
Beyond Exploratory Programming:
A Methodology and Environment for Conceptual Natural Language Processing

Philip Johnson
Wendy Lehnert

Department of Computer and Information Science
University of Massachusetts

Amherst, Mass. 01003

Abstract

This paper presents an attempt to synthesize a methodology
and environment which has features both of traditional software
development methodologies and exploratory programming en-
vironments. The environment aids the development of concep-
tual natural language analyzers, a problem area where neither
of these approaches alone adequately supports the construction
of modifiable and maintainable systems. The paper describes
problems with traditional approaches, the new “parallel” devel-
opment methodology, and its supporting environment, called the
PLUMber’s Apprentice.

Introduction

AI software systems are rarely developed “by the book.” De-
spite the plethora of design methodologies available today, AI
programmers often perceive their problems as unamenable to so-
lution through Ystructured” analysis and design techniques. In-
stead, we have come to rely on a set of unabashedly unstructured
programming techniques or “design heuristics”, collectively re-
ferred to as “exploratory programming.” While these techniques
may be sufficient for developing systems to test research hy-
potheses, they do not provide much aid in attaining the goals of
production quality systems: reliability, extensibility, and main-
tainability.

This paper describes a software development methodology
and environment for conceptual natural language processing, a
domain in which the desire for production quality systems far
exceeds their availability. The methodology attempts to find
a middle ground between the inflexibility of structured design
methodologies and the looseness of exploratory programming.
This is accomplished by extending the exploratory programming
paradigm to include the “structured growth” of requirements
and specifications as well as implementation level descriptions
of the system. From another perspective, it could be viewed as
removing the strict ordering of requirements - specifications -
design - implementation from traditional design methodologies.

To motivate this approach, we first examine the strengths
and weaknesses of current design methodologies, and discuss
why these approaches cannot be successfully applied to concep-
tual natural language processing. Next, the methodology and its
supporting environment, called the “PLUMber’s Apprentice”, is
introduced and examples of its use are described. Finally, sev-
eral approaches for the automation of the design process within
this paradigm are discussed.

Current Programming Methodologies

The majority of software development methodologies are based]
upon the traditional “software lifecycle,” which divides the de-
velopment process into the following stages:

Requirements: The needs of the user community are as-
sessed and described, usually informally.

Specifications: Requirements obtained are used to produce
a formal and complete description of the behavior of the
final system.

Design: High-level algorithms and data structures are con-
structed which together implement the functionality of the
specifications. Modules and the interfaces between them
are specified.

Implementation: The design is translated into the source
language.

Testing: The system is checked to ensure it runs correctly
and implements all specifications.

Maintenance: The system is modified to support changes
in functionality desired by the user community.

Many languages and tools have been developed for these
phases, some examples of which are described in [1,15,20,25]. In
addition, [3] gives an overview of several major design method-
ologies. An assumption underlying this work is “linearity” in the
software lifecycle- requirements can be specified and fixed be-
fore specifications, specifications before design, and so on. Thus
tools and techniques for design can rely on complete and fixed
specifications, for example. While this assumption is perfectly
valid in many problem areas, it is often violated in AI applica-
tions.

Sheil [23] describes some of the problems in using these ap-
proaches in problem domains where specifications cannot be
completely specified and frozen in advance. Since specifications
are used to generate the module structure and interfaces be-
tween them, the system structure reflects its initial functionality.

Changes in the specifications which cut across module bound-
aries will be difficult to implement, due to both the inherent
complexity of such a process, and because features of structured
languages (like strong typing) tend to complicate those types of
changes.

Automating the implementation process (i.e., making specifi-
cations “executable”) is one answer to the problem of frequently
changing requirements[9,11,28]. If the system is responsible for
generating the implementation, then system development cen-

59-i / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

ters around the maintenance of specifications. While human
intervention is usually required to make the system-generated
implementation efficient, this can often be delayed until the re-
quirements for the system have stabilized. However, all of these
approaches require complete specification for the behavior of
the system. Unfortunately, this type of specification language
remains beyond the state of the art for problem areas such as
vision, robotics, or natural language understanding, so the ap-
plication of this approach in these areas does not appear to be
imminent.

The exploratory programming approach begins by dismissing
this view of the software lifecycle altogether. Sandewall [Zl]
terms the development process “structured growth” :

An initial program with a pure and simple struc-
ture is written, tested, and then allowed to grow by
increasing the ambition of its modules.. . The growth
can occur both “horizontally”, through the addition of

more facilities, and “vertically”, through a deepening
of existing facilities and making them more powerful
in some sense.

As Sheil (op. cit.) explains, this approach necessitates a
great deal of automated support, including sophisticated en-
vironments for entering, inspecting, debugging, and modifying
code. In addition, he claims it requires a language with late bind-
ing and weak type checking, in order to minimize the amount
of language-level design “rigidity”. Unfortunately, the lack of
higher-level descriptions for requirements and specifications has
a cost. One benefit of these descriptions is that they can aid the
developer in implementing a system which naturally reflects the
structure of the problem domain. An exploratory programmer
has no such guidelines, and thus system structures can become
highly idiosyncratic, dependent primarily upon the order with
which the programmer decided to “increase the ambition of his
modules.” Requirements and specifications also have an impor-

tant role as documentation, which can also be lost in exploratory
environments.

The PLUMber’s Apprentice

Conceptual Natural Language Processing.

Conceptual natural language processing (CNLP) is not well
suited to either traditional methodologies or exploratory par-
adigms. It suffers from a variety of developmental problems,
including:

l CNLP development generally proceeds by first developing
a system to handle a small number of sentences, eventu-
ally extending this system to cover the full domain. Fre-
quently this process resembles the building of a ‘<house of
cards”, where minor changes can cause the whole structure
to come crashing down, requiring extensive redesign.

l Maintenance is a terrible problem. In addition to the
threat of a “fallen house of cards”, CNLP designs tend
to be highly idiosyncratic, based upon which particular
subset of the domain was handled first, and how the de-
veloper decided to extend it outward from there. It is of-
ten difficult or impossible to understand how a particular
modification alters the global behavior without re-running
the system on a large set of sentences.

l Due to the immaturity of the field, there are a variety of
techniques for CNLP: novices learn primarily by experi-
mentation and first-hand experience.

l Compounding the above problems is the fact that nat-
ural language interfaces often need to evolve quickly and
continuously- both in the front end (the types of sentences
to be handled) and the back end (the set of commands or
representations output by the interface).

These problems make it difficult to apply existing methodolo-
gies successfully. The change in requirements and specifications
as the front and back ends evolve makes the traditional life cy-
cle model unsuitable. The limited availability of generic CNLP
strategies precludes automated approaches. What appears to
be necessary is a combination of traditional and exploratory ap-
proaches. If the developer could create and manipulate higher
level descriptions of the system, its conceptual structure and its
limitations would become more apparent earlier in the devel-
opment process. However, the developer must still be able to
experiment with different implementations, and thus the high-
level descriptions must be able to evolve easily and continuously
with the implementation. The PLUMber’s Apprentice is an at-
tempt to achieve this goal of fluid yet explicit structure.

The “Consistency Criterion.”

The PLUMber’s Apprentice includes a set of languages which
describe the developing system with differing levels and types
of abstraction. These languages are analogous to those devel-
oped for formalizing the initial phases of the traditional lifecycle
model- requirements, specifications, design, and implementa-
tion. The PLUMber’s Apprentice also includes facilities simi-
lar to the “power” tools of exploratory environments- including
a graphical interface providing several views of the evolution
of memory structures during system execution, and editors for
creating and modifying each description of the system[lO].

Unlike either traditional or exploratory facilities, however,
the PLUMber’s Apprentice also includes tools for assessing and
maintaining the consistency of each system description with each
of the other descriptions. This feature has a number of implica-
tions:

l Unlike the traditional lifecycle model, where each stage
must be completed before moving on to the next, the
PLUMber’s Apprentice allows the descriptions to be devel-
oped in any order. Furthermore, the system allows these
descriptions to co-exist in a state of partial completion, as
long as what has been specified is not contradictory.

l Consistency checking allows development to occur under a
variety of paradigms. The traditional top-down approach,
proceeding from abstract to concrete descriptions is, of
course, supported. An “exploratory” paradigm, using sim-
ply the implementation language and the power tools is
also possible. But a more powerful “parallel” development
process is also possible. Since partial descriptions of the
system at any level of abstraction are supported, the de-
veloper is free to ‘Lexplore” the system structure on all of
these levels simultaneously. This corresponds more closely
to the way in which programmers naturally develop soft-
ware: for example, implementation issues often arise dur-
ing requirements analysis, or during implementation the

NATURAL LANGUAGE / 595

developer may become aware of additional implicit speci-
fications. This information is usually lost - if not to the
original developers, then certainly to their successors. The
PLUMber’s Apprentice allows these decisions to be cap-
tured at whatever point in the development process they
are discovered.

l Finally, these tools allow the languages to be used in sur-
prising ways. When the implementation is found to be in
conflict with the higher level descriptions, the developer
might modify the implementation to bring it into line with
the “conceptual model”. On the other hand, the developer
might just as easily change the specification to more ac-
curately reflect the new behavior. The mere existence of
accurate high level descriptions serves as invaluable docu-
mentation aid. In addition, novices attempting to under-
stand the system might test their understanding by adding
new high level descriptions and seeing if they are consistent
with the actual system. When extensions to the system are
made, the Apprentice can ensure that they are faithful to
the “spirit” of the system as expressed by the higher-level
descriptions.

PLUM: The Implementation Level Language.

PLUM (The Predictive Language Understanding Mechan-
ism) incorporates principles of conceptual sentence analysis de-
veloped by a number of researchers in the field of natural lan-
guage processing [5,6,7,8,12,16,18,19,24,26,27]. Unlike syntactic
sentence analyzers that strive to produce a syntactic parse tree in
response to a sentence, a conceptual sentence analyzer attempts
to produce a conceptual meaning representation that captures
the semantic content of a sentence.

Particular constituents within a sentence (typically verbs)
are associated with predictive concept frames that allow an un-
derstander to identify meaningful relationships among other parts
of the sentence. For example, the active form of the verb “to
give” will predict an actor or agent, an object, and a recipient.
Syntactically, the actor is expected to correspond to the sub-
ject of the sentence, the object corresponds to the direct object,
and the recipient corresponds to an indirect object or object of
a prepositional phrase. The goal of a conceptual analyzer is to
fill each slot in its top-level concept frame with appropriate slot
fillers found throughout the sentence. Slots inside frames can
be filled with memory tokens (normally associated with noun
phrases) or other concept frames. For example, the top level
concept frame for “John told Mary that he was going home”
contains slots for an information source (John), an information
recipient (Mary), and the information being transfered (the fact
that John was going home). In this case, another concept frame
representing John going home is needed to fill the object slot of
the top level concept frame. An excellent introduction to con-
ceptual sentence analysis can be found in 1221. Documentation
specific to PLUM is available in [14] and [13].

In PLUM, a declarative structure is associated with each con-
cept frame. This structure is called a prediction prototype.
Prediction prototypes describe not only the concept frame to be
instantiated (added to memory) during sentence analysis, but
everything PLUM requires in order to achieve this instantiation
as well. Four key components give PLUM all it needs to know:

l The Concept Frame describes the frame structure and spec-
ifies any slot constraints that narrow the set of possible slot
fillers appropriate for a frame instantiation.

l The Control Structure specifies useful search routines
for each slot in the Concept Frame. Some searches must
look backward for information already present in the sen-
tence while others must search forward, effectively waiting
to see what the rest of the sentence holds in store. In either
case, it may be necessary to halt a search at clause bound-
aries or other sentence boundaries. The Control Structure
describes such search parameters by means of a simple
grammar called an Expect Clause. When PLUM reads a
Prediction Prototype, it interprets all the Expect Clauses
within the Control Structure, producing executable search
routines for possible run-time execution during sentence
analysis.

l The Predicted Prototypes are a list of other Prediction
Prototypes that will be triggered if the current Prediction
Prototype is successfully instantiated. Prediction Proto-
types can be triggered during sentence analysis two ways:
(1) a word encountered in the sentence can trigger a Pre-
diction Prototype, or (2) an instantiated Prediction Pro-
totype can trigger new Prediction Prototypes. The first
method corresponds to “bottom-up” sentence processing,
while the second enables “top-down” sentence analysis.
In conceptual sentence analysis, the general idea is to go
bottom-up until you know enough to go top-down.

l The Required Slots list all slots in the Concept Frame
that must be filled before the frame can be instantiated.
This is an optional component within the Prediction Pro-
totype, but a default requirement is assumed in the event
that no Required Slots are specified. If this component
is omitted, PLUM considers the corresponding Concept
Frame to be instantiated only if one of its slots if success-
fully filled. Any slot will suffice, but at least one must be
filled.

The idea of a Prediction Prototype is easiest to understand
with a concrete example in hand. The following (slightly sim-
plified) Prediction Prototype defines a Conceptual Dependency
case frame for ATRANS, an abstract transfer of possession. This
prototype is triggered by an active ATRANS verb (e.g. “to
give”).

(create-pred
type (ATRANS)

comment (triggered by ‘give’ & other active ATRANS
verbs)

concept-frame (actor = (animate)
act = ATRANS
object = (physob j >
source = (same-as actor)
recipient = (animate))

control-structure
((expect actor in past referent)

(expect object in future referent)
(expect recipient in future referent)
(expect recipient in future direction-to value))

predicts (cd)
required-slots (actor object recipient))

5% / SCIENCE

In this prototype, all slots are filled by referent frames (cor-
responding to memory tokens created by noun phrases) that
satisfy the slot constraints specified by the Concept Frame. The
object being transfered is expected to be a physical object while
the recipient of the transfer is presumed to be animate. These
slot constraints are needed to sort out direct objects and indirect
objects, since the searches specified by the expect clauses only
know to search for referents appearing after the verb. Notice
that two expect clauses are defined for the recipient slot. One
is designed to pick up recipients that appear as indirect objects
(John gave Mary the book) and the other is designed to cover

cases where the recipient appears in a prepositional phrase (John
gave the book to Mary).

When a system designer builds a natural language interface
with PLUM, he or she designs Prediction Prototypes as if pro-
gramming in a highly declarative programming language. Since
all slot constraints are readily found in the definition for the
Concept Frame, and the searches used to fill these slots are de-
scribed declaratively in the Control Structure, the role of any
prototype in the processing of an individual sentence is rela-
tively easy to understand. The difficulties arise when a large
number of prototypes are designed to interact with one another
in their slot-filling activities. It is much harder to anticipate all
the possible interactions between prototypes that can arise in
various sentences.

The traditional manner of controlling interactions is by pe-
riodically checking the system out on a large testbed of sen-
tences. Whenever a new Prediction Prototype is added to a
system that previously checked out, there is the possibility that
some side effect from the new prototype will cause new inter-
ference effects within the previously consistent system of Pre-
diction Prototypes. Unfortunately, this process only uncovers
system inconsistencies, it does not provide any direction either
in pinpointing the source of the inconsistency within the proto-
type definitions, or in determining the necessary modifications
to the system. Often the modifications made to remove one
inconsistency simply produce another.

To combat this problem, the PLUMber’s Apprentice pro-
vides two languages: abstract prototypes for describing the
system structure, and abstract instantiation sequences for]
describing processing strategies. Use of these languages aids the
developer in understanding not only how to extend the system
successfully, but also when the current system design is not ad-
equate for the desired modifications.

Abstract Prototypes.

To help the developer manage the complexity of dozens or
hundreds of prototypes in a system, the PLUMber’s Apprentice
provides abstract prototypes. Abstract prototypes are simi-
lar to Smalltalk Classes and Zetalisp Flavors, enabling the devel-
oper to specify inheritance hierarchies of the properties of pro-
totypes. While Flavors and Classes impose ‘(top-down” devel-
opment (requiring the abstract description before an instance of
it can be made), abstract prototypes can be developed “bottom-
up” or “middle-out”, in addition to top-down. For example, the
developer might first develop a set of prototypes, then develop
the abstract prototypes to modularize the system and to capture
the common properties between them.

Figure 1 contains one useful hierarchy for VMSPLUM[13], a
prototype natural language help facility for the VAX/VMS com-
mand language. In this case, the leaf nodes are PLUM proto-
types, the others being abstractions. Sometimes the abstraction
can specify properties that must hold true of its instances’ struc-
tures (such as the requirement that <command-frame>s search
for command qualifiers.) They might also group prototypes by
related behavior, rather than structure (for example, <values>.)
In the former case, the Apprentice can check to ensure that an
addition to that class has the required properties. In the latter
case, new additions to the class can be checked for the prereq-
uisite behavior. More than one inheritance hierarchy could be
mapped onto the same set of prototypes, resulting in multiple
“perspectives” or viewpoints on the system.

WNSPLUN-prototypes>

ccommand-f raune> cqualif ication)

<qualifiers> <values>

<structural>

/ \
<basic> <extended,

A
<integers> <time>

<top-level>

delete COPY VP print 6ince confirm 1 3 11:34 help-frame

Figure 1: A Partial Prototype Abstraction Hierarchy foor’ VMSPLUM.

NATURAL LANGUAGE / 597

The developer could have generated the abstract prototype
hierarchy in Figure 1 in several ways. Perhaps a small inter-
face handling only <basic> commands without qualifiers was
implemented initially, and the structure grew “upwards” and
“outwards” from there. This corresponds to the “exploratory”
approach. Or, the developer might have begun by considering all
the cases that could occur, and built “downwards” from there,
corresponding to the “top-down” approach. The most efficient
path is probably somewhere in between; perhaps first developing
a “rapid prototype” implementation, then creating an abstract
structural model, and then using that model to systematically
extend the interface. The hierarchy aids greatly in this exten-
sion by providing a kind of “semantic type checking” on the
prototypes. Finally, the hierarchy provides aid to the novice in
understanding the similarities between and requirements of the
dozens or hundreds of prototypes in a PLUM interface.

Abstract Instantiation Sequences.

The control structure of the PLUM implementation language
is decentralized, being specified within each of the prototypes.
While this has the advantage of automatically defining a “lo-
cal context” for the search of memory, and a natural notation
for description of. an individual prototype’s control structure,
it has the disadvantage of leaving implicit the global behav-
ior of the system, and thus obscuring global processing strate-
gies. Abstract Instantiation Sequences are designed to allow
the developer to make explicit the sequence of PLUM events
necessary and sufficient for prototype instantiation. By making
this sequence explicit, the rationale for the structure of the ex-
pect clauses becomes much more obvious. The sequences also
serve an important debugging function, by providing a method
for catching unanticipated interactions among prototypes which
might result in their addition to memory in a context unforeseen
by the developer.

The abstract instantiation language is related in spirit to
Constrained Expressions [‘2,4]. The developer gives an algebraic
expression, whose terms are “atomic PLUM events” and whose
operators express sequencing and causality information. Atomic
PLUM events are predicates whose arguments are simply proto-
types, either abstract or implementation-level, and which denote
the fundamental state changes of the system. For example, a few
of the atomic PLUM events in VMSPLUM are:

(predict <command-frame>)
(Prediction of a member of the <command-frame> class of
prototypes.)

(instantiate help-frame)
(Instantiation of the help-frame prediction prototype.)

(slot-fill <top-level> <command-frame>)
(A member of the <top-level> class of prototypes has a
slot filled by a member of the <command-frame> class of
prototypes.)

The operators determine the legal orderings of these events dur-
ing system execution, and their relationship to each other. The
current operators are:

l 1 1 (Strict Concatenation) System events must be directly
contiguous in time.

. , . (Loose C’oncatenation) One event follows another with
any arbitrary intervening events.

OR (Alternation) At least one of the events must occur.

-> (Causality) The first event “causes” the following event.
Causality is context-sensitive; verifying that Instantiate (X:
-> Predict(Y) requires different analyses than verifying
that slot-fill(X,Y) -> Instantiate(X).

(Non-ordered Occurrence) The specified set of events
must occur, but in any order.

NOT (Negation) The specified event or expression must not
occur.

For example, one global processing strategy used in VMS-
PLUM is the following:

The necessary and sufficient set of events for the
instantiation of top-level frames are as follows: First,
there must occur a prediction of an instance of a
<top-level> prototype. After some (possibly zero)
intervening events, an instance of a <command-frame>
prototype is instantiated. This event causes the slot-
filling of the <top-level> prototype, which causes
its instantiation. Following this, no prototype of the
class <command-frame> may be instantiated.

This strategy can be expressed by the following abstract in-
stantiation sequence:

(def -instantiation-sequent
(predict <top-level>)

e (<top-level>)
. * .

(instantiate <command-frame>) ->
(slot-fill <top-level> <command-class>) ->
(instantiate <top-level>) . . .
(not (instantiate <command-frame>)))

few of the errors which this abstraction can identify are:

Ambiguities in the sentence which cause the instantiation
of two <command-frame> prototypes.

Modification to help-frame such that slot filling by a
<command-frame> prototype no longer results in instan-
tiation of help-frame.

Instantiation of help-frame without slot filling by a
<command-frame> prototype.

Future Directions.

The PLUMber’s Apprentice is currently under construction
at the University of Massachusetts. While its facilities have only
been applied to small systems, such as the VMSPLUM interface,
initial results have been encouraging. A number of directions
for future extension of the system are currently under study,
including:

l A language for uussertions”. Occasionally the developer
may want to constrain the behavior of the system in a
fashion not directly related either to the structure of the
prototypes, or to the sequence of events necessary for their
instantiation. Frequently this takes the form of restric-

598 / SCIENCE

tions on the input (form of the query), or output (form of
the final memory structure), or some intermediate stage of
processing. To accomodate this, the Apprentice provides
a “hook” for developers. At the present time, this simply
takes the form of lisp function defined by the developer,
which is called at a point in time during execution specified
by the developer, and which may access (but not modify)
the values of internal memory structures. Greater experi-
ence with these “assertions” about system behavior may
allow the development of a language specifically for their
expression.

l User testing of the methodology and environment. Much
more experience with the environment needs to be ob-
tained before definitive conclusions about its worth can
be made. It would be interesting to determine what de-
velopmental “path” is taken by users in this environment-
what are the methodological differences between novice
and expert interface developers? Can abstract processing
structures and strategies be identified and ported to new
domains?

Automated system extension by analogy. The abstraction
languages provide a great deal of information about the
structure and function of the implementation. Enough
high-level information can be specified about the VMS-
PLUM interface that the system can automatically add
certain kinds of new VMS commands to the interface by
analogy, though this requires making structural changes to
certain prototypes, and adding new instances of abstract
classes. It may be possible to provide facilities for exten-
sion by analogy at the system level, in addition to the
prototype level.

l Automated prototype hierarchy generation. Given a set of
prototypes, there exists an unbounded number of possi-
ble abstraction hierarchies. However, only a few of them
reflect the conceptual structure of the system. It seems
likely that by analyzing the use and occurrence of proto-
types in successfully processed queries, automated aid in
construction of the hierarchy could be provided.

Conclusion.

Programming methodologies in artificial intelligence serve a
dual purpose that is not present in other areas of computer sci-
ence. On the one hand, those of us involved in AI applications
are trying to build useful and reliable systems for large user
populations. On the other hand, those of us who engage in ba-
sic research often write programs for the sole purpose of testing
out an idea or investigating a new problem area. It is not rea-
sonable to assume that a single programming methodology will
be equally effective in the service of both goals [17]. But what
should we do when technologies discovered by basic research
entail a level of conceptual complexity that makes technology
transfer into application systems problematic? We can either
reject the technology as being unmanageable and ill-conceived
(as Dijkstra might recommend), or we can design tools to help
us manage these more demanding levels of program complexity.

Techniques in natural language processing provide especially
compelling arguments for more powerful software development
tools, since the information processing requirements of natural
language are both highly demanding and highly idiosyncratic.
While traditional programming methods encourage us to iden-

tify and exploit linguistic regularities, the heart of the natural
language problem is more accurately characterized by inevitable
exceptions to almost any rule, non-generalizable irregularities,
assumptions that might be wrong, and adequate (as opposed to
correct) interpretations.

This paper argues for a new set of languages to aid the de-
sign of natural language systems. More specifically, we are im-
plementing a set of specification languages for a conceptually-
oriented language analyzer, PLUM. These languages describe
declarative and procedural information about a developing lan-
guage interface at varying levels of abstraction. Unlike most
languages for specification or design, the PLUM abstraction lan-
guages do not impose a developmental sequence: the designer
may freely intermix design, specification, and implementation.
The specification-level languages can be used for debugging, pro-
gramunderstanding, and prototype synthesis, as well as for spec-
ification. This freedom appears to allow a more “ergonomic” de-
velopment process - one that is better suited to
think about systems during their development.

the way people

Acknowledgements.

this work supported in part by NSF Presidential Young Investigator
Award NSFIST-8351863 and in part by the Advanced Research Projecta
Agency of the Depsrtment of Defense and monitored by the Office of Naval
Research under contract no. NO001485K-0017.

The authors gratefully acknowledge comments and criticisms
of the ideas in this paper by John Brolio and Jack Wileden.

REFERENCES

PI

PI

PI

PI

151

161

171

PI

M. Alford, “SREM at the Age of Eight: The Distributed
Computing Design System”, Computer, April 1985.

G. Avrunin, L. Dillon, J. Wileden, W. Riddle, “Constrained
Expressions: Adding Analysis Capabilities to Design Meth-
ods for Concurrent Software Systems”, IEEE Transactions
on Software Engineering, Vol. SE-12, No. 2, February 1986.

G.D. Bergland, “A Guided Tour of Program Development
Methodologies”, IEEE Computer, October 1981.

R. Campbell, A. N. Habermann, “The Specification of Pro-
cess Synchronization by Path Expressions,” Lecture Notes
in Computer Science, vol. 16, Springer-Verlag, Heidelberg,
1974, 89-102.

E. Charniak, “A Parser with Something for Everyone”,
Technical Report No. CS-70, Department of Computer Sci-

ence, Brown University, Providence, RI. 1981.

G. DeJong, “Prediction and Substantiation: A New Ap-
proach to Natural Language Processing”, Cognitive Sci-
ence, 3, 1979.

M. Dyer, In-Depth Understanding: A Computer Model of

Integrated Processing for Narrative Comprehension, MIT
Press, Cambridge, MA. 1983.

A.V. Gershman, “Knowledge-Based Parsing” (Ph.D. the-
sis) Research Report 156, Department of Computer Science,
Yale University, New Haven, CT. 1979.

NATURAL LANGUAGE / 599

PI

PI

Pll

P21

P31

PI

PI

P61

P71

PI

PI

PO1

WI

PI

WI

I241

1251

C. Green, D. Luckham, R. Balzer, T. Cheatham, C. Rich,
“Report on a Knowledge-Based Software Assistant”, Tech.
Report KES. u.83.2, Kestrel Institute, Palo Alto, Ca. July,
1983.

P. Johnson, “Requirements Definition for a Plumber’s Ap-
Prentice”, in Proceedings of the Second Annual Workshop
on Theoretical Issues in Conceptual Information Process-

ing, May 1985.

P. Kruchten, E. Schonberg, J. Schwartz, “Software Pro-
totyping Using the SETL Programming Language”, IEEE
Software, October, 1984

PI

WI

PI

M. Lebowitz, “Memory-Based Parsing”, Artificial Intelli-
gence, 21, 4. 1983.

W. Lehnert, K. Narasimhan, B. Draper, B. Stucky, M. Sul-
livan, “Experiments with PLUM”, Counselor Project Tech-
nical Memo No. 2, May, 1985.

W. Lehnert and S. Rosenberg, “The PLUM Users Manual,”
Counselor Project Technical Memo No. I, May 1985.

B. Liskov, S. Zilles, “Specification Techniques for Data Ab-
stractions”, IEEE Transactions of Software Engineering,

Vol. SE-l, No. 1, March 1975

S. Lytinen, “The Organization of Knowledge in a Multi-
lingual, Integrated Parser”, (Ph.D. thesis) Research Re-
port 940, Department of Computer Science, Yale University,
New Haven, CT. 1984.

D. Partridge, Y. Wilks, “Does AI Have A Methodol-
ogy Different From Software Engineering?“, Unpublished
Manuscript, New Mexico State University, 1986.

C.K. Riesbeck and C.E. Martin. “Direct Memory Access
Parsing”, Research Report 354, Department of Computer
Science, Yale University, New Haven, CT. 1985.

C. Riesbeck and R. Schank, “Expectation-based Analysis of
Sentences in Context”, Research Report 78, Department of
Computer Science, Yale University, New Haven, CT. 1976.

D. Ross, K. Schoman, Jr., “Structured Analysis for Re-
quirements Definition,” IEEE Transactions on Software

Engineering Vol. SE-3, No. 1, Jan. 1977.

E. Sandewall, “Programming in an Interactive Environ-
ment: The Lisp Experience”, Computing Surveys lO(1))
1978.

R.C. Schank and C.K. Riesbeck, Inside Computer Un-
derstanding, Hillsdale, NJ, Lawrence Erlbaum Associates.
1981.

B. Sheil, “Power Tools for Programmers,” Datamation,
February, 1983.

S. Small, “Word Expert Parsing: A Theory of Distributed
Word-based Natural Language Understanding”, (Ph.D.
thesis) TR-954, Department of Computer Science, Univer-
sity of Maryland. 1980.

D. Teichroew, E. Hershey, “PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of
Information Processing Systems”, IEEE Transactions on
Software Engineering, Vol. SE-3, No. 1, Jan. 1977

D.L. Waltz and J.B. Pollack, “Phenomenologically Plausi-
ble Parsing” in Proceedings of the 1984 American Associa-
tion for Artificial Intelligence Conference, 1984.

R. Wilensky, “A Knowledge-based Approach to Language
Processing” in Proceedings of the Seventh International

Joint Conference on Artificial Intelligence, 1981.

P. Zave, “An Operational Approach to Requirements Spec-
ification for Embedded Systems,” IEEE Transactions on
Software Engineering, Vol. SE-8, No. 5, May 1982.

600 / SCIENCE

