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Abstract 

This paper presents an attempt to synthesize a methodology 
and environment which has features both of traditional software 
development methodologies and exploratory programming en- 
vironments. The environment aids the development of concep- 
tual natural language analyzers, a problem area where neither 
of these approaches alone adequately supports the construction 
of modifiable and maintainable systems. The paper describes 
problems with traditional approaches, the new “parallel” devel- 
opment methodology, and its supporting environment, called the 
PLUMber’s Apprentice. 

Introduction 

AI software systems are rarely developed “by the book.” De- 
spite the plethora of design methodologies available today, AI 
programmers often perceive their problems as unamenable to so- 
lution through Ystructured” analysis and design techniques. In- 
stead, we have come to rely on a set of unabashedly unstructured 
programming techniques or “design heuristics”, collectively re- 
ferred to as “exploratory programming.” While these techniques 
may be sufficient for developing systems to test research hy- 
potheses, they do not provide much aid in attaining the goals of 
production quality systems: reliability, extensibility, and main- 
tainability. 

This paper describes a software development methodology 
and environment for conceptual natural language processing, a 
domain in which the desire for production quality systems far 
exceeds their availability. The methodology attempts to find 
a middle ground between the inflexibility of structured design 
methodologies and the looseness of exploratory programming. 
This is accomplished by extending the exploratory programming 
paradigm to include the “structured growth” of requirements 
and specifications as well as implementation level descriptions 
of the system. From another perspective, it could be viewed as 
removing the strict ordering of requirements - specifications - 
design - implementation from traditional design methodologies. 

To motivate this approach, we first examine the strengths 
and weaknesses of current design methodologies, and discuss 
why these approaches cannot be successfully applied to concep- 
tual natural language processing. Next, the methodology and its 
supporting environment, called the “PLUMber’s Apprentice”, is 
introduced and examples of its use are described. Finally, sev- 
eral approaches for the automation of the design process within 
this paradigm are discussed. 

Current Programming Methodologies 

The majority of software development methodologies are based] 
upon the traditional “software lifecycle,” which divides the de- 
velopment process into the following stages: 

Requirements: The needs of the user community are as- 
sessed and described, usually informally. 

Specifications: Requirements obtained are used to produce 
a formal and complete description of the behavior of the 
final system. 

Design: High-level algorithms and data structures are con- 
structed which together implement the functionality of the 
specifications. Modules and the interfaces between them 
are specified. 

Implementation: The design is translated into the source 
language. 

Testing: The system is checked to ensure it runs correctly 
and implements all specifications. 

Maintenance: The system is modified to support changes 
in functionality desired by the user community. 

Many languages and tools have been developed for these 
phases, some examples of which are described in [1,15,20,25]. In 
addition, [3] gives an overview of several major design method- 
ologies. An assumption underlying this work is “linearity” in the 
software lifecycle- requirements can be specified and fixed be- 
fore specifications, specifications before design, and so on. Thus 
tools and techniques for design can rely on complete and fixed 
specifications, for example. While this assumption is perfectly 
valid in many problem areas, it is often violated in AI applica- 
tions. 

Sheil [23] describes some of the problems in using these ap- 
proaches in problem domains where specifications cannot be 
completely specified and frozen in advance. Since specifications 
are used to generate the module structure and interfaces be- 
tween them, the system structure reflects its initial functionality. 

Changes in the specifications which cut across module bound- 
aries will be difficult to implement, due to both the inherent 
complexity of such a process, and because features of structured 
languages (like strong typing) tend to complicate those types of 
changes. 

Automating the implementation process (i.e., making specifi- 
cations “executable”) is one answer to the problem of frequently 
changing requirements[9,11,28]. If the system is responsible for 
generating the implementation, then system development cen- 
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ters around the maintenance of specifications. While human 
intervention is usually required to make the system-generated 
implementation efficient, this can often be delayed until the re- 
quirements for the system have stabilized. However, all of these 
approaches require complete specification for the behavior of 
the system. Unfortunately, this type of specification language 
remains beyond the state of the art for problem areas such as 
vision, robotics, or natural language understanding, so the ap- 
plication of this approach in these areas does not appear to be 
imminent. 

The exploratory programming approach begins by dismissing 
this view of the software lifecycle altogether. Sandewall [Zl] 
terms the development process “structured growth” : 

An initial program with a pure and simple struc- 
ture is written, tested, and then allowed to grow by 
increasing the ambition of its modules.. . The growth 
can occur both “horizontally”, through the addition of 

more facilities, and “vertically”, through a deepening 
of existing facilities and making them more powerful 
in some sense. 

As Sheil (op. cit.) explains, this approach necessitates a 
great deal of automated support, including sophisticated en- 
vironments for entering, inspecting, debugging, and modifying 
code. In addition, he claims it requires a language with late bind- 
ing and weak type checking, in order to minimize the amount 
of language-level design “rigidity”. Unfortunately, the lack of 
higher-level descriptions for requirements and specifications has 
a cost. One benefit of these descriptions is that they can aid the 
developer in implementing a system which naturally reflects the 
structure of the problem domain. An exploratory programmer 
has no such guidelines, and thus system structures can become 
highly idiosyncratic, dependent primarily upon the order with 
which the programmer decided to “increase the ambition of his 
modules.” Requirements and specifications also have an impor- 

tant role as documentation, which can also be lost in exploratory 
environments. 

The PLUMber’s Apprentice 

Conceptual Natural Language Processing. 

Conceptual natural language processing (CNLP) is not well 
suited to either traditional methodologies or exploratory par- 
adigms. It suffers from a variety of developmental problems, 
including: 

l CNLP development generally proceeds by first developing 
a system to handle a small number of sentences, eventu- 
ally extending this system to cover the full domain. Fre- 
quently this process resembles the building of a ‘<house of 
cards”, where minor changes can cause the whole structure 
to come crashing down, requiring extensive redesign. 

l Maintenance is a terrible problem. In addition to the 
threat of a “fallen house of cards”, CNLP designs tend 
to be highly idiosyncratic, based upon which particular 
subset of the domain was handled first, and how the de- 
veloper decided to extend it outward from there. It is of- 
ten difficult or impossible to understand how a particular 
modification alters the global behavior without re-running 
the system on a large set of sentences. 

l Due to the immaturity of the field, there are a variety of 
techniques for CNLP: novices learn primarily by experi- 
mentation and first-hand experience. 

l Compounding the above problems is the fact that nat- 
ural language interfaces often need to evolve quickly and 
continuously- both in the front end (the types of sentences 
to be handled) and the back end (the set of commands or 
representations output by the interface). 

These problems make it difficult to apply existing methodolo- 
gies successfully. The change in requirements and specifications 
as the front and back ends evolve makes the traditional life cy- 
cle model unsuitable. The limited availability of generic CNLP 
strategies precludes automated approaches. What appears to 
be necessary is a combination of traditional and exploratory ap- 
proaches. If the developer could create and manipulate higher 
level descriptions of the system, its conceptual structure and its 
limitations would become more apparent earlier in the devel- 
opment process. However, the developer must still be able to 
experiment with different implementations, and thus the high- 
level descriptions must be able to evolve easily and continuously 
with the implementation. The PLUMber’s Apprentice is an at- 
tempt to achieve this goal of fluid yet explicit structure. 

The “Consistency Criterion.” 

The PLUMber’s Apprentice includes a set of languages which 
describe the developing system with differing levels and types 
of abstraction. These languages are analogous to those devel- 
oped for formalizing the initial phases of the traditional lifecycle 
model- requirements, specifications, design, and implementa- 
tion. The PLUMber’s Apprentice also includes facilities simi- 
lar to the “power” tools of exploratory environments- including 
a graphical interface providing several views of the evolution 
of memory structures during system execution, and editors for 
creating and modifying each description of the system[lO]. 

Unlike either traditional or exploratory facilities, however, 
the PLUMber’s Apprentice also includes tools for assessing and 
maintaining the consistency of each system description with each 
of the other descriptions. This feature has a number of implica- 
tions: 

l Unlike the traditional lifecycle model, where each stage 
must be completed before moving on to the next, the 
PLUMber’s Apprentice allows the descriptions to be devel- 
oped in any order. Furthermore, the system allows these 
descriptions to co-exist in a state of partial completion, as 
long as what has been specified is not contradictory. 

l Consistency checking allows development to occur under a 
variety of paradigms. The traditional top-down approach, 
proceeding from abstract to concrete descriptions is, of 
course, supported. An “exploratory” paradigm, using sim- 
ply the implementation language and the power tools is 
also possible. But a more powerful “parallel” development 
process is also possible. Since partial descriptions of the 
system at any level of abstraction are supported, the de- 
veloper is free to ‘Lexplore” the system structure on all of 
these levels simultaneously. This corresponds more closely 
to the way in which programmers naturally develop soft- 
ware: for example, implementation issues often arise dur- 
ing requirements analysis, or during implementation the 
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developer may become aware of additional implicit speci- 
fications. This information is usually lost - if not to the 
original developers, then certainly to their successors. The 
PLUMber’s Apprentice allows these decisions to be cap- 
tured at whatever point in the development process they 
are discovered. 

l Finally, these tools allow the languages to be used in sur- 
prising ways. When the implementation is found to be in 
conflict with the higher level descriptions, the developer 
might modify the implementation to bring it into line with 
the “conceptual model”. On the other hand, the developer 
might just as easily change the specification to more ac- 
curately reflect the new behavior. The mere existence of 
accurate high level descriptions serves as invaluable docu- 
mentation aid. In addition, novices attempting to under- 
stand the system might test their understanding by adding 
new high level descriptions and seeing if they are consistent 
with the actual system. When extensions to the system are 
made, the Apprentice can ensure that they are faithful to 
the “spirit” of the system as expressed by the higher-level 
descriptions. 

PLUM: The Implementation Level Language. 

PLUM (The Predictive Language Understanding Mechan- 
ism) incorporates principles of conceptual sentence analysis de- 
veloped by a number of researchers in the field of natural lan- 
guage processing [5,6,7,8,12,16,18,19,24,26,27]. Unlike syntactic 
sentence analyzers that strive to produce a syntactic parse tree in 
response to a sentence, a conceptual sentence analyzer attempts 
to produce a conceptual meaning representation that captures 
the semantic content of a sentence. 

Particular constituents within a sentence (typically verbs) 
are associated with predictive concept frames that allow an un- 
derstander to identify meaningful relationships among other parts 
of the sentence. For example, the active form of the verb “to 
give” will predict an actor or agent, an object, and a recipient. 
Syntactically, the actor is expected to correspond to the sub- 
ject of the sentence, the object corresponds to the direct object, 
and the recipient corresponds to an indirect object or object of 
a prepositional phrase. The goal of a conceptual analyzer is to 
fill each slot in its top-level concept frame with appropriate slot 
fillers found throughout the sentence. Slots inside frames can 
be filled with memory tokens (normally associated with noun 
phrases) or other concept frames. For example, the top level 
concept frame for “John told Mary that he was going home” 
contains slots for an information source (John), an information 
recipient (Mary), and the information being transfered (the fact 
that John was going home). In this case, another concept frame 
representing John going home is needed to fill the object slot of 
the top level concept frame. An excellent introduction to con- 
ceptual sentence analysis can be found in 1221. Documentation 
specific to PLUM is available in [14] and [13]. 

In PLUM, a declarative structure is associated with each con- 
cept frame. This structure is called a prediction prototype. 
Prediction prototypes describe not only the concept frame to be 
instantiated (added to memory) during sentence analysis, but 
everything PLUM requires in order to achieve this instantiation 
as well. Four key components give PLUM all it needs to know: 

l The Concept Frame describes the frame structure and spec- 
ifies any slot constraints that narrow the set of possible slot 
fillers appropriate for a frame instantiation. 

l The Control Structure specifies useful search routines 
for each slot in the Concept Frame. Some searches must 
look backward for information already present in the sen- 
tence while others must search forward, effectively waiting 
to see what the rest of the sentence holds in store. In either 
case, it may be necessary to halt a search at clause bound- 
aries or other sentence boundaries. The Control Structure 
describes such search parameters by means of a simple 
grammar called an Expect Clause. When PLUM reads a 
Prediction Prototype, it interprets all the Expect Clauses 
within the Control Structure, producing executable search 
routines for possible run-time execution during sentence 
analysis. 

l The Predicted Prototypes are a list of other Prediction 
Prototypes that will be triggered if the current Prediction 
Prototype is successfully instantiated. Prediction Proto- 
types can be triggered during sentence analysis two ways: 
(1) a word encountered in the sentence can trigger a Pre- 
diction Prototype, or (2) an instantiated Prediction Pro- 
totype can trigger new Prediction Prototypes. The first 
method corresponds to “bottom-up” sentence processing, 
while the second enables “top-down” sentence analysis. 
In conceptual sentence analysis, the general idea is to go 
bottom-up until you know enough to go top-down. 

l The Required Slots list all slots in the Concept Frame 
that must be filled before the frame can be instantiated. 
This is an optional component within the Prediction Pro- 
totype, but a default requirement is assumed in the event 
that no Required Slots are specified. If this component 
is omitted, PLUM considers the corresponding Concept 
Frame to be instantiated only if one of its slots if success- 
fully filled. Any slot will suffice, but at least one must be 
filled. 

The idea of a Prediction Prototype is easiest to understand 
with a concrete example in hand. The following (slightly sim- 
plified) Prediction Prototype defines a Conceptual Dependency 
case frame for ATRANS, an abstract transfer of possession. This 
prototype is triggered by an active ATRANS verb (e.g. “to 
give”). 

(create-pred 
type (ATRANS) 

comment (triggered by ‘give’ & other active ATRANS 
verbs) 

concept-frame (actor = (animate) 
act = ATRANS 
object = (physob j > 
source = (same-as actor) 
recipient = (animate)) 

control-structure 
((expect actor in past referent) 

(expect object in future referent) 
(expect recipient in future referent) 
(expect recipient in future direction-to value)) 

predicts (cd) 
required-slots (actor object recipient)) 
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In this prototype, all slots are filled by referent frames (cor- 
responding to memory tokens created by noun phrases) that 
satisfy the slot constraints specified by the Concept Frame. The 
object being transfered is expected to be a physical object while 
the recipient of the transfer is presumed to be animate. These 
slot constraints are needed to sort out direct objects and indirect 
objects, since the searches specified by the expect clauses only 
know to search for referents appearing after the verb. Notice 
that two expect clauses are defined for the recipient slot. One 
is designed to pick up recipients that appear as indirect objects 
(John gave Mary the book) and the other is designed to cover 

cases where the recipient appears in a prepositional phrase (John 
gave the book to Mary). 

When a system designer builds a natural language interface 
with PLUM, he or she designs Prediction Prototypes as if pro- 
gramming in a highly declarative programming language. Since 
all slot constraints are readily found in the definition for the 
Concept Frame, and the searches used to fill these slots are de- 
scribed declaratively in the Control Structure, the role of any 
prototype in the processing of an individual sentence is rela- 
tively easy to understand. The difficulties arise when a large 
number of prototypes are designed to interact with one another 
in their slot-filling activities. It is much harder to anticipate all 
the possible interactions between prototypes that can arise in 
various sentences. 

The traditional manner of controlling interactions is by pe- 
riodically checking the system out on a large testbed of sen- 
tences. Whenever a new Prediction Prototype is added to a 
system that previously checked out, there is the possibility that 
some side effect from the new prototype will cause new inter- 
ference effects within the previously consistent system of Pre- 
diction Prototypes. Unfortunately, this process only uncovers 
system inconsistencies, it does not provide any direction either 
in pinpointing the source of the inconsistency within the proto- 
type definitions, or in determining the necessary modifications 
to the system. Often the modifications made to remove one 
inconsistency simply produce another. 

To combat this problem, the PLUMber’s Apprentice pro- 
vides two languages: abstract prototypes for describing the 
system structure, and abstract instantiation sequences for] 
describing processing strategies. Use of these languages aids the 
developer in understanding not only how to extend the system 
successfully, but also when the current system design is not ad- 
equate for the desired modifications. 

Abstract Prototypes. 

To help the developer manage the complexity of dozens or 
hundreds of prototypes in a system, the PLUMber’s Apprentice 
provides abstract prototypes. Abstract prototypes are simi- 
lar to Smalltalk Classes and Zetalisp Flavors, enabling the devel- 
oper to specify inheritance hierarchies of the properties of pro- 
totypes. While Flavors and Classes impose ‘(top-down” devel- 
opment (requiring the abstract description before an instance of 
it can be made), abstract prototypes can be developed “bottom- 
up” or “middle-out”, in addition to top-down. For example, the 
developer might first develop a set of prototypes, then develop 
the abstract prototypes to modularize the system and to capture 
the common properties between them. 

Figure 1 contains one useful hierarchy for VMSPLUM[13], a 
prototype natural language help facility for the VAX/VMS com- 
mand language. In this case, the leaf nodes are PLUM proto- 
types, the others being abstractions. Sometimes the abstraction 
can specify properties that must hold true of its instances’ struc- 
tures (such as the requirement that <command-frame>s search 
for command qualifiers.) They might also group prototypes by 
related behavior, rather than structure (for example, <values>.) 
In the former case, the Apprentice can check to ensure that an 
addition to that class has the required properties. In the latter 
case, new additions to the class can be checked for the prereq- 
uisite behavior. More than one inheritance hierarchy could be 
mapped onto the same set of prototypes, resulting in multiple 
“perspectives” or viewpoints on the system. 

WNSPLUN-prototypes> 

ccommand-f raune> cqualif ication) 

<qualifiers> <values> 

<structural> 

/ \ 
<basic> <extended, 

A 
<integers> <time> 

<top-level> 

delete COPY VP print 6ince confirm 1 3 11:34 help-frame 

Figure 1: A Partial Prototype Abstraction Hierarchy foor’ VMSPLUM. 
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The developer could have generated the abstract prototype 
hierarchy in Figure 1 in several ways. Perhaps a small inter- 
face handling only <basic> commands without qualifiers was 
implemented initially, and the structure grew “upwards” and 
“outwards” from there. This corresponds to the “exploratory” 
approach. Or, the developer might have begun by considering all 
the cases that could occur, and built “downwards” from there, 
corresponding to the “top-down” approach. The most efficient 
path is probably somewhere in between; perhaps first developing 
a “rapid prototype” implementation, then creating an abstract 
structural model, and then using that model to systematically 
extend the interface. The hierarchy aids greatly in this exten- 
sion by providing a kind of “semantic type checking” on the 
prototypes. Finally, the hierarchy provides aid to the novice in 
understanding the similarities between and requirements of the 
dozens or hundreds of prototypes in a PLUM interface. 

Abstract Instantiation Sequences. 

The control structure of the PLUM implementation language 
is decentralized, being specified within each of the prototypes. 
While this has the advantage of automatically defining a “lo- 
cal context” for the search of memory, and a natural notation 
for description of. an individual prototype’s control structure, 
it has the disadvantage of leaving implicit the global behav- 
ior of the system, and thus obscuring global processing strate- 
gies. Abstract Instantiation Sequences are designed to allow 
the developer to make explicit the sequence of PLUM events 
necessary and sufficient for prototype instantiation. By making 
this sequence explicit, the rationale for the structure of the ex- 
pect clauses becomes much more obvious. The sequences also 
serve an important debugging function, by providing a method 
for catching unanticipated interactions among prototypes which 
might result in their addition to memory in a context unforeseen 
by the developer. 

The abstract instantiation language is related in spirit to 
Constrained Expressions [‘2,4]. The developer gives an algebraic 
expression, whose terms are “atomic PLUM events” and whose 
operators express sequencing and causality information. Atomic 
PLUM events are predicates whose arguments are simply proto- 
types, either abstract or implementation-level, and which denote 
the fundamental state changes of the system. For example, a few 
of the atomic PLUM events in VMSPLUM are: 

(predict <command-frame>) 
(Prediction of a member of the <command-frame> class of 
prototypes.) 

(instantiate help-frame) 
(Instantiation of the help-frame prediction prototype.) 

(slot-fill <top-level> <command-frame>) 
(A member of the <top-level> class of prototypes has a 
slot filled by a member of the <command-frame> class of 
prototypes.) 

The operators determine the legal orderings of these events dur- 
ing system execution, and their relationship to each other. The 
current operators are: 

l 1 1 (Strict Concatenation) System events must be directly 
contiguous in time. 

. , . (Loose C’oncatenation) One event follows another with 
any arbitrary intervening events. 

OR (Alternation) At least one of the events must occur. 

-> (Causality) The first event “causes” the following event. 
Causality is context-sensitive; verifying that Instantiate (X: 
-> Predict(Y) requires different analyses than verifying 
that slot-fill(X,Y) -> Instantiate(X). 

# (Non-ordered Occurrence) The specified set of events 
must occur, but in any order. 

NOT (Negation) The specified event or expression must not 
occur. 

For example, one global processing strategy used in VMS- 
PLUM is the following: 

The necessary and sufficient set of events for the 
instantiation of top-level frames are as follows: First, 
there must occur a prediction of an instance of a 
<top-level> prototype. After some (possibly zero) 
intervening events, an instance of a <command-frame> 
prototype is instantiated. This event causes the slot- 
filling of the <top-level> prototype, which causes 
its instantiation. Following this, no prototype of the 
class <command-frame> may be instantiated. 

This strategy can be expressed by the following abstract in- 
stantiation sequence: 

(def -instantiation-sequent 
(predict <top-level>) 

e (<top-level>) 
. * . 

(instantiate <command-frame>) -> 
(slot-fill <top-level> <command-class>) -> 
(instantiate <top-level>) . . . 
(not (instantiate <command-frame>))) 

few of the errors which this abstraction can identify are: 

Ambiguities in the sentence which cause the instantiation 
of two <command-frame> prototypes. 

Modification to help-frame such that slot filling by a 
<command-frame> prototype no longer results in instan- 
tiation of help-frame. 

Instantiation of help-frame without slot filling by a 
<command-frame> prototype. 

Future Directions. 

The PLUMber’s Apprentice is currently under construction 
at the University of Massachusetts. While its facilities have only 
been applied to small systems, such as the VMSPLUM interface, 
initial results have been encouraging. A number of directions 
for future extension of the system are currently under study, 
including: 

l A language for uussertions”. Occasionally the developer 
may want to constrain the behavior of the system in a 
fashion not directly related either to the structure of the 
prototypes, or to the sequence of events necessary for their 
instantiation. Frequently this takes the form of restric- 
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tions on the input (form of the query), or output (form of 
the final memory structure), or some intermediate stage of 
processing. To accomodate this, the Apprentice provides 
a “hook” for developers. At the present time, this simply 
takes the form of lisp function defined by the developer, 
which is called at a point in time during execution specified 
by the developer, and which may access (but not modify) 
the values of internal memory structures. Greater experi- 
ence with these “assertions” about system behavior may 
allow the development of a language specifically for their 
expression. 

l User testing of the methodology and environment. Much 
more experience with the environment needs to be ob- 
tained before definitive conclusions about its worth can 
be made. It would be interesting to determine what de- 
velopmental “path” is taken by users in this environment- 
what are the methodological differences between novice 
and expert interface developers? Can abstract processing 
structures and strategies be identified and ported to new 
domains? 

Automated system extension by analogy. The abstraction 
languages provide a great deal of information about the 
structure and function of the implementation. Enough 
high-level information can be specified about the VMS- 
PLUM interface that the system can automatically add 
certain kinds of new VMS commands to the interface by 
analogy, though this requires making structural changes to 
certain prototypes, and adding new instances of abstract 
classes. It may be possible to provide facilities for exten- 
sion by analogy at the system level, in addition to the 
prototype level. 

l Automated prototype hierarchy generation. Given a set of 
prototypes, there exists an unbounded number of possi- 
ble abstraction hierarchies. However, only a few of them 
reflect the conceptual structure of the system. It seems 
likely that by analyzing the use and occurrence of proto- 
types in successfully processed queries, automated aid in 
construction of the hierarchy could be provided. 

Conclusion. 

Programming methodologies in artificial intelligence serve a 
dual purpose that is not present in other areas of computer sci- 
ence. On the one hand, those of us involved in AI applications 
are trying to build useful and reliable systems for large user 
populations. On the other hand, those of us who engage in ba- 
sic research often write programs for the sole purpose of testing 
out an idea or investigating a new problem area. It is not rea- 
sonable to assume that a single programming methodology will 
be equally effective in the service of both goals [17]. But what 
should we do when technologies discovered by basic research 
entail a level of conceptual complexity that makes technology 
transfer into application systems problematic? We can either 
reject the technology as being unmanageable and ill-conceived 
(as Dijkstra might recommend), or we can design tools to help 
us manage these more demanding levels of program complexity. 

Techniques in natural language processing provide especially 
compelling arguments for more powerful software development 
tools, since the information processing requirements of natural 
language are both highly demanding and highly idiosyncratic. 
While traditional programming methods encourage us to iden- 

tify and exploit linguistic regularities, the heart of the natural 
language problem is more accurately characterized by inevitable 
exceptions to almost any rule, non-generalizable irregularities, 
assumptions that might be wrong, and adequate (as opposed to 
correct) interpretations. 

This paper argues for a new set of languages to aid the de- 
sign of natural language systems. More specifically, we are im- 
plementing a set of specification languages for a conceptually- 
oriented language analyzer, PLUM. These languages describe 
declarative and procedural information about a developing lan- 
guage interface at varying levels of abstraction. Unlike most 
languages for specification or design, the PLUM abstraction lan- 
guages do not impose a developmental sequence: the designer 
may freely intermix design, specification, and implementation. 
The specification-level languages can be used for debugging, pro- 
gramunderstanding, and prototype synthesis, as well as for spec- 
ification. This freedom appears to allow a more “ergonomic” de- 
velopment process - one that is better suited to 
think about systems during their development. 
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