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Abstract 

Explanation-based Generalization depends on having an expla- 
nation on which to base generalization. Thus, a system with 
an incomplete or intractable explanatory mechanism will not be 
able to generalize some examples. It is not necessary, in those 
cases, to give up and resort to purely empirical generalization 
methods, because the system may already know almost every- 
thing it needs to explain the precedent. Learning by Failing to 
Explain is a method which exploits current knowledge to prune 
complex precedents and rules, isolating their mysterious parts. 
This paper describes two techniques for Learning by Failing to 
Explain: Precedent Analysis, partial analysis of a precedent or 
rule to isolate the mysterious new technique(s) it embodies; and 
Rule Re-analysis, re-analyzing old rules in terms of new rules to 
obtain a more general set. 

1 Introduction 

A primary motivation for studying learning from precedents is 
the intuition that it is easier for a domain expert to present a set 
of illustrative examples than it would be to come up with a useful 
set of rules. Explanation-based Generalization ((Mitchell, et al, 
85) [8], (DeJong and Mooney, 86) [2]) is a powerful method for 
using knowledge to constrain generalization*. It can be defined 
as generalizing an explanation of why something is an example 
of a concept, in order to find a weaker precondition for which 
the explanation of concept membership still holds. (This weaker 
precondition describes the generalization of the example.) 

The motivation for this work is that explanation is hard and 
often impossible (e.g. theorem proving). On the other hand, 
the efficient student should, as much as possible, know what he 
doesn’t know. For example, “I don’t understand step 5,” is a 
much more productive query than “Huh?” 

There are at least two reasons why an explainer can fail: 
the theory is incomplete, so that there is no explanation; or 
the explainer simply can’t find the explanation, even though it 
exists. The latter case is not just mathematical nitpicking: the 
complexity of VLSI circuits and the rich set of optimizations 
possible creates large problems for any circuit-understander. 

On the other hand, it is seldom the case that a learner knows 
absolutely nothing about an example it fails to explain; fre- 
quently, a small mysterious thing comes embedded in a large, 
mostly well-understood example. For instance, consider a 

‘This paper is bared upon work supported under n h’ntional Science 
Foundstion Grrtdunte Fellowship. 

‘(Mnhndevnn, 85)i7 nnd (Ellmnn, 85)/3: have applied this to logic de- 
sign. (Smith, et al, 85 [lo], h:lve applied explzmntion-based techniques to i 
knowledge bnse refinement. (Mooney and DeJong, 85)[9] hnve applied it to 
learning achematrr. for nntural 1:ingunge processing. (Winston, el a/, 83)[12! 
zlbstracts nnalogy-based explan:itLns tcl form rules. 

multiplier circuit where the only difference between its design 
and a known one is in the way one particular XOR gate is im- 
plemented, It would be a shame to retain the complexity of the 
entire multiplier when the only new structural information was 
in one small subdevice. Rather than just reverting to completely 
empirical techniques when the explainer fails, it would be bet- 
ter to use current knowledge to throw away the portions of the 
example which are understood. This is what I call Learning by 
Failing to Ezplain. It is a complementary notion to explanation- 
based learning: the former operates precisely when the latter 
fails, and when the latter succeeds there is no reason to try the 
former. 

Learning by Failing to Explain could be used as a filter 
in a learning system which combines both explanation- and 
empirically-based learning methods. That is, when explanation 
fails, use Learning by Failing to Explain to isolate a much sim- 
pler example for the generalizer. This work does not use it this 
way: the additional generalization issues are beyond its scope. 
The current system simply formulates rules without further gen- 
eralization. It is not intended that this method is complete in 
itself with respect to learning about design. 

This work is not intended as a study of human learning. It is 
motivated by intuitions about human learning, but no claim is 
made that the techniques described here reflect human learning. 

There are two techniques which comprise Learning by Failing 
to Explain: in the first, the learner analyzes the given precedent 
as much as possible, then extracts the mysterious part as a new 
rule (or pair of rules). I call this Precedent Analysis. In the 
second, the learner uses new rules to re-analyze old rules. That 
is, Precedent Analysis needn’t be applied only to precedents; 
there are cases where it is beneficial to have another look at 
rules found previously. This is called Rule Re-analysis. The 
system and the latest experiments with it are documented in 
(Hall, 86)j5j. (Hall, 85) [6: has more detail with regard to the 
design competences, but documents an earlier version of the 
system. 

2 Domain and Representation 

The current system learns rules of the form “structure X im- 
plements functional block Y ,” where by functional block I mean 
something like “PLUS,” which represents a constraint between 
its inputs and outputs. By structure, I mean an interconnection 
of functional blocks, where the interconnection represents data 
flow. As indicated, the illustration domain of the system is dig- 
ital circuit design. However, the algorithms should apply with 
minor modifications to other domains, such as program design, 
which are representable in a generalized data flow format. In 
fact the system has been applied successfully to learning struc- 
tural implementation rules in a simplified gear domain, where 
functional constraints take the form of simple arithmetic rela- 
tionships among shaft speeds. 
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It should be noted that, while the implemented algorithms 
are dependent on the functional semantics of the domains, the 
basic idea behind Learning by Failing to Explain should be ap- 
plicable to many other domains. This is one area for future 
work. 

The representation for design knowledge is a Design Gram- 
mur. This is a collection of rules of the form LHS =+ RBS, 
where LHS denotes a single functional block and RHS denotes a K 
description of an implementation for LHS. The basic represen- 
tational unit is a graph, encoding the functional interconnection 
of the blocks. Design Grammars are not, in general, context free 
grammars, as the system is allowed to run the rules from right 
to left as well as left to right. This allows us to understand opti- 
mization of designs as a reverse rule use, followed by a forward 
rule use: find a subgraph of the current design stage which is 

I I 

isomorphic to the RHS of a rule and replace it with the LHS 
ab c 

symbol. Then expand that new functional block instance with 
a different implementation. Figure 1: Learning Example Precedent. 

A Design Grammar is an interesting representation of struc- 
tural design knowledge both because it is learnable from exam- (the parsed sections), leaving two functionally equivalent sub- 
ples via the method described here, and because it enables four graphs which can be turned into two rules with the same LHS. 
interesting design competences: 

l Top-Down Design: the ability to take a relatively high 
level specification of the function of a device and refine it 
successively by choosing implementations of subfunctions, 
then refining the refinement, and so on. In terms of a De- 
sign Grammar, this is viewed as using rules in the forward 
direction. 

3.1 An Example 

Suppose the learner is given the precedent shown in Figure 1. 
(The 2-l boxes represent time delay of one clock cycle.) The 
left-hand graph is considered to be the high level graph. Suppose 
further that the learner knows 

l Optimization: the ability to take one device and replace a 
piece of it with some other piece so that the resulting de- 
vice is functionally the same. In Design Grammar terms, 
an optimization step is viewed as a reverse rule use, fol- 
lowed by a forward rule use. 

l Analysis: the problem of establishing a justification for 
why some device performs some given function. This is 
the parsing problem for Design Grammars. (Winston, et 
al, 83)‘12] takes a similar approach, but extracts rules “on 
the fly” from analogous precedents. 

l that a one-bit multiplexer (MUX) is implemented by 
y = (OR (Ah’D a (NOT s)) (A&D b s)), 

l that (AND a (ZERO)) is an implementation of ZERO, 

l ‘,“,“d’ (OR 5 (ZERO)) is an implementation of BUFFER, 

l that a BUFFER may be implemented simply by a connec- 
tion point. 

l Analogical Design: the ability to solve a new problem in 
a way similar to some already solved problem, or by com- 
bining elements of the solutions to many old problems. 
In a Design Grammar setting, this is 9unning” known 
design derivations on new design problems. This is ac- 
complished by finding a partial match between the prob- 
lem specification and the initial specification of the known 
derivation, applying those transformations which have an 
analog in the problem, and leaving out steps which do not. 
This technique for controlling search has been explored by 
(Mitchell and Steinberg, 84)[11], and even as early as the 
MACROPS in STRIPS(Fikes, Hart, and Nilsson, 72)[4]. 

A Design Grammar certainly does not represent all there is to 
know about design. It is intended that it serve as the backbone 
of structural knowledge in a larger system of knowledge which 
includes such things as search control heuristics and analytic 
knowledge. 

3 Learning Rules Using Precedent Anal- 
ysis 

Precedent Analysis is where the learner uses its current knowl- 
edge to partially explain an example, so that the truly mysteri- 
ous aspects of the example are brought to light. 

tial 
The algorithm has two steps: first construct a maximal par- 
parse of the precedent, then throw away the matched nodes 

These would all be represented 
straightforward manner. 

as Design Grammar rules in a 

By applying these rules to the left hand graph, in the order 
given, the system concludes that the MUX tied to ZERO on the 
left actually corresponds to the AND on the right. Moreover, 
because of their positions relative to inputs and outputs. the 
2-i attached to y and the XOR attached to a and b can be seen 
to correspond to the ones on the left. With this motivation, the 
system transforms the high-level graph into the one on the left 
of Figure 2. 

It is possible to construct a partial matching between the left- 
and right-hand graphs of that Figure which matches all nodes 
but the ones circled in dashes. It is the equivalence of those two 
portions which is truly mysterious to the system. The rest is 
derivable. Therefore, the system supposes that the equivalence 
is true and creates new rules. Since both subgraphs are more 
than single nodes, neither can be the LHS of a rule. Thw, the 
system creates a new functional block type and makes it the 
LHS of two rules: one whose RHS is the subgraph on the right, 
the other whose RHS is the subgraph on the left. The variable 
correspondences are determined by the partial match. 

3.2 The Method 

The current system implements a hill climbing approach to find- 
ing maximal partial matches. The algorithm is greedy. It 
searches for a partial derivation, which, when applied to the 
high-level graph, results in a graph with as large as possible a 
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two inputs, and at least two of those inputs remain unmatched.) 
This second way of extending the partial match moves in from 
the output edge. 

ab c u b c. 

ClfLG L&G 

Figure 2: Learning Example Precedent After Partial Under- 
standing (Transformation). 

partial match with the low-level graph. The partial match can- 
not, however, be just any partial match. It must be one which 
associates functionally equivalent nodes in the two graphs. The 
heuristic criteria for extending the partial match are given be- 
low. The partial match is initialized to the input and output 
variable correspondences given with the precedent. 

Starting from the current high level graph, the typical step 
looks ahead through all possible combinations of allowable trans- 
formations to a fixed search depth. (This depth is a parameter 
to the system. It’s value affects both success and speed of the 
algorithm.) It tries to find some combination which results in 
a valid extension to the partial match. If it ever finds one, all 
lookahead is terminated, the transformation is made, and the 
lookahead starts over anew. The process terminates when no 
progress is made on any lookahead path. 

Because the subgraph isomorphism problem is NP-complete, 
it is desirable to have grammar rules with graphs as small as 
possible. Therefore, when no progress is found, the smallest 
graph encountered in the last lookahead phase is returned. 

The overall criterion for extending the martial match is that 
the matched subgraphs must always”be functionally equivalent 
with respect to the overall function. This is implemented heuris- 
tically as follows. The partial match creeps inward from the in- 
put variables and the output variables. There are two principle 
ways the match can be extended. One is from the input “edge” 
of the match, the other is from the output “edge” of the match. 
Two connection points (one from each graph) which are driven 
by the same function of corresponding matched nodes may be 
matched (this moves in from the inputs). On the other hand, 
consider the case of two nodes (one in each graph) which are 
inputs to the same type of functional block. If the blocks drive 
matched nodes, then they can be matched, as long as there is 
no ambiguity in matching their inputs. (There is ambiguity if 
the function has more than one input of the same type as the 

There are some subtleties: consider what happens to the first 
criterion when one graph has two nodes which are (syntactically) 
the same function of the same inputs. This is an ambiguity which 
is not addressed by the criterion. However it is possible, as a 
pre-pass, to transform the graph to the equivalent one which has 
all of those functionally identical subgraphs merged into a single 
one. Since the graphs are assumed to have functional semantics, 
this move maintains functional equivalence. This pre-pass is 
computationally simple. 

To illustrate these criteria, consider the pair of graphs in Fig- 
ure 1. The first criterion would say that since connection points 
o and o’ are each XOR of corresponding previously matched 
nodes, they may be matched. The second criterion would say 
that since p and ,f3’ are each the unambiguous inputs of the 2-l 
boxes which drive y they may be matched. After the transforma- 
tions resulting in Figure 2, the match may be further extended 
using the second criterion to include the connection points 7 and 
Y’. 

There is another criterion for extending t,he partial match 
when a subgraph transforms to a single connection point. (That 
would happen when that subgraph was functionally equivalent 
to the identity function.) In that case, the previous two criteria 
don’t apply, as there are no new nodes to which to extend the 
match. In that case, the system looks for a situation in which the 
size of the inverse image of a connection point under the partial 
match decreases. For example, the system judges progress after 
transformation of “y =BUFFER(a)” to “a.” 

Once the partial match is extended as much as possible, it 
is straight-forward to construct the two rules by throwing away 
the matched subgraphs and creating a new functional block. 

4 Rule Re-analysis 

The method described in Section 3 may produce rules which 
are not very general, because there might be more than one 
unknown rule used in constructing the precedent. Thus, the 
learned rules will have RHSs which are a combination of more 
than one unknown, more general rule. It is much less likely to 
see again a given complex group of rule instances than it is to 
see instances of the rules singly. It is possible, however, later to 
learn new rules which would allow Precedent Analysis to find 
the more general rules of which the first one was constructed. 
This leads to the idea of re-analyzing old learned rules in terms 
of newer rules. 

Suppose the rules are always presented to the learning sys- 
tem in the best possible order. Might it not be that Rule Re- 
analysis is a waste of time. 7 The answer to this is no. This is 
demonstrated, by counterexample, as follows. Suppose that, un- 
known as yet to the system, there are four general design rules 
involved in constructing three precedents. The four design rules 
are as follows. 

l h(x) ==-+ dd 

l ii(Z) - g2(4 

l f3(T Y) - 93(X> Y) 

l f& ☺ - 9 4 ( 4 

The three precedents are the following: 

1, 93(fl(W2(Y)) f f3(91(4,92(Y)) 

2. f2(f4@)) - g2(g4@)) 
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Suppose that the Learning by Failing to Explain system is 
presented with these precedents in the order 1, 2, 3. On seeing 
1, the system is not able to analyze it at all. Likewise, on seeing 
2, the system can not analyze it at all. Thus far, the system has 
4 rules: two rules implementing blocks representing each of the 
overall functions of the precedents (one rule for each graph of 
each precedent). 

On seeing precedent 3, the system may analyze it using 
rules derived from precedent 1. This results in one new rule: 
fdf,~) ==+ 94(x). Rule Re-analysis applies this new rule to prece- 
dent 2. This results in the rule, f2(5) =+- gz(2). The system 
may then re-analyze the precedent-l rules and arrive at two sim- 
pler rules. One has RHS gs(fl(r)), the other has RHS fs(gl(z)). 
Hence, the system is left with the following rules. 

l h(z, 4  - gdflk ), 4 , 

l h(z, 4  ==+- f& l(z), ~1 . 

On the other hand, if one picks any of the six possible orders 
of presentation and applies Precedent Analysis without Rule Re- 
analysis, the set of rules conjectured is less general than the four 
rules. For example, suppose they are given in the order 1, 2, 3. 
Without Rule Re-analysis, Precedent Analysis conjectures the 
following set of rules as an addition to those made from each 
entire precedent. (h is a block created by the system.) 

. h(Z> 4 - 93Ulk>, w) 

l h(z, w) - f3(& ): w) 

It thus failed to find the f2 rule. 

We decide which rule set is more general by asking which is 
capable of generating the other. Clearly, the set produced using 
Rule Re-analysis suffices to generate all the rules in the other 
set. However, there is no derivation of the f2 rule in terms of 
the rules produced without Rule Re-analysis. Thus, Rule Re- 
analysis resulted in more general rules. The reader may verify 
that all six orders of presentation result in less general rules if 
Rule Re-analysis is not used. 

The fact is that without re-analysis, the system requires more 
precedents to reach a given level of generality. Since precedents 
are in general much harder to come by than the time needed for 
Rule Re-Analysis, it is clear that re-analysis is worthwhile. 

5 Role vs Behavior 

Since Learning by Failing to Explain is intended to be used as a 
component in a larger learning/design system, it is reasonable to 
assume that other knowledge sources might exist which enable 
other forms of reasoning about rules; say, knowledge about the 
semantics of the functional blocks. Is there a way the system 
could attempt to judge which contexts the conjectured rules are 
true in? It turns out that there is a case where a conjectured rule 
can be judged to be true in all contexts, using only properties 
of previously known functional blocks. 

To state this case most concisely, it is convenient to introduce 
terminology. A role is a mapping from inputs to sets of allowable 
outputs. That is, each input vector determines a set of allowable 
output vectors. A role is also called a behavior when it, uniquely 

determines each output for any given set of inputs. Thus, the 
squaring function on integers is a behavior, but the square root 
function on integers is only a role, because it maps negative 
integers to the empty set. Another example of a role which is 
not a behavior is when a component has “don’t care” entries in 
its truth table. 

To any subgraph, S, of a device, G, there corresponds a role 
which I shall refer to as the induced role of S in G. It is de- 
fined as follows. G represents a role (usually in this system, a 
behavior). Consider replacing S with any S’ that maintains the 
overall behavior of G. Define a new role, f, which maps an input 
vector, o, to the union over S’ of S’(V). It is this (unique) least 
restrictive role which I call the induced role of S in G. Note that 
no matter which S’ fills the hole, the induced role depends on 
the hole, not on S’. 

The criterion arises as follows. Looking back at the partial 
parse which generated the conjectured rule, one can ask about 
the induced roles of the unmatched subgraphs in their respective 
graphs. They will, of course, be the same, as the induced role 
depends only on the hole and not on what fills it. The matched 
portions of the two graphs are identical and they determine the 
induced roles of their complements. 

Suppose this induced role is a behavior. Then there is ex- 
actly one behavioral specification which could possibly fill the 
hole. Thus, the two subgraphs, even though they are struc- 
turally different must have the same behavior. On the other 
hand, if the induced role is not a. behavior, the two subgraphs 
may or may not be behaviorally equivalent. 

Summing this up, the conjectured rules will be true in all 
contexts if the induced role in the precedent is a behavior. What 
is interesting about this criterion is that it can tell us a fact 
about a previously completely mysterious object (the unmatched 
subgraph) solely in terms of the properties of known objects (the 
constituents of the matched portion of the precedent). 

Note also that this is merely a sufficient 
ioral equivalence, not a necessary one. 

condition for behav- 

6 Summary and Discussion 

First, a summary of the main ideas: 

Four interesting design competences can be understood 
by having a Design Grammar as the backbone of a design 
system: top-down design, optimization, explanation, and 
Analogical Design. 

Precedent Analysis, wherein the learner uses current 
knowledge to partially understand the precedent before 
conjecturing a new rule, is a method for learning from 
precedents which does not require the ability to prove a 
rule before learning it, as in Explanation-Based Learning, 
yet still produces more plausible conjectures than empiri- 
cal generalization methods. It uses current knowledge to 
guide the system to general rule conjectures. 

Rule Re-analysis, the technique of using new rules to try 
to analyze old ones, is inherently more powerful than sim- 
ple acceptance of new rules, even if one supposes that the 
precedents are ordered optimally. 

The distinction between behavior and role sheds light on 
the conditions under which the conjectured rule can fail to 
be true in all contexts. 

It would seem that there is an interesting relationship be- 
tween this work and that of (Berwick, 85)[1]. Berwick’s model 
of learning can be construed as a Learning by Failing to Explain 
method. His domain was natural language learning, where the 
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grammars are, of course, string grammars. His mechanism at- 
tempted to parse an input sentence according to its current rules 
as much as possible, then if the result satisfied certain criteria 
the system proposed a new rule. His system did not attempt 
Rule Re-analysis. He argues that natural languages satisfy cer- 
tain constraints which enable them to be learned in this manner. 
Thus, his system could be described as Precedent Analysis, to- 
gether with some additional criteria regarding when to actually 
form a new rule. 

Inasmuch as there is no reason to believe that the world of 
design obeys such a learnability constraint, it is not to be ex- 
pected that Berwick’s mechanism would work in learning Design 
Grammars from any kind of realistic examples. (Of course, any 
system could learn if it were handed the most general rules as 
precedents,) It is possible, however, that the use of Rule Re- 
analysis can substitute, at least in part, for the missing learn- 
ability constraint. 

Some Limitations. 

Experimentation suggests the following limitations. Some of 
these are limitations of Learning by Failing to Explain in general, 
and some are limitations of the particular algorithms employed 
in the current system. 

Sometimes the maximal partial parse is not the most de- 
sirable partial parse to use. In some cases a much more 
useful rule can be obtained from a non-maximal parse. 

In some cases, it is desirable to find more than one partial 
parse. This algorithm currently finds only one. 

The algorithm can be too greedy at times; this causes it 
to miss a better partial parse by, for example, expanding 
some node instead of applying a better rule. 
, The system needs a better approach to search control in 
the analysis algorithm. In particular, some method of fo- 
cusing attention on small sections of large graphs would 
reduce the size of the search tree generated. Currently, 
the system keeps track of all paths from the initial graph. 

Future Work. 

l No account of learning design knowledge is complete with- 
out discussion of both acquisition of analytic knowledge 
and search control knowledge. It would be interesting to 
investigate Learning by Failing to Explain as applied to 
these very different types of knowledge. . . 

l The intuition behind the method seems to be applicable 
to domains other than design domains. How would the 
knowledge be represented, and what additional issues arise 
in applying Learning by Failing to Explain to other types 
of domains? 

l How can the search done by the analysis algorithm be 
reduced? 

o A Design Grammar is a restrictive representation. In par- 
ticular, it needs some method for representing generalized 
roles and parameterized structures. How will a more pow- 
erful representation affect the parsing performance? 

l What would it take to be able to reason about induced 
roles, so that the system could find the contexts in which 
a given inferred rule is true? 
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