
Learning by Failing to Explain’

Robert J. Hall
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Explanation-based Generalization depends on having an expla-
nation on which to base generalization. Thus, a system with
an incomplete or intractable explanatory mechanism will not be
able to generalize some examples. It is not necessary, in those
cases, to give up and resort to purely empirical generalization
methods, because the system may already know almost every-
thing it needs to explain the precedent. Learning by Failing to
Explain is a method which exploits current knowledge to prune
complex precedents and rules, isolating their mysterious parts.
This paper describes two techniques for Learning by Failing to
Explain: Precedent Analysis, partial analysis of a precedent or
rule to isolate the mysterious new technique(s) it embodies; and
Rule Re-analysis, re-analyzing old rules in terms of new rules to
obtain a more general set.

1 Introduction

A primary motivation for studying learning from precedents is
the intuition that it is easier for a domain expert to present a set
of illustrative examples than it would be to come up with a useful
set of rules. Explanation-based Generalization ((Mitchell, et al,
85) [8], (DeJong and Mooney, 86) [2]) is a powerful method for
using knowledge to constrain generalization*. It can be defined
as generalizing an explanation of why something is an example
of a concept, in order to find a weaker precondition for which
the explanation of concept membership still holds. (This weaker
precondition describes the generalization of the example.)

The motivation for this work is that explanation is hard and
often impossible (e.g. theorem proving). On the other hand,
the efficient student should, as much as possible, know what he
doesn’t know. For example, “I don’t understand step 5,” is a
much more productive query than “Huh?”

There are at least two reasons why an explainer can fail:
the theory is incomplete, so that there is no explanation; or
the explainer simply can’t find the explanation, even though it
exists. The latter case is not just mathematical nitpicking: the
complexity of VLSI circuits and the rich set of optimizations
possible creates large problems for any circuit-understander.

On the other hand, it is seldom the case that a learner knows
absolutely nothing about an example it fails to explain; fre-
quently, a small mysterious thing comes embedded in a large,
mostly well-understood example. For instance, consider a

‘This paper is bared upon work supported under n h’ntional Science
Foundstion Grrtdunte Fellowship.

‘(Mnhndevnn, 85)i7 nnd (Ellmnn, 85)/3: have applied this to logic de-
sign. (Smith, et al, 85 [lo], h:lve applied explzmntion-based techniques to i
knowledge bnse refinement. (Mooney and DeJong, 85)[9] hnve applied it to
learning achematrr. for nntural 1:ingunge processing. (Winston, el a/, 83)[12!
zlbstracts nnalogy-based explan:itLns tcl form rules.

multiplier circuit where the only difference between its design
and a known one is in the way one particular XOR gate is im-
plemented, It would be a shame to retain the complexity of the
entire multiplier when the only new structural information was
in one small subdevice. Rather than just reverting to completely
empirical techniques when the explainer fails, it would be bet-
ter to use current knowledge to throw away the portions of the
example which are understood. This is what I call Learning by
Failing to Ezplain. It is a complementary notion to explanation-
based learning: the former operates precisely when the latter
fails, and when the latter succeeds there is no reason to try the
former.

Learning by Failing to Explain could be used as a filter
in a learning system which combines both explanation- and
empirically-based learning methods. That is, when explanation
fails, use Learning by Failing to Explain to isolate a much sim-
pler example for the generalizer. This work does not use it this
way: the additional generalization issues are beyond its scope.
The current system simply formulates rules without further gen-
eralization. It is not intended that this method is complete in
itself with respect to learning about design.

This work is not intended as a study of human learning. It is
motivated by intuitions about human learning, but no claim is
made that the techniques described here reflect human learning.

There are two techniques which comprise Learning by Failing
to Explain: in the first, the learner analyzes the given precedent
as much as possible, then extracts the mysterious part as a new
rule (or pair of rules). I call this Precedent Analysis. In the
second, the learner uses new rules to re-analyze old rules. That
is, Precedent Analysis needn’t be applied only to precedents;
there are cases where it is beneficial to have another look at
rules found previously. This is called Rule Re-analysis. The
system and the latest experiments with it are documented in
(Hall, 86)j5j. (Hall, 85) [6: has more detail with regard to the
design competences, but documents an earlier version of the
system.

2 Domain and Representation

The current system learns rules of the form “structure X im-
plements functional block Y ,” where by functional block I mean
something like “PLUS,” which represents a constraint between
its inputs and outputs. By structure, I mean an interconnection
of functional blocks, where the interconnection represents data
flow. As indicated, the illustration domain of the system is dig-
ital circuit design. However, the algorithms should apply with
minor modifications to other domains, such as program design,
which are representable in a generalized data flow format. In
fact the system has been applied successfully to learning struc-
tural implementation rules in a simplified gear domain, where
functional constraints take the form of simple arithmetic rela-
tionships among shaft speeds.

568 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

It should be noted that, while the implemented algorithms
are dependent on the functional semantics of the domains, the
basic idea behind Learning by Failing to Explain should be ap-
plicable to many other domains. This is one area for future
work.

The representation for design knowledge is a Design Gram-
mur. This is a collection of rules of the form LHS =+ RBS,
where LHS denotes a single functional block and RHS denotes a K
description of an implementation for LHS. The basic represen-
tational unit is a graph, encoding the functional interconnection
of the blocks. Design Grammars are not, in general, context free
grammars, as the system is allowed to run the rules from right
to left as well as left to right. This allows us to understand opti-
mization of designs as a reverse rule use, followed by a forward
rule use: find a subgraph of the current design stage which is

I I

isomorphic to the RHS of a rule and replace it with the LHS
ab c

symbol. Then expand that new functional block instance with
a different implementation. Figure 1: Learning Example Precedent.

A Design Grammar is an interesting representation of struc-
tural design knowledge both because it is learnable from exam- (the parsed sections), leaving two functionally equivalent sub-
ples via the method described here, and because it enables four graphs which can be turned into two rules with the same LHS.
interesting design competences:

l Top-Down Design: the ability to take a relatively high
level specification of the function of a device and refine it
successively by choosing implementations of subfunctions,
then refining the refinement, and so on. In terms of a De-
sign Grammar, this is viewed as using rules in the forward
direction.

3.1 An Example

Suppose the learner is given the precedent shown in Figure 1.
(The 2-l boxes represent time delay of one clock cycle.) The
left-hand graph is considered to be the high level graph. Suppose
further that the learner knows

l Optimization: the ability to take one device and replace a
piece of it with some other piece so that the resulting de-
vice is functionally the same. In Design Grammar terms,
an optimization step is viewed as a reverse rule use, fol-
lowed by a forward rule use.

l Analysis: the problem of establishing a justification for
why some device performs some given function. This is
the parsing problem for Design Grammars. (Winston, et
al, 83)‘12] takes a similar approach, but extracts rules “on
the fly” from analogous precedents.

l that a one-bit multiplexer (MUX) is implemented by
y = (OR (Ah’D a (NOT s)) (A&D b s)),

l that (AND a (ZERO)) is an implementation of ZERO,

l ‘,“,“d’ (OR 5 (ZERO)) is an implementation of BUFFER,

l that a BUFFER may be implemented simply by a connec-
tion point.

l Analogical Design: the ability to solve a new problem in
a way similar to some already solved problem, or by com-
bining elements of the solutions to many old problems.
In a Design Grammar setting, this is 9unning” known
design derivations on new design problems. This is ac-
complished by finding a partial match between the prob-
lem specification and the initial specification of the known
derivation, applying those transformations which have an
analog in the problem, and leaving out steps which do not.
This technique for controlling search has been explored by
(Mitchell and Steinberg, 84)[11], and even as early as the
MACROPS in STRIPS(Fikes, Hart, and Nilsson, 72)[4].

A Design Grammar certainly does not represent all there is to
know about design. It is intended that it serve as the backbone
of structural knowledge in a larger system of knowledge which
includes such things as search control heuristics and analytic
knowledge.

3 Learning Rules Using Precedent Anal-
ysis

Precedent Analysis is where the learner uses its current knowl-
edge to partially explain an example, so that the truly mysteri-
ous aspects of the example are brought to light.

tial
The algorithm has two steps: first construct a maximal par-
parse of the precedent, then throw away the matched nodes

These would all be represented
straightforward manner.

as Design Grammar rules in a

By applying these rules to the left hand graph, in the order
given, the system concludes that the MUX tied to ZERO on the
left actually corresponds to the AND on the right. Moreover,
because of their positions relative to inputs and outputs. the
2-i attached to y and the XOR attached to a and b can be seen
to correspond to the ones on the left. With this motivation, the
system transforms the high-level graph into the one on the left
of Figure 2.

It is possible to construct a partial matching between the left-
and right-hand graphs of that Figure which matches all nodes
but the ones circled in dashes. It is the equivalence of those two
portions which is truly mysterious to the system. The rest is
derivable. Therefore, the system supposes that the equivalence
is true and creates new rules. Since both subgraphs are more
than single nodes, neither can be the LHS of a rule. Thw, the
system creates a new functional block type and makes it the
LHS of two rules: one whose RHS is the subgraph on the right,
the other whose RHS is the subgraph on the left. The variable
correspondences are determined by the partial match.

3.2 The Method

The current system implements a hill climbing approach to find-
ing maximal partial matches. The algorithm is greedy. It
searches for a partial derivation, which, when applied to the
high-level graph, results in a graph with as large as possible a

LEARNING / 569

two inputs, and at least two of those inputs remain unmatched.)
This second way of extending the partial match moves in from
the output edge.

ab c u b c.

ClfLG L&G

Figure 2: Learning Example Precedent After Partial Under-
standing (Transformation).

partial match with the low-level graph. The partial match can-
not, however, be just any partial match. It must be one which
associates functionally equivalent nodes in the two graphs. The
heuristic criteria for extending the partial match are given be-
low. The partial match is initialized to the input and output
variable correspondences given with the precedent.

Starting from the current high level graph, the typical step
looks ahead through all possible combinations of allowable trans-
formations to a fixed search depth. (This depth is a parameter
to the system. It’s value affects both success and speed of the
algorithm.) It tries to find some combination which results in
a valid extension to the partial match. If it ever finds one, all
lookahead is terminated, the transformation is made, and the
lookahead starts over anew. The process terminates when no
progress is made on any lookahead path.

Because the subgraph isomorphism problem is NP-complete,
it is desirable to have grammar rules with graphs as small as
possible. Therefore, when no progress is found, the smallest
graph encountered in the last lookahead phase is returned.

The overall criterion for extending the martial match is that
the matched subgraphs must always”be functionally equivalent
with respect to the overall function. This is implemented heuris-
tically as follows. The partial match creeps inward from the in-
put variables and the output variables. There are two principle
ways the match can be extended. One is from the input “edge”
of the match, the other is from the output “edge” of the match.
Two connection points (one from each graph) which are driven
by the same function of corresponding matched nodes may be
matched (this moves in from the inputs). On the other hand,
consider the case of two nodes (one in each graph) which are
inputs to the same type of functional block. If the blocks drive
matched nodes, then they can be matched, as long as there is
no ambiguity in matching their inputs. (There is ambiguity if
the function has more than one input of the same type as the

There are some subtleties: consider what happens to the first
criterion when one graph has two nodes which are (syntactically)
the same function of the same inputs. This is an ambiguity which
is not addressed by the criterion. However it is possible, as a
pre-pass, to transform the graph to the equivalent one which has
all of those functionally identical subgraphs merged into a single
one. Since the graphs are assumed to have functional semantics,
this move maintains functional equivalence. This pre-pass is
computationally simple.

To illustrate these criteria, consider the pair of graphs in Fig-
ure 1. The first criterion would say that since connection points
o and o’ are each XOR of corresponding previously matched
nodes, they may be matched. The second criterion would say
that since p and ,f3’ are each the unambiguous inputs of the 2-l
boxes which drive y they may be matched. After the transforma-
tions resulting in Figure 2, the match may be further extended
using the second criterion to include the connection points 7 and
Y’.

There is another criterion for extending t,he partial match
when a subgraph transforms to a single connection point. (That
would happen when that subgraph was functionally equivalent
to the identity function.) In that case, the previous two criteria
don’t apply, as there are no new nodes to which to extend the
match. In that case, the system looks for a situation in which the
size of the inverse image of a connection point under the partial
match decreases. For example, the system judges progress after
transformation of “y =BUFFER(a)” to “a.”

Once the partial match is extended as much as possible, it
is straight-forward to construct the two rules by throwing away
the matched subgraphs and creating a new functional block.

4 Rule Re-analysis

The method described in Section 3 may produce rules which
are not very general, because there might be more than one
unknown rule used in constructing the precedent. Thus, the
learned rules will have RHSs which are a combination of more
than one unknown, more general rule. It is much less likely to
see again a given complex group of rule instances than it is to
see instances of the rules singly. It is possible, however, later to
learn new rules which would allow Precedent Analysis to find
the more general rules of which the first one was constructed.
This leads to the idea of re-analyzing old learned rules in terms
of newer rules.

Suppose the rules are always presented to the learning sys-
tem in the best possible order. Might it not be that Rule Re-
analysis is a waste of time. 7 The answer to this is no. This is
demonstrated, by counterexample, as follows. Suppose that, un-
known as yet to the system, there are four general design rules
involved in constructing three precedents. The four design rules
are as follows.

l h(x) ==-+ dd

l ii(Z) - g2(4

l f3(T Y) - 93(X> Y)

l f& ☺ - 9 4 (4

The three precedents are the following:

1, 93(fl(W2(Y)) f f3(91(4,92(Y))

2. f2(f4@)) - g2(g4@))

570 / SCIENCE

Suppose that the Learning by Failing to Explain system is
presented with these precedents in the order 1, 2, 3. On seeing
1, the system is not able to analyze it at all. Likewise, on seeing
2, the system can not analyze it at all. Thus far, the system has
4 rules: two rules implementing blocks representing each of the
overall functions of the precedents (one rule for each graph of
each precedent).

On seeing precedent 3, the system may analyze it using
rules derived from precedent 1. This results in one new rule:
fdf,~) ==+ 94(x). Rule Re-analysis applies this new rule to prece-
dent 2. This results in the rule, f2(5) =+- gz(2). The system
may then re-analyze the precedent-l rules and arrive at two sim-
pler rules. One has RHS gs(fl(r)), the other has RHS fs(gl(z)).
Hence, the system is left with the following rules.

l h(z, 4 - gdflk), 4 ,

l h(z, 4 ==+- f& l(z), ~1 .

On the other hand, if one picks any of the six possible orders
of presentation and applies Precedent Analysis without Rule Re-
analysis, the set of rules conjectured is less general than the four
rules. For example, suppose they are given in the order 1, 2, 3.
Without Rule Re-analysis, Precedent Analysis conjectures the
following set of rules as an addition to those made from each
entire precedent. (h is a block created by the system.)

. h(Z> 4 - 93Ulk>, w)

l h(z, w) - f3(&): w)

It thus failed to find the f2 rule.

We decide which rule set is more general by asking which is
capable of generating the other. Clearly, the set produced using
Rule Re-analysis suffices to generate all the rules in the other
set. However, there is no derivation of the f2 rule in terms of
the rules produced without Rule Re-analysis. Thus, Rule Re-
analysis resulted in more general rules. The reader may verify
that all six orders of presentation result in less general rules if
Rule Re-analysis is not used.

The fact is that without re-analysis, the system requires more
precedents to reach a given level of generality. Since precedents
are in general much harder to come by than the time needed for
Rule Re-Analysis, it is clear that re-analysis is worthwhile.

5 Role vs Behavior

Since Learning by Failing to Explain is intended to be used as a
component in a larger learning/design system, it is reasonable to
assume that other knowledge sources might exist which enable
other forms of reasoning about rules; say, knowledge about the
semantics of the functional blocks. Is there a way the system
could attempt to judge which contexts the conjectured rules are
true in? It turns out that there is a case where a conjectured rule
can be judged to be true in all contexts, using only properties
of previously known functional blocks.

To state this case most concisely, it is convenient to introduce
terminology. A role is a mapping from inputs to sets of allowable
outputs. That is, each input vector determines a set of allowable
output vectors. A role is also called a behavior when it, uniquely

determines each output for any given set of inputs. Thus, the
squaring function on integers is a behavior, but the square root
function on integers is only a role, because it maps negative
integers to the empty set. Another example of a role which is
not a behavior is when a component has “don’t care” entries in
its truth table.

To any subgraph, S, of a device, G, there corresponds a role
which I shall refer to as the induced role of S in G. It is de-
fined as follows. G represents a role (usually in this system, a
behavior). Consider replacing S with any S’ that maintains the
overall behavior of G. Define a new role, f, which maps an input
vector, o, to the union over S’ of S’(V). It is this (unique) least
restrictive role which I call the induced role of S in G. Note that
no matter which S’ fills the hole, the induced role depends on
the hole, not on S’.

The criterion arises as follows. Looking back at the partial
parse which generated the conjectured rule, one can ask about
the induced roles of the unmatched subgraphs in their respective
graphs. They will, of course, be the same, as the induced role
depends only on the hole and not on what fills it. The matched
portions of the two graphs are identical and they determine the
induced roles of their complements.

Suppose this induced role is a behavior. Then there is ex-
actly one behavioral specification which could possibly fill the
hole. Thus, the two subgraphs, even though they are struc-
turally different must have the same behavior. On the other
hand, if the induced role is not a. behavior, the two subgraphs
may or may not be behaviorally equivalent.

Summing this up, the conjectured rules will be true in all
contexts if the induced role in the precedent is a behavior. What
is interesting about this criterion is that it can tell us a fact
about a previously completely mysterious object (the unmatched
subgraph) solely in terms of the properties of known objects (the
constituents of the matched portion of the precedent).

Note also that this is merely a sufficient
ioral equivalence, not a necessary one.

condition for behav-

6 Summary and Discussion

First, a summary of the main ideas:

Four interesting design competences can be understood
by having a Design Grammar as the backbone of a design
system: top-down design, optimization, explanation, and
Analogical Design.

Precedent Analysis, wherein the learner uses current
knowledge to partially understand the precedent before
conjecturing a new rule, is a method for learning from
precedents which does not require the ability to prove a
rule before learning it, as in Explanation-Based Learning,
yet still produces more plausible conjectures than empiri-
cal generalization methods. It uses current knowledge to
guide the system to general rule conjectures.

Rule Re-analysis, the technique of using new rules to try
to analyze old ones, is inherently more powerful than sim-
ple acceptance of new rules, even if one supposes that the
precedents are ordered optimally.

The distinction between behavior and role sheds light on
the conditions under which the conjectured rule can fail to
be true in all contexts.

It would seem that there is an interesting relationship be-
tween this work and that of (Berwick, 85)[1]. Berwick’s model
of learning can be construed as a Learning by Failing to Explain
method. His domain was natural language learning, where the

LEARNING / 571

grammars are, of course, string grammars. His mechanism at-
tempted to parse an input sentence according to its current rules
as much as possible, then if the result satisfied certain criteria
the system proposed a new rule. His system did not attempt
Rule Re-analysis. He argues that natural languages satisfy cer-
tain constraints which enable them to be learned in this manner.
Thus, his system could be described as Precedent Analysis, to-
gether with some additional criteria regarding when to actually
form a new rule.

Inasmuch as there is no reason to believe that the world of
design obeys such a learnability constraint, it is not to be ex-
pected that Berwick’s mechanism would work in learning Design
Grammars from any kind of realistic examples. (Of course, any
system could learn if it were handed the most general rules as
precedents,) It is possible, however, that the use of Rule Re-
analysis can substitute, at least in part, for the missing learn-
ability constraint.

Some Limitations.

Experimentation suggests the following limitations. Some of
these are limitations of Learning by Failing to Explain in general,
and some are limitations of the particular algorithms employed
in the current system.

Sometimes the maximal partial parse is not the most de-
sirable partial parse to use. In some cases a much more
useful rule can be obtained from a non-maximal parse.

In some cases, it is desirable to find more than one partial
parse. This algorithm currently finds only one.

The algorithm can be too greedy at times; this causes it
to miss a better partial parse by, for example, expanding
some node instead of applying a better rule.
, The system needs a better approach to search control in
the analysis algorithm. In particular, some method of fo-
cusing attention on small sections of large graphs would
reduce the size of the search tree generated. Currently,
the system keeps track of all paths from the initial graph.

Future Work.

l No account of learning design knowledge is complete with-
out discussion of both acquisition of analytic knowledge
and search control knowledge. It would be interesting to
investigate Learning by Failing to Explain as applied to
these very different types of knowledge. . .

l The intuition behind the method seems to be applicable
to domains other than design domains. How would the
knowledge be represented, and what additional issues arise
in applying Learning by Failing to Explain to other types
of domains?

l How can the search done by the analysis algorithm be
reduced?

o A Design Grammar is a restrictive representation. In par-
ticular, it needs some method for representing generalized
roles and parameterized structures. How will a more pow-
erful representation affect the parsing performance?

l What would it take to be able to reason about induced
roles, so that the system could find the contexts in which
a given inferred rule is true?

Acknowledgements

Thanks to Patrick Winston, for providing guidance for the origi-
nal thesis; and thanks to Rick Lathrop and the Reviewers, whose
comments greatly improved the final version of this paper.

References

PI

PI

PI

PI

151

161

PI

PI

19;

Pl

[111

112:

Robert C. Berwick. The Acquisition of Syntactic Knowl-
edge. MIT Press, Cambridge Mass., 1985.

Gerald DeJong and Raymond Mooney. Explanation-Based
Learning: An Alternative View. Technical Report UILU-
ENG-86-2208, Coordinated Science Lab, University of Illi-
nois, March 1986.

Thomas Ellman. Generalizing logic circuit designs by ana-
lyzing proofs of correctness. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence,
IJCAI-85, 1985.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learn-
ing and executing generalized robot plans. Artificial Intel-
ligence, 3, 1972.

Robert Joseph Hall. Learning by Failing to Explain.
Technical Report, M.I.T. Artificial Intelligence Laboratory,
1986. forthcoming.

Robert Joseph Hall. On Using Analogy to Learn Design
Grammar Rules. Master’s thesis, Massachusetts Institute
of Technology, 1985.

Sridhar Mahadevan. Verification-based learning: a gener-
alization strategy for inferring problem-reduction methods.

In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, IJCAI-85, 1985.

Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-
Cabelli. Explanation-Based Generalization: A Unifying
View. Technical Report ML-TR-2, SUNJ Rutgers, 1985.

Raymond Mooney and Gerald DeJong. Learning schemata
for natural language processing. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence,
1985.

Reid G. Smith, Howard Winston, Tom M. Mitchell, and
Bruce G. Buchanan. Representation and use of explicit
justifications for knowledge base refinement. In Proceedings
of the Ninth International Joint Conference on Artificial
Intelligence, 1985.

Louis I. Steinberg and Tom M. Mitchell. A knowledge based
approach to vlsi cad: the redesign system. In Proceedings
of the 21st Design Automation Conference, IEEE, 1984.

Patrick H. Winston, Thomas 0. Binford, Boris Katz, and
Michael Lowry. Learning Physical Descriptions from Func-
tional Definitions, Examples, and Precedents. Technical
Report AIM-679, Massachusetts Institute of Technology,
1983.

572 / SCIENCE

