal of this article is to elucidate the relationship between
the general explanation-based generalization framework - as
described in [15] - and the Soar approach to learning, by map-
ping explanation-based generalization onto Soar.* The resulting
mapping increases our understanding of both approaches and

1
Thrs research was sponsored by the Defense Advanced Research Projects

Agency (DOD) under contracts NOOO39-83-C-0136 and F3361581-K-1539, and
by the Sloan Foundation. Computer facilities were partially provided by NIH
grant RR-00785 to Sumex-Aim. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the US Government, the Sloan Foundation, or the
National Institutes of Health.

2
Another even more recent attempt at providing a uniform framework for

explanation-based generalization can be found in [2]. It should be possible to
augment the mapping described here to include this alternative view, but we do
not do that here.

John E. Laird
Intelligent Systems Laboratory

Xerox Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, CA 94304

allows results and conclusions to be transferred between them.
In Sections II -IV , EBG and Soar are introduced and the initial
mapping between them is specified. In Sections V and VI , the
mapping is refined and detailed examples (taken from [15]) of
the acquisition of a simple concept and of a search-control con-
cept are presented. In Section VII , differences between EBG
and learning in Soar are discussed. In Section VIII , proposed
solutions to some of the key issues in explanation-based
generalization (as set out in [15]) are presented, based on the
mapping of EBG onto Soar. In Section IX , some concluding
remarks are presented.

II EXPLANATION-BASED GENERALIZATION
As described in [15], explanation-based generalization is

based on four types of knowledge: the goal concept, the training
example, the operationality constraint, and the domain theory.
The goal concept is a rule defining the concept to be learned.
Consider the Safe-to-Stack example from [15]. The aim of the
learning system is to learn the concept of when it is safe to stack
one object on top of another. The goal concept is as follows3

lFragileQvLighter(x,y)++Safe-to-Stack(x,y) (1)
The training example is an instance of the concept to be

learned. It consists of the description of a situation in which the
goal concept is known to be true. The following Safe-to-Stack
training example [15] contains both relevant and irrelevant infor-
mation about the situation.

On(ol,o2)
Isa(o1 ,box) Color(o1 ,Red) Volume(o1 ,l) Density(o1 ,.l) (2)
Isa(o2,endtable) Color(o2,blue)

The operationality criterion characterizes the generalization
language; that is, the language in which the concept definition is
to be expressed. Specifically, it restricts the acceptable concept
descriptions to ones that are easily evaluated on new positive
and negative examples of the concept. One simple
operationality constraint is that the concept description must be
expressed in terms of the predicates that are used to define the
training example. An alternative, and the one used in [15], is to
allow predicates that are used to define the training example
plus other easily computable predicates, such as Less. If the
goal concept meets the operationality criterion then the prJoblem
is already solved, so the cases of interest all involve a non-
operational goal concept. One way to characterize EBG is as the
process of operationalizing the goal concept. The goal concept
is reexpressed in terms that are easily computable on the in-
stances.

The domain theory consists of knowledge that can be used in
proving that the training example is an instance of the goal con-

3
Though this goal concept includes

them actually gets used in the example.
a pair of disjunctive clauses, only one of

LEARNING / 561

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

cept. For the Safe-to-Stack example, the domain theory consists
of rules and facts that allow the computation and comparison of
object weights.

Volume(pl,vl)ADensity(pl,dl)+ Weight(pl,vl*dl) (3)
Weight(pl,wl)AWeight(p2,w2)r\less(wl, w2) + Lighter(pl,p2) (4)
Isa(pl,endtable) -+ Weight(pl,S) (5)
Less(.l,S) (6)
. . .

Given the four types of knowledge just outlined, the EBG algo-
rithm consists of three steps: (1) use the domain theory to prove
that the training example is an instance of the goal concept; (2)
create an explanation structure from the proof - the tree struc-
ture of rules that were used in the proof - filtering out rules and
facts that turned out to be irrelevant; and (3) regress the goal
concept through the explanation structure - stopping when
operational predicates are reached - to yield the general con-
ditions under which the explanation structure is valid. The
desired concept definition consists of the conditions generated
by the regression process.

Volume(x,v)hDensity(x,d)AIsa(y,endtable)ALess(v*d,5)
4 Safe-to-Stack(x,y) (7)

Ill SOAR
The most complete description of Soar can be found in [9], and

summaries can be found in most of the other Soar articles. With-
out going into great detail here, the mapping of explanation-
based generalization onto Soar depends upon five aspects of the
Soar architecture.

Problem spaces. Problem spaces are used for all goal-based
behavior. This defines the deliberate acts of the architecture:
selection of problem spaces, states, and operators.

Subgoals. Subgoals are generated automatically whenever an

impasse is reached in problem solving. These impasses, and
thus their subgoals, vary from problems of selection (of problem
spaces, states, and operators) to problems of operator instan-
tiation and application. When subgoals occur within subgoals, a
goal hierarchy results. An object created in a subgoal is a result
of the subgoal if it is accessible from any of the supergoals,
where an object is accessible from a supergoal if there is a link
from some other object in the supergoal to it (this is all finally
rooted in the goals).

Production systems. A production system is used as the
representation for all long-term knowledge, including factual,
procedural, and control information. The condition language is
limited to the use of constants and variables, the testing of
equality and inequality of structured patterns, and the conjunc-
tion of these tests. Disjunction is accomplished via multiple
productions. The action language is limited to the creation of
new elements in the working memory - functions are not al-
lowed. The working memory is the locus of the goal hierarchy
and of temporary declarative information that can be created
and examined by productions.

Decision Cycle. Each deliberate act of the architecture is ac-
complished by a decision cycle consisting of a monotonic
elaboration phase, in which the long-term production memory is
accessed in parallel until quiescence, followed by a decision pro-
cedure which makes a change in the problem-solving situation
based on the information provided by the elaboration phase. All
of the control in Soar occurs at this problem-solving level, not at
the level of (production) memory access.

Chunking. Productions are automatically acquired that sum-
marize the processing in a subgoal. The actions of the new
productions are based on the results of the subgoal. The con-
ditions are based on those aspects of the initial situation that
were relevant to the determination of those results.

IV THE INITIAL MAPPING
Given the descriptions of explanation-based generalization

and Soar, it is not difficult to specify an initial mapping of EBG
onto Soar (Figure 1). The goal concept is simply a goal to be
achieved. The training example is the situation that exists when
a goal is generated. The operationality criterion is that the con-
cept must be a production condition pattern expressed in terms
of the predicates existing prior to the creation of the goal (a
disjunctive concept can be expressed by a set of productions).
The domain theory corresponds to a problem space in which the
goal can be attempted, with the predicates defined by the theory
corresponding to operators in the problem space.

goal concept w goal
training example w pre-goal situat.ion
operationality constraint w pre-goal predicates
domain theory Q problem space

Figure 1: The mapping of the EBG knowledge onto Soar.

The Safe-to-Stack problem can be implemented in Soar by
defining an operator, let‘s call it Safety?(x, y), which examines a
state containing two objects, and augments it with information
about whether it is safe to stack the first object on the second
object. The concept will be operational when a set of produc-
tions exist that directly implement the Safety? operator. When
the operator is evoked and no such productions exist - that is,
when the operational definition of the concept has not yet been
learned - an operator-implementation subgoal is generated be-
cause Soar is unable to apply the Safety? operator. In this sub-
goal the domain-theory problem space can be used to determine
whether it is safe to stack the objects. On the conclusion of this
problem solving, chunks are learned that operationalize the con-
cept for some class of examples that includes the training ex-
ample. Future applications of the Safety? operator to similar ex.
amples can be processed directly by the newly acquired produc-
tions without resorting to the domain theory.

V A DETAILED EXAMPLE

In this section we take a detailed look at the implementation of
the Safe-to-Stack problem in Soar, beginning with the training
example, the domain theory, and the goal concept; followed by a
description of the concept acquisition process for this task.

The standard way to represent objects in Soar is to create a
temporary symbol, called an identifier, for each object. All of the
information about the object is associated with its identifier, in-
cluding its name. This representational scheme allows object
identity to be tested - by comparing identifiers - without test-
ing object names, a capability important to chunking. In this
representation, the Safe-to-Stack training example involves a
slightly more elaborated set of predicates than is used in (2).
The identifiers are shown as greek letters. In (2), the symbols 01
and 02 acted like identifiers. In the example below they are
replaced by a and /? respectively.

Wd)

Name(a,box) Color(a,y) Volume(a,S) Density(a,&)
Name(y,red) Name(G,l) Name(&,.l) (8)

Name(P,endtable) Color(p,{)
Name({,blue)

The domain theory is implemented in Soar by a problem space,
called Safe, containing the following four operators. Each of
these operators is implemented by one or more productions. In
production number 9, the use of a variable (w) in the action of the

562 I SCIENCE

production, without it appearing in a condition, denotes
new identifier is to be created and bound to that variable.

that a

Weight?(p)
Name(p,endtable) + Weight(p,w)AName(wS)
Volume(p,v)ADensity(p,d)AProduct(v,d,w)+ Weight(p,w)

Lighter?(pl,p2)
Weight(pl,wl)hWeight(p2,w2)ALess(wl,w2)* Lighter(p1

Less?(n 132)
Name(nl,.l)AName(n2,5)+ Less(nl,n2)
. . .

Product?(n l,n2)
Name(nl.1) -+ Product(nl,n2,n2)

(9)
(10)

,P2) (11)

(12)

(13)

There are two notable differences between this implementation
and the domain theory specified in EBG. The first difference is
that the Less predicate is defined by an operator rather than
simply as a set of facts. Because all long-term knowledge in
Soar is encoded in productions, this is the appropriate way of
storing this knowledge. The implementation of the operator con-
sists of one production for each fact stored (it could also have
been implemented as a general algorithm in an operator-
implementation subgoal). The second difference is that the mul-
tiplication of the volume by the density is done by an operator
rather than as an action in the right-hand side of the production.
Because Soar productions do not have the capability to execute
a multiplication operation as a primitive action, Product needs be
handled in a way analogous to Less. For this case we have
provided one general production which knows how to multiply by
one. To implement the entire Product predicate would require
either additional implementation productions or a general mul-
tiplication problem space in which a multiplication algorithm
could be performed.

The Safe problem space also contains one more operator that
defines the goal concept. For the purposes of problem solving
with this information, the rule defining the goal concept need not
be treated differently from the rules in the domain theory. It is
merely the last operator to be executed in the derivation.

Safe-to-Stack?(p 142)
Fragile(p2) --t Safe-toStack(pLp2) (14)
Lighter(pLp2) t Safe-to-Stack(pLp2) (15)

In addition to the operators, there are other productions in the
Safe problem space that create the initial state and propose and
reject operators.4 In what follows we will generally ignore these
productions because they add very little to the resulting concept
definition - either by not entering into the explanation structure
(the reject productions), having conditions that duplicate con-
ditions in the operator productions (the propose productions), or
adding general context-setting conditions (the initial-state
production). In other tasks, these productions can have a larger
effect, but they did not here.

Figure 2 shows the mapping of the EBG process onto Soar.
The EBG proof process corresponds in Soar to the process of
problem solving in the domain-theory problem space, starting
from an initial state which contains the training example, and
terminating when a state matching the goal concept is achieved.

We can pick up the problem solving at the point where there is
a state selected that contains the training example and a Safety?
operator selected for that state. Because the operator cannot be
directly applied to the state, an operator-implementation subgoal
is immediately generated, and the Safe problem space is

4There are no search-control productions in this implementation of the Safe-

to-Stack problem (except for ones that reject operators that are already
accomplished). Instead, for convenience we guided Soar through the task by

hand. The use of search-control productions would not change the concept
learned because Soar does not include them in the explanation structure [9].

proof
explanation structure
goal regression

ts problem solving
= backtraced production traces
(=$ backtracing and variablization

Figure 2: The mapping of the EBG process onto Soar.

selected for this new goal. If there is enough search-control
knowledge available to uniquely determine the sequence of
operators to be selected and applied (or outside guidance is
provided), so that operator-selection subgoals are not needed,
then the following sequence of operator instances, or one func-
tionally equivalent to it, will be selected and applied.

Weight?(P)
Name(P,etidtable) --+ Weight(P,1))AName(q,S)

Product?
(16)

Name(G,l)+ Product(G,E,&)
Weight?(a)

(17)

Volume(a,8)ADensity(a,E)AProduct(a,&,&) + Weight(a,&) (18)
Less?(&,q)

Name(e,.l)AName(q,S)+ Less(&,$
Lighter?(a,P)

(19)

Weight(a,&)AWeight(P,q)ALess(&,q) --+ Lighter(a$)
Safe-to-Stack?(a,P)

(20)

Lighter(a,P) + Safe-to-Stack(a,/?) (21)
As they apply, each operator adds information to the state. The
final operator adds the information that the Safety? operator in
the problem space above was trying to generate -
Safe-to-Stack(a, /I), A test production detects this and causes
the Safety? operator to be terminated and the subgoal to be
flushed.

After the subgoal is terminated, the process of chunk acquisi-
tion proceeds with the creation of the explanation structure. In
Soar, this is accomplished by the architecture performing a
backtrace over the production traces generated during the sub-
goal. Each production trace consists of the working-memory
elements matched by the conditions of one of the productions
that fired plus the working-memory elements generated by the
production’s actions. The backtracing process begins with the
results of the subgoal - Safe-to-Stack(a, /I) - and traces back-
wards through the production traces, yielding the set of produc-
tion firings that were responsible for the generation of the
results. The explanation structure consists of the set of produc-
tion traces isolated by this backtracing process5 In the Safe-to-
Stack example, there is only one result, and its explanation
structure consists of the production traces listed above
(productions 16-21). Other productions have fired -to propose
and reject operators, generate the initial state in the subgoal,
and so on - but those that did enter the explanation structure
only added context-setting conditions, linking the relevant infor-
mation to the goal hierarchy and the current state. They did not
add any conditions that test aspects of the training example.

The backtracing process goes a step beyond determining the
explanation structure. It also determines which working-memory
elements should form the basis of the conditions of the chunk by

5
It IS worth noting that earlier versions of Soar computed the conditions of

chunks by determining which elements in working memory were examined by
any of the productions that executed in the subgoal [ll]. When the problem
solving is constrained to look only at relevant Information, as it was in the early
work on human practice [20], this worked fine. However, in a system that is
searching, often down what turn out to be dead ends, this assumption can be
violated, leading to chunks that are overspecific. Backtracing was added to Soar
to avoid these problems with dead ends [9, 111. This modification was based on
our understanding of the EBG approach, but it was not done directly to model

EBG.

LEARNING I 563

isolating those that are (1) part of the condition side of one of the
production traces in the explanation structure and (2) existed
prior to the generation of the subgoal. The actions of the chunk
are based directly on the goal’s results. The following instan-
tiated production is generated by this process.

Safety?(a,P)
Volume(a,8)AName(6,1)ADensity(a,~)AName(~,.l)

AName(P,endtable) ---) Safe-to-Stack(a$) (22)
Soar’s condition-finding algorithm is equivalent to regressing

the instantiated goal - actually, the results of the goal -
through the (instantiated) production traces.6 It differs from the
EBG goal regression process in [15] in making use of the instan-
tiated goal and rules rather than the more general parameterized
versions. The Soar approach to goal regression is simpler, and
focuses on the information in working memory rather than the
possibly complex patterns specified by the rules, but it does not
explain how variables appear in the chunk. Variables are added
during a later step by replacing all of the object identifiers with
variables. Identifiers that are the same are replaced by the same
variable and identifiers that are different are replaced by different
variables that are forced to match distinct objects. The following
variablized rule was generated by Soar for this task.

Safety?(x,y)
Volume(x,v)AName(v,l)ADensity(x,d)AName(~,.l)

AName(‘y,endtable) + Safe-to-Stack(x,y) (23)

This production is not as general as the rule learned by EBG
(rule 7 in Section II). Instead of testing for the specific volume
and density of the first object, the EBG rule tests that their
product is less than 5. This happens because the EBG im-
plementation assumed that Less and Product were operational;
that is, that they were predicates at which regression should
stop. In the Soar example they were not operational. Both of
these predicates were implemented by operators, so the regres-
sion process continued back through them to determine what
lead them to have their particular values.

In EBG, operationalized predicates showed up in one of two
ways: either the set of true instances of the predicate was in-
cluded along with the domain theory and the training example
(Less), or the predicate was a primitive operation in the rule lan-
guage (Product). The key point about both of these approaches
is that the computation of the value of the predicate will be
cheap, not requiring the use of inference based on rules in the
domain theory. In Soar, any preexisting predicate is cheap, but
functions are not allowed in the rule language. Therefore, the
way for Soar to generate the more general rule is to make sure
that all of the operational predicates preexist in working memory.
Specifically, objects representing the numbers and the predi-
cates Less and Product need to be available in working memory
before the subgoal is generated, and the endtable-weight rule
must be changed so that it makes use of a preexisting object
representing the number 5 rather than generating a new one.
Under these circumstances, backtracing stops at these items,
and the following production is generated by Soar.

Safety?(x,y)
Volume(x,v)ADensity(x,d)ANameCv,endtable)AProduct(v,d,d)

ALess(d,w)AName(w,5) -t Safe-to-Stack(x,y) (24)

This production does overcome the problem, but it is still more
specific than rule 7 because the density and the weight of the
box were the same in this example (they were represented by the
same identifier) - the variablization strategy avoids creating
overly general rules but can err in creating rules that are too
specific. Thus the chunk only applies in future situations in

6
See [19] for a good, brief description of goal regression.

which this is true. If an example were run in which the density
and the weight were different, then a rule would be learned to
deal with future situations in which they were different.

VI SEARCH-CONTROL CONCEPTS
One of the key aspects of Soar is that different types of sub-

goals occur in different situations. The implication of this for
EBG is that the type of subgoal determines the type of concept to
be acquired. In the previous section we have described concept
formation based on one type of subgoal: operator implemen-
tation. In this section we look at one other type of subgoal,
operator selection, and show how it can lead to the acquisition of
search-control concepts - descriptions of the situations in
which particular operators have particular levels of utility. The
process of extending the mapping between EBG and Soar to this
case reveals the underlying relationships among the various
types of knowledge and processes used in the acquisition of
search-control concepts.

As described in [15], in addition to the four types of knowledge
normally required for EBG, its use for the acquisition of search-
control concepts requires two additional forms of knowledge: (1)
the solution property, which is a task-level goal; and (2) the task
operators, which are the operators to be used in achieving the
solution property. For example, in the symbolic integration
problem posed in [15], the solution property is to have an equa-
tion without an integral in it, and the task operators specify trans-
formation rules for mathematical equations.

The domain theory includes task-dependent rules that deter-
mine when a state is solved (the solution property is true) and
task-independent rules that determine whether a state is solvable
(there is a sequence of operators that will lead from the state to a
solved state) and specify how to regress the solution property
back through the task operators. The goal concept is to deter-
mine when a particular task operator - 0~3, which moves a

numeric coefficient outside of the integral in forms like I 7?dx -

is useful in achieving the solution property. That is, we are look-
ing for a description of the set of unsolved states for which the
application of the operator leads to a solvable state.

The EBG approach to solving this generalization problem in-
volves two phases, both of which are controlled by the domain
theory. In the first phase, a search is performed with the task
operators to determine whether the state resulting from the ap-
plication of Op3 is solvable. In the second phase, the solution
property is regressed through the task operators in the solution
path - a deliberate regression controlled by the domain theory,
not the regression that automatically happens with EBG. These
steps form the basis for the explanation structure. Using a train-
ing example of [7>dx, the following concept description was
learned [15].

Matches(y,f(.)l r.$~x)AIsa(r,real)AIsa(s,real)
Alsa(ffunction)ANot-Equal(s, - 1) 4 Useful-Op3(y) (25)

In the Soar implementation of this task, the solution property
and task operators correspond to a goal and problem space
respectively. The task-level search to establish state solvability
corresponds to a search in this problem space. The regression
of the solution property through the task operators simply cor-
responds to chunking. In fact, all of the knowledge and process-
ing required for this task map cleanly into a hierarchy of sub-
goals in Soar, as shown in Figure 3. The details of this mapping
should become clear as we go along.

The problem solving that generates these goals is shown in
Figure 4. At the very top of the figure is the task goal of having
an integral-free version of the formula. This first goal cor-
responds to the solution property in the EBG formalism (Figure
3). A problem space containing the task operators is used for
this goal and the initial state represents the formula to be in-

564 / SCIENCE

solution property CJ Goal 1: problem-solving task
goal concept = Goal 2: operator selection
domain theory = Goal 3: operator evaluation

solved u goal test
solvable u problem solving
regression u chunking

task operators tj Problem space for goals 1 & 3

Figure 3: Extending the mapping for search-control concepts.

tegrated. Because both operator Op3 and another operator are
acceptable for this state, and the knowledge required to choose
between them is not directly available in productions, an
operator-selection subgoal is created. This second subgoal cor-
responds to the EBG goal concept (Figure 3) - the desire to
determine the knowledge necessary to allow the selection of the
most appropriate operator. In this subgoal, search-control
knowledge about the utility of the competing operators (for the
selected state) is generated until an operator can be selected.
For such goals, Soar normally employs the Selection problem
space. The Selection problem space contains an Evaluate
operator, which can be applied to the competing task operators
to determine their utility.

If, as is often the case, the information about how to evaluate
an operator is not directly available, an evaluation subgoal (to
implement the Evaluate operator) is created. The task in this
third-level subgoal is to determine the utility of the operator. To
do this, Soar selects the original task problem space and state,
plus the operator to be evaluated. It then applies the operator to
the state, yielding a new state. If the new state can be evaluated,
then the subgoal terminates, otherwise the process continues,

1. Task

f 7x:x

2. Operator
selection

. . .

‘.‘.‘.’ ‘...‘.’ ‘.‘. . .::: ‘::: .::: .
3. Operator

1
success

evaluation

4. Operator
selection

5. Operator

‘.‘.‘.’ .::: . 1:::::. .:.:.:. .
5c!2 success

evaluation
\

7/x*dx
op9 7x3

-7

form J gsdx - is applied. At this point Op3 is given an evaluation
of success, resulting in search-control knowledge being
generated that says that no other operator will be better than it
(similar processing also occurs for Op9). Because this new
knowledge is sufficient to allow the selection of Op3 in the top
goal, it gets selected and applied immediately, terminating the
lower goals.

The EBG domain theory maps onto several aspects of the
processing of the third-level evaluation subgoal (Figure 3). The
EBG rules that determine when a state is solved correspond to a
goal test rule. The EBG rules that determine state solvability
correspond to the problem-solving strategy in the evaluation
subgoal. The EBG rules that deliberately regress the solution
property through the task operators correspond to the chunking
process on the evaluation subgoal - goal regression in Soar is
thus always done by chunking, but possibly over different sub-
goals. These chunks are included as part of the explanation
structure for the parent operator-selection goal because the
processing in the bottom subgoal was part of what lead to the
parent goal’s result.

Chunks are learned for each of the levels of goals, but the ones
of interest here are for the operator-selection subgoals. These
chunks provide search-control knowledge for the task problem
space - the focus of this section. Soar acquired the following
production for the top operator-selection goal. This production
is presented in the same abstract form that was used for the
corresponding EBG rule (rule 25).

Proposed(a)AName(a,Op3)Alntegral(a,b)

AMatches(b,l~.-8&+Alsa(r,real)Alsa(s,reai)

ANot-Equal(s, - 1) --+ Best(u) (26)
This production specifies a class of situations in which operator

Op3 is best.7 Operator Op3 takes three parameters in the Soar
implementation: (1) the integral (17ddx); (2) the coefficient (7);
and (3) the term (2) which is the other multiplicand within the
integral. The predicates in this production examine aspects of
these arguments and their substructures. Though the details
tend to obscure it, the content of this production is essentially
the same as the EBG rule.

Two additional points raised by this example are worth men-
tioning. The first point is that the EBG rule (rule 25) checks
whether there is an arbitrary function before the integral,
whereas this rule does not. The additional test is absent in the
Soar rule because the representation - which allowed both tree
structured and flat access to the terms of the for.,lula - allowed
any term to be examined and changed independent of the rest of
the formula. Functions outside of the integral are thus simply
ignored as irrelevant. The second point is that the learning of
this rule requires the climbing of a type hierarchy. The training
example mentions the number 7, but not that it is a real number.
In Soar, the type hierarchy is defined by adding a set of rules
which successively augment objects with higher-level descrip-
tors. All of these productions execute during the first elaboration
phase after the training example is defined, so the higher-level
descriptors are already available - that is, operational - before
the subgoal is generated. This extra knowledge abo$ the
semantics of the concept description language is thus encoded
uniformly in the problem solver’s memory along with the rest of
the system’s knowledge.

Figure 4: Problem solving in the symbolic integration task.

generating further levels of selection and evaluation goals, until
a task desired state - that is, a state matching the solution
property - is reached, or the search fails. For this problem, the
search continues until Op9 - which integrates equations of the

7 To Soar, stating that an object is best means that the object is at least as
good as any other possibility. Because operators are only being rated here on
whether their use leads to a goal state, best here is equivalent to useful in rule
25.

LEARNING I 565

VII DIFFERENCES IN THE MAPPING
The previous sections demonstrate that the EBG framework

maps smoothly onto Soar, but three noteworthy differences did
show up. The first difference is that EBG regresses a variablized
goal concept back through variablized rules, whereas chunking
regresses instantiated goal results through instantiated rules
(and then adds variables). In other words, both schemes use the
explanation structure to decide which predicates from the train-
ing example get included in the concept definition - thus plac-
ing the same burden on the representation in determining the
generality of the predicates included’ - but they differ in how
the definition is variablized. In EBG, this process is driven by
unification of the goal concept with the relevant rules of the
domain theory, whereas in chunking it is driven by the represen-
tation of the training example (that is, which identifiers appear
where). Putting more of the burden on the representation allows
the chunking approach to be more efficient, but it can also lead
to the acquisition of overly-specific concept definitions.

The second difference is that predicates can be operation-
alized in EBG either by including them as facts in the domain
theory or by making them into built-in functions in the rule lan-
guage. In Soar, only the predicates existing in working memory
prior to the generation of a subgoal are operational for that sub-
goal. This is not a severe limitation because any predicate that
can be implemented in the rule language can also be imple-
mented by an operator in Soar, but it could lead to efficiency
differences. One direction that we are actively pursuing is the
dynamic augmentation of the set of operational predicates for a
goal concept during the process of finding a path from the train-
ing example to the goal concept. If intermediate predicates get
operationalized - that is chunks are learned for them - then
the overall goal concept can be expressed in terms of them
rather than just the preexisting elements.g

The third difference is that the EBG implementation of search-
control acquisition requires the addition of general interpretive
rules to enable search with the task operators and the regression
of the solution property through them”, while Soar makes use of
the same goal/problem-spaceichunking approach as is used for
the rest of the processing. In the Soar approach, the represen-
tation is uniform, and the different components integrate
together cleanly.

VIII EBG ISSUES
In [15], four general issues are raised about EBG:

1. The use of imperfect domain theories.
2. The combination of explanation-based and similarity-

based methods.
3. The formulation of generalization tasks.
4. The use of contextual knowledge.

The purpose of this section is to suggest solutions to three of
these issues - the second issue has not yet been seriously in-
vestigated in Soar, so rather than speculate on how it might be
done, we will leave that topic to a later date. Other solutions
have been suggested for these issues (see [15] for a review of
many of these), but the answers presented here are a mutually
compatible set derived from the mapping between EBG and

*See [l l] for a
generality in Soar.

discussion of the interaction between representation and

‘The approach
and Mooney [2].

is not unlike the

10
However, a more uniform approach

rules by EBG can be developed [4].

independently developed by DeJong

Soar.
The first issue -the use of imperfect domain theories - arises

because, as specified in [15], in order to use EBG it is necessary
to have a domain theory that is (1) complete, (2) consistent, and
(3) tractable. Should any of these conditions not hold, it will be
impossible to prove that the training example is an instance of
the concept. Not mentioned in [15], but also important, is that
the correctness of the resulting generalization is influenced by
two additional conditions on the domain theory: that it be (4) free
of errors and (5) not defeasible (a defeasible domain theory is
one in which the addition of new knowledge can change the
outcome).

If the process of generating an explanation is viewed not as
one of generating a correct proof, but of solving a problem in a
problem space, then the first four conditions reduce to the same
ones that apply to any problem solver. Moreover they are all
properties of applying the problem space to individual problems,
and not of the problem space (or domain theory) as a whole. A
space that is perfectly adequate for a number of problems may
fail for others. As such, violations of these conditions can be
dealt with as they arise on individual problems. In Soar, varying
amounts of effort have gone into investigating how to deal with
violations of these conditions. A variety of techniques have been
used to make problem solving more tractable, including chunk-
ing, evaluation functions, search-control heuristics, subgoals,
and abstraction planning [9, 10, 11, 21, 221. However, the other
conditions have been studied to a much lesser extent.

The one condition that does not involve a pure problem solving
issue is defeasibility. The explanation process may progress
smoothly and without error with a defeasible theory, but it can
lead to overgeneralization in both EBG and Soar. In the EBG
version of the Safe-to-Stack problem, the theory is defeasible
because, as specified in [15], the rule which computes the
weight of the endtable (rule 5) is actually a default rule which can
be overridden by a known value. The acquired concept defini-
tion (rule 7) is thus overgeneral. It will incorrectly apply in situa-
tions where there is a small non-default weight for the endtable.
In Soar, domain theories can be defeasible for a number of
reasons, including the use of default processing for the resolu-
tion of impasses and the use of negated conditions in
productions.” Sometimes the domain theory can be refor-
mulated so that it is not defeasible, and at other times it is pos-
sible to reflect the defeasibility of the domain theory in the con-
cept definition - for example, by including negated conditions
in the concept definition - but when defeasibility does exist and
yields overgeneralization, the problem of recovering from over-
generalization becomes key. Though we do not have this
problem completely solved, Soar can recover when an over-
general chunk fails to satisfy some higher goal in the hierarchy.

As mentioned in [15], the third issue - the formulation of
generalization problems - is resolved by Soar. Whenever a sub-
goal is generated, a generalization problem is implicitly defined.
The subgoal is a problem-solving goal - to derive the
knowledge that will allow problem solving to continue - rather
than a learning goal. However, one of the side effects of subgoal
processing is the creation of new chunk productions which en-
code the generalized relationship between the initial situation
and the results of the subgoal.

The fourth issue - the use of contextual knowledge - is
straightforward in Soar. At each decision, all of the knowledge
available in the problem space that is relevant to the current
situation is accessed during the elaboration phase. This can
include general background and contextual knowledge as well

to the acquisition of search-control

11
Negated conditions test for the absence of an element of a certain type,

which is not the same as testing whether the negation of an element is known to
be true (as is done by the Not-Equal predicate in production 26).

566 / SCIENCE

as more local knowledge about the task itself.

IX CONCLUSION
Explanation-based generalization and Soarichunking have

been described and related, and examples have been provided
of Soar’s performance on two of the problems used to exemplify
EBG in [15]. The mapping of EBG onto Soar is close enough
that it is safe to say that chunking is an explanation-based
generalization method. However, there are differences in (1) the
way goal regression is performed, (2) the locus of the operational
predicates, and (3) the way search-control concepts are learned.

Mapping EBG onto Soar suggests solutions to a number of the
key issues in explanation-based generalization, lending
credence to the particular way that learning and problem solving
are integrated together in Soar. Also, based on the previous
experience with Soar in a variety of tasks [9] - including expert-
system tasks[21] - this provides evidence that some form of
EBG is widely applicable and can scale up to large tasks.

ACKNOWLEDGMENTS

We would like to thank Tom Dietterich, Gerald DeJong, Jack
Mostow, Allen Newell, and David Steier, for their helpful com-
ments on drafts of this article. We would also like to thank the
members of the Soar and Grail groups at Stanford for their feed-
back on this material.

REFERENCES

1. DeJong, G. Generalizations based on explanations.
Proceedings of IJCAI-81,198l.
2. DeJong, G., 8 Mooney, R. “Explanation-based learning: An
alternative view.” Machine learning 7 (1986). In press
3. Ellman, T. Explanation-based learning in logic circuit design.
Proceedings of the Third International Machine Learning
Workshop, Skytop, PA, 1985, pp. 35-37.
4. Hirsh, H. Personal communication. 1986
5. Kedar-Cabelli, S. T. Purpose-directed analogy. Proceedings
of the Cognitive Science Conference, Irvine, CA, 1985.
6. Keller, R. M. Learning by re-expressing concepts for efficient
recognition. Procedings of AAAI-83, Washington, D.C., 1983,
pp. 182-186.
7. Laird, J. E. Universal Subgoaling. Ph.D. Th., Carnegie-
Mellon University, 1983.
8. Laird, J. E., and Newell, A. A universal weak method: Sum-
mary of results. Proceedings of the Eighth IJCAI, 1983.
9. Laird, J. E., Newell, A., & Rosenbloom, P. S. Soar: An ar-
chitecture for general intelligence. In preparation
10. Laird, J. E., Rosenbloom, P. S., & Newell, A. Towards
chunking as a general learning mechanism. Proceedings of
AAAI-84, Austin, 1984.
11. Laird, J. E., Rosenbloom, P. S., & Newell, A. “Chunking in
Soar: The anatomy of a general learning mechanism.” Machine
Learning 1 (1986).
12. Lebowitz, M. Concept learning in a rich input domain:
Generalization-based memory. In Machine Learning: An Artifi-
cial Intelligence Approach, Volume II, R. S. Michalski,
J. G. Carbonell, & T. M. Mitchell, Eds., Morgan Kaufmann
Publishers, Inc., Los Altos, CA, 1986.
13. Mahadevan, S. Verification-based learning: A generaliza-
tion strategy for inferring problem-decomposition methods.
Proceedings of IJCAI-85, Los Angeles, CA, 1985.
14. Minton, S. Constraint-based generalization: Learning
game-playing plans from single examples. Proceedings of
AAAI-84, Austin, 1984, pp. 251-254.
15. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T.
“Explanation-based generalization: A unifying view.” Machine
Learning 7 (1986).

16. Mitchell, T. M., Mahadevan, S., & Steinberg, L. LEAP: A
learning apprentice for VLSI design. Proceedings of IJCAI-85,
Los Angeles, CA, 1985.
17. Mitchell, T. M., Utgoff, P. E., & Banerji, R. Learning by ex-
perimentation: Acquiring and refining problem-solving heuris-
tics. In Machine Learning: An Artificial intelligence Approach,
R. S. Michalski, J. G. Carbonell, T. M. Mitchell, Eds., Tioga
Publishing Co., Palo Alto, CA, 1983, pp. 163-190.
18. Mooney, R. Generalizing explanations of narratives into
schemata. Proceedings of the Third International Machine
Learning Workshop, Skytop, PA, 1985, pp. 126-l 28.
19. Nilsson, N.. Principles of Artificial Intelligence. Tioga, Palo
Alto, CA, 1980.
20. Rosenbloom, P. S., & Newell, A. The chunking of goal
hierarchies: A generalized model of practice. In Machine Learn-
ing: An Artifibial Intelligence Approach, Volume II,
R. S. Michalski, J. G. Carbonell, & T. M. Mitchell, Eds., Morgan
Kaufmann Publishers, Inc., Los Altos, CA, 1986.
2 1. Rosenbloom, P. S., Laird, J. E., McDermott, J., & Orciuch, E.
“Rl -Soar: An experiment in knowledge-intensive programming
in a problem-solving architecture.” EEE Transactions on Pat-
tern Analysis and Machine Intelligence 7,5 (1985), 561-569.
22. Rosenbloom, P. S., Laird, J. E., Newell, A., Golding, A., &
Unruh, A. Current research on learning in Soar. Proceedings of
the Third International Machine Learning Workshop, Sky-top, PA,
1985, pp. 163-172.
23. Segre, A. M. Explanation-based manipulator learning.
Proceedings of the Third International Machine Learning
Workshop, Skytop, PA, 1985, pp. 183-185.
24. Tadepalli, P. Learning in intractable domains. Proceedings
of the Third International Machine Learning Workshop, Skytop,
PA, 1985, pp. 202-205.
25. Utgoff, P. E. Adjusting bias in concept learning. Proceed-
ings of IJCAI-83, Karlsruhe, West Germany, 1983, pp. 447-449.
26. Winston, P. H., Binford, T. O., Katz, B., & Lowry, M. Learn-
ing physical descriptions from functional definitions, examples,
and precedents. Proceedings of AAAI-83, Washington, 1983, pp.
433-439.

LEARNING I 567

