
A SIMPLE MOTION PLANNING ALGORITHM
FOR GENERAL ROBOT MANIPULATORS

Tom&s Lozano-P&ez

MIT Artificial Intelligence Laboratory

545 Technology Square

Cambridge, Mass. 02139 USA

Abstract: This paper presents a simple and efficient algorithm, using

configuration space, to plan collision-free motions for general manipu-

lators. We describe an implementation of the algorithm for manipula-

tors made up of revolute joints. The configuration-space obstacles for

an n degree-of-freedom manipulator are approximated by sets of n- 1

dimensional slices, recursively built up from one dimensional slices.

This obstacle representation leads to an efficient approximation of the

free space outside of the configuration-space obstacles.

1. Introduction

This paper presents an implementation of a new motion planning al-

gorithm for general robot manipulators moving among three-dimen-

sional polyhedral obstacles. The algorithm has a number of advan-

tages: it is simple to implement, it is fast for manipulators with

few degrees of freedom, it can deal with manipulators having many

degrees of freedom (including redundant manipulators), and it can

deal with cluttered environments and non-convex polyhedral obsta-

cles. An example path obtained from an implementation of the algo-

rithm is shown in Figure 1.

The ability to automatically plan collision-free motions for a ma-

nipulator given geometric models of the manipulator and the task is

one of the capabilities required to achieve task-level robot programming
[151. Task-level programming is one of the principal goals of research

in robotics. It is the ability to specify the robot motions required

to achieve a task in terms of task-level commands, such as “Insert

pin-A in hole-B”, rather than robot-level commands, such as “Move

to 0.1,0.35,1.6”.

The motaon-plannzng problem, in its simplest form, is to find a

path from a specified starting robot configuration to a specified goal

configuration that avoids collisions with a known set of stationary

obstacles. Note that this problem is significantly different from, and

quite a bit harder than, the cofliszon detectzon problem: detecting

whether a known robot configuration or a path would cause a col-

lision [l, 4j. Motion planning is also different from on-lzne obstacle
avoidance: modifying a known robot path so as to avoid unforeseen

obstacles 16, 9, 10, 11:.

Although general-purpose task-level programming is still many

years away, some of the techniques developed for tdsk-level prograrn-

ming are relevant to existing robot applications. There is. for exam-

ple, increasing emphasis among major robot users on developing tech-

niques for off-line programming, by human programmers. using CA11

models of the manipulator and the task. In many of these applications

motion planning plays a central role. Arc welding is a good example;

specifying robot paths for welding along complex three-dimensional

paths is a time-consuming and tedious process. The development of

practical motion-planning algorithms could reduce significantly the

programming time for these applications.

A great deal of research has been devoted to the motion-planning

problem within the last five to eight years, e.g., [2, 3, 5, 7, 8, 12, 13,

14, 16, 17, 19, 201. But, few of these methods are simple enough and

powerful enough to be practical. Practical algorithms are particularly

scarce for manipulators made up of revolute joints, the most popu-

lar type of industrial robot. 1 know of only three previous motion-

planning algorithms that are both efficient and reasonably general

for revolute manipulators with three or more degrees of freedom ‘2,

7, 121. Brooks’s algorithm [2] h as demonstrated impressive results.

but is fairly complex. Faverjon’s algorithm 17 , on the other hand, is

appealingly simple. The basic approach of the algorithm described

here is closely related to the method described by Faverjon. Many of

the details of the present algorithm, however, especially the treatment

of three-dimensional constraints and the free space representation. are

new and more general.

Figure 1. A path for all SIX link \ of a I’rlma. plus a three-fingered

hand. obtained using the algorithm dr+t r ibed here

626 I SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The approach taken in this algorithm is similar to that of 17, 8,

12, 131 in that it involves quantizing joint angles. It differs in this

respect from exact algorithms such as [17. 19j. On the other hand,

the quantization approach lends itself readily to efficient computer

implementation.

joints are known as JTFC JOZ?~!$.

The purpose of this paper is to show that motion planning for

general manipulators can be both simple and relatively efficient in

most practical cases. I see no reason why motion planning should

be any less practical than computing renderings of three dimensional
solids in computer graphics. In both cases. there are many simple
numerical computations that can benefit from hardware support. In
fact, it is worth noting that in the examples in Figure 1 it took about

Figure 2. Slice Projection of a three-dimensional obstacle into a

list of two-dimensional slices that are in turn represented by one-

dimensional slices.
the same time to compute the hidden-surface displays in the figures

as to compute the paths. Note that a slice projection is a conservatave approximation of a

segment of an n dimensional C-space obstacle. An approximation of

the full obstacle is built as the union of a number of n- 1 dimensional

slice projections, each for a different range of values of the same joint
2. The Basic Approach: Slice Projection

The configuratzon of a moving object is any set of parameters that parameter (Figure 2). Each of the n - 1 dimensional slice projections,

completely specify the position of every point on the object. Con- in turn, can be approximated by the union of n - 2 dimensional

figuratzon space (C-space) is the space of configurations of a moving slice projections and so on, until we have a union of one dimensional

object. The set of joint angles of a robot manipulator constitute volumes, that is, linear ranges. This process is illustrated graphically

a configuration. Therefore, a robot’s joint space is a configuration in Figure 2. Note that the slice projection can be continued one more

space. The Cartesian parameters of the robot’s end effector, on the step until only zero dimensional volumes (points) remain, but this is

other hand, do not usually constitute a configuration because of the wasteful.

multiplicity of solutions to a robot’s inverse kinematics. It is possible Consider a simple two-link planar manipulator whose joint pa-

to map the obstacles in the robot’s workspace into its configuration rameters are q1 and 92. C-space obstacles for such a manipulator are

space ‘3. 4; 5. 13. 14,. These C-spacr obstacles represent those config- two dimensional. The one dimensional slice projection of a C-space

urations of the moving object that would cause collisions. J+ce space obstacle C for q1 E [a,@; is some set of linear ranges {RE} for 92.
is defined to be the complement of the C-space obstacles. The ranges must be such that if there exists a value of 42, call it w,

Motion planning requires an explicit characterization of the robot’s and a value q1 E [a,/?], call it c, for which (c, w) E C, then w is in

free space. The characterization may not be complete, for example, one of the R, (Figure 2).

II may cover only a subset of the free space But. without a charac- A representation of a configuration space with obstacles is illus-

trrlzation of the free spate. one is reduced to tridl and error methods trated in Figure 3b, for the two link manipulator and obstacles shown

to find a path. In this paper we show how to compute approximate in Figure 3a. The actual configuration space is the surface of a torus

characterizations of the free space for sample manipulators. By simple since the top and bottom edge of the diagram coincide (0 = 2~), as

manipulators we mean manipulators composed of a non-branching se- do the left and right edge. The obstacles are approximated as a set

quence of links connected by either revolute or prismatic joints (see of 92 rauges (shown dark) for a set of values of 41. The resolution is

181 for a treatment of the kinematics of simple manipulators). We 2 degrees d]OJIg the qr axis.

restrict the position of link zero of a simple manipulator to be fixed.

Most industrial manipulators (not including parallel-jaw grippers) are

simple manipulators in this sense.

The C-space obstacles for a manipulator with n joints are, m

general, n-dimensional volumes. Let C denote an n dimensional C-

space obstacle for a manipulator with n joints. We represent approx-

imations of C by the union of n - 1 dimensional slzce proJec2zons 113,

I4 Each n - 1 dimensional configuration in a slice projection of C

represents a range of n dimensional configurations (differing only in

the value of a single joint parameter) that intersects C.

.4 slice projection of an n dimensional C-space obstacle is defined

by a range of values for one of the defining parameters of the C-space

and an n - I dimensional volume. Let the q = (ql, . , qn) denote

a configuration, where each qt is a joint parameter, each of which

measures either angular displacement (for revolute joints) or linear

displacement (for prismatic joints). Let {q j q3 E [a,/3 } be the set

of all configurations for which qJ t :a,8 and let rJ be a projection

a)

b)

Figure 3. (a) Two link revolute manipulator and obstacles. (b)

Two dimensional C-space with obstacles approximated by a list of

one dimensional slice projections (shown dark). The initial and final

positions of the manipulator are shown in the input space and the

operator such that
Qn..‘..qn) = (Sl.“‘) q3-1*q3-1 .“‘) qn)

Then, the slice projection of the obstacle C for values of q3 c 0, /3] is

C-space

The definition of slice projection is illustrated in Figure 2. In the I’or general manipulators with z links, the configuration space

example above. joint 3 aGo\e i< called the .silrf ~oznt while the other can be c onst rutted as follows:

PERCEPTION AND ROBOTICS / 627

To compute C-space(z):

1 Ignore links beyond link 1. Find the ranges of legal values of

qz by considering rotating link 2 around the positions of joint z

determined by the current value ranges of ql(. . . qa- 1.

2. If z = n then stop, else sample the legal range of qz at the

specified resolution. Compute C-space(z I 1) for each of these

value ranges of qz.

Observe that the basic computation to be done is that of determining

the ranges of legal values for a joint parameter given ranges of values

of the previous joints. This computation is the subject of Section 3.

The recursive nature of the C-space computation calls for a re-

cursive data structure to represent the C-space. In my implementa-

tion I use a tree whose depth is n- 1, where n is the number of joints,

and whose branching factor is the number of intervals into which the

legal joint parameter range for each joint is divided (Figure 4). The

leaves of the tree are ranges of legal (or forbidden) values for the

joint parameter n. Many of the internal nodes in the tree will have

no descendants because they produce a collision of some link z < n.

The main advantage of a representation met,hod built on recur-

sive slice projection is its simplicity. All operations on the represen-

tation boil down to dealing with linear ranges, for which very simple

and efficient implementations are possible. The disadvantages are

the loss of accuracy, and the rapid increase of storage and processing

time with dimensionality of the C-space. Contrast this approach with

one that represents the boundaries of the obstacles by their defining

equations ~4. 5;. Using the defining equations IS cleaner and more

accurate. but the algorithms for dealing with interactions between

obstacle boundaries are very complex. 1 believe that the simplicity

of slice projection outweighs its drawbacks. These drawbacks can be

significantl! redured by exercising care in the implementation of the

algorithms

61

Figure 4. The recursive nature of the C-space leads to a recursive

data structure: an n-level tree whose leaves represent legal ranges of

configurations for the robot manipulator.

3. Slice Projections for Polygons

The key step in our approach is computing one dimensional slice

projections of C-space obstacles. That is. determining the range of

forbidden values of one joint parameter, given ranges of values for all

previous joint parameters. We will illustrate how these ranges may

be computed by considering the case of planar revolute manipulators

and obstacles.

Assume that joint k: a revolute joint, is the free joint for a one-

dimensional slice projection and that the previous joints are fixed

at known values. Note that we assume, for now, that the previous

joints are fixed at szngle values rather than ranges of values; we will

see in Section 3.3 how to relax this restriction. We require that the

configuration of the first k - 1 links be safe, that is, no link intersects

an obstacle. This is guaranteed by the recursive computation we saw

in Section 2. Given these assumptions, we need to find the ranges

of values of the single joint parameter qk that are forbidden by the

presence of objects in the workspace.

The ranges of forbidden values for qk will be bounded by angles

where link k is just touching an obstacle. For polygonal links moving

among polygonal obstacles, the extremal contacts happen when a

vertex of one object is in contact with an edge of another object.

Therefore, the first step in computing the forbidden ranges for qk is

to identify those crztzcal values of qk for which some obstacle vertex

is in contact with a link edge or some link vertex is in contact with

an obstacle edge (Figure 5).

The link is constrained to rotate about its joint, therefore ever!

point on the link follows a circular path when the link rotates. The

link vertices, in particular, are constrained to known circular paths.

The intersection of these paths with obstacle edges determine some

of the critical values of qk, for example, B in Figure 5. ,4s the link

rotates, the obstacle vertices also follow known circular paths relative

to the link. The intersection of these circles with link edges detcrmrne

the remaining critical values for qk. for example. i\ in Figure 5

Figure 5. Contact conditions for computing one dimensional slice

projections: (a) Vertex of obstacle and edge of link (b) vertex of link

and edge of obstacle. The circles indicate the path of the vertices as

the link rotates around the specified joint.

Determining whether a vertex and an edge segment can intersect

requires first intersecting the circle traced out by the vertex and the

infinite line supporting the edge to compute the potential intersection

points. The existence of such an intersection is a necessary condition

for a contact between link and obstacle, but it is not suficzenl. Three

additional constraints must hold (Figure 6): in-edge constraznt - the

intersection point must be within the finite edge segment, not just the

the line supporting the edge; orzentataon constraznt - the orientation

of the edges at the potential contact must be compatible. that is,

the edges that define the contact vertex must both be outside of the

contact edge: rFachabzlzty constraznt - for non-convex objects, there

must not be other contacts that prevent reaching this point.

The in-edge constraint can be tested trivially given the potential

contact point and the endpoints of the contact edge. Since we know

that the contact point is on the line of the edge. all that remains to

be determined is whether it lies between the endpoints of the edge.

This can be done by ensuring that the r and y coordinates of the

contact point are within the range of T and y coordinates defined by

the edge endpoints. Note that for contacts involving link edges and

obstacle vertices, the position of the endpoints of the link edge must

be rotated around the joint position by the computed value of the

joint angle at the contact.

The orientation constraint can also be tested simply. All that is

required is that the two edges forming the contact vertex be on the

outside of the contact edge. Polygon edges are typically oriented so

that they revolve in a counterclockwise direction about the boundary.

Therefore, the outside of the polygon is on the right of the edge as we

628 / SCIENCE

travrrce the boundarv. <Given this. the feaslbillty of a tontact can be

In\ 01~ rd 1n the (on: a(t

Figure 6 Given the intersection of a vertex circle and an edge line,

the following conditions must be met for a feasible contact: (a) The

contact must be in the edge segment. contact 1 satisfies this but 1’

doe< not (b) The edges that define the rontart vertex must both be

outFide nf the con~ac t edge. contact I satisfies this but contact 2 does

not. (c) The contact must be reachable. contact 1 satisfies this. but

contact 3 does not (this condition is only reievant for non-convex

ObJCTtS)

lJl6 dll the c’intact~ o! tht, link V.II tr ri “1\er1 obstdclC. that sdtibf) the

!Ir\t 1v.C’ c ~‘I1-t ralnl. 1‘~ r ed(h c~~ntn 1 nrlglfs q bsf’ tictfbrnlinr~ v.ht,thtlr
\<liur. of ‘lj gJf’dtP1 itldn p (dllif’ (~~!!l-l~~n or Mhcthcr \alucs Icss thdrl

q TdUSf’ rolliilon (Section ‘i.2). Thr contact angles together with the

collision direction: ran be merged to forrn the ranges of forbidden

values for qk. This process is illustrated in Figure 7.

Figure 7 Ccjnstruct1ng ranges of forbidden value3 using the potential

(ontac t angle5 and the collision directions.

Our discussion thus far ha? been limited IO situations where’ nil

the joints except the lact have known fixed values. The definition of

onf--dimensional :l~ce projection\ a lln\vc all the joints. save one free

joint. to be withIn a range. not just a single value. Me can read]])

convert. the 511ce projectIon problem (for ranges of joint values) to

thfa simpler troscczction proje(tion problem (for tingle Joint values)

\ve haxc alrcddb d;scu\sed The idea is to replate the shape of the

link under consideration b> the area it bleeps out when +he joint?

dvf1nmg the slice mole within their specified vaiue ranges 1:;. 14:

Any safe placement of the expanded link represents a range of legal

displacements of the original link within the specified joint ranges.

In most cases. instead of computing the exact swept volumes.

we can use a very simple approximation method. Assume the manip-

ulator is posItioned at the configuration defined by the midpoint of

all the joint Lalue ranges specified for the slice projection Compute

the, magnitude. rk. of the largest carteslan displacement of any point

on link k 1n response to an) displacement within the specified range

of Joint value5 If Ne ’ grow” each link by its corresponding radius Ek.

the grown 11nh includes the snt’pt area.

4. Slice Projections for Polyhedra

The basic dpprodch described in Section 3 carries over directly to

three dimensional manipulators and obstacles. There is, houever.

one significant difference there dre three types of contacts possible

bet\vecn three dirnensional polyhedra. The three contact types are

(type A) x’ertcx of obstacle and face of link. (type B) vertex of link

d11d fate of rjbstacle, and (type C) edge of link and edge of obstacle.

I,ct 11~ consider t>‘pe B contacts first Each revolutr Jn1nt 15 char-

actc>r1/ctl b:, ~11 d\is of rotation. As the Joint rotates. lmk Lerticcs

trrl((8 circle\ 1n a plane whose normal is the joint axis. The intersec-

tli,ll of tllii (1r(I(’ with the plane supporting an ob<tncle fncri define>

tMo candidate po1ntc of contact. As in thi, t~~~o-dlrrlerlsi~,nal ca5e. pos-

\lt)]c (~~rit~~~ ti rJJu>t satlsf? thrrxe c~>riitrnirlt~ to b<’ fe‘d-lt)l? in-face

(cjnst rdint t ilc c ontnc t must t,c within the c)t,>t nc 16’ fat c. orli’rltdti0n

constraint all of the link edges meeting at the vertex must be outside

of the obstacle. and reachability constraint - for non-convex polyhe-

dra. there must not be any earlier contacts that prevent reaching this
one.

The in-face constraint can be checked using any of the existing

algorithms for testing whether a point is in a polygon. The orienta-
tion constraint can be enforced by checking that the dot products of

the face normal with each of the vectors from the contact vertex to ad-

jacent vertices is positive 5 The reachability constraint is enforced

exactly as in the two-dimensional case by merging the forbidden angle

ranges.

Type .4 contacts are handled analogously to type B contacts

except that no& the vertex belongs to an obstacle and the face to a

link. The axis of rotation is still that of the manipulator joint.

Detecting type <‘ contacts require detecting the intersection of a

11ne (supporting a hnk edge) rotating about the joint axis and a sta-

tionary line (supporting an obstacle edge). Of course. an intersection

point must be inside both edge segments to be feasible. There is also

an orient ation constraint M hich is a bit rnore difficult to derive than

those for t!pe A and B contacts but not particularly difficult to check

(for the derivation. see ,5).

5. Free Space Representation

Having obtained a toniervative approximation of the C-space obsta-

(les. t h<k free +pace is simpl\ the complement of all the obstacles. Since

the obstacles are ultimately rep1esented as sets of linear ranges. the

complement is tr1vial to compute. A two dimensional free space, for

example. ~111 be represented as a list of one dimensional slices. Each

slitr represents the ranges of legal values of q2 for some small range

of Lalues of 41. This is 1n itself a reasonabl> convenient representa-

t ion of the free space but not very compact. If we were to try to

fired paths through the individual slices a great deal of time would

bc Lrnsted Learching through near]\. idfantica! slices. -4 more compact

reprcx4entat iun i+ railed for. one that capture< iorne of the coherence

The free space rcprt+entat1on I use 1s made up of rfqzons A

rf’gion 1s made up out of olerlapplng ranges from a set of adjacent

<licci (l‘igurtb 8) ‘I‘hzs arca of common overlap of all the slices in a

region I\ ret tangular and called the region’s kernel In practice, we

require some rninlmum overlap between slices in the same regions to

alold vrr\ ndrrou kernels.

Free space regions are non-convex and so points within the region

ITI a;, not alwaS s be connect able by a straight line. There is, however.

a <implr rnt~thod for moving between points within the region: move

from each point along its slice to the edge of the kernel and connect

these kernel points with a straight lme.

PERCEPTION AND ROBOTICS / 629

To search for a path between points in different regions requires

representing the connectivity of the regions. We build a regaon graph
where the nodes are regions and the links indicate regions with com-

mon boundary Associated with each region are a set of links to

adjacent regions. each link records the area of overlap Regions have

neighbors primarily in the q1 direction: for these neighbors, the range

of qz values at the common region boundary is stored with the link.

a)

Figure 8. (a) R e g ion definition for two link C-space. The rectangular

regions are the region kernels. The shaded area shows region Rx. (b)

Region graph corresponding to the regions in part A. The link labels

indicate the existence of a common boundary in the q1 and/or q2
directions.

By construction, regions only have q2 neighbors at the 0 = 2n bound-

ary, anywhere else the region is bounded above and below by obsta-

cles.

In general, each n dimensional slice is represented as a list of

n - 1 dimensional slices and one dimensional slices are a list of ranges

of joint values. We have seen that two dimensional regions are con-

structed by joining neighboring one dimensional slice-projections. In

principle, we could construct three dimensional regions by joining

neighboring two dimensional regions, and so on Instead, for three

dimensional C-spaces we simply build two dimensional regions for

each range of values of the first joint parameter and represent the

connectivity among these regions in the region graph (Figure 9). The

connectivity is determined by detecting overlap between region ker-

nels in neighboring two dimensional slices, that is, slices obtained by

incrementing or decrementing the first joint parameter. When overlap

exists. the area of overlap is associated with the corresponding link in

the region graph. This method is readily extended to n dimensional

slices by considering as neighbors slices obtained by incrementing or

decrementing one of the first n - 2 joint parameters used to define

the two dimensional slice.

Path searching is done by an A’ search in the region graph from

the region containing the start point to the region containing the goal

point.

Figure 9. Region connectivity for three dimensional slices; regions

can have neighbors in q1 direction.

6. Heuristics for building the C-space

Having built a C-space, it may be searched repeatedly for different

paths. Changes to the environment. however. will cause parts of the

C-space to be recomputed. In rapidly changing environments, it may
not be appropriate to compute the complete C-space since only small

sections of the C-space will ever be traversed

The path shown in Figure 1 was computed using two simple

hcuristrcs to subset the C-space: First plan a path for the first 3 links

and a simple bounding box for the rest of the manipulator (the last

three lrnks. the end-effector and the load). The origin and goal for this

path arc chosen to be the closest points in free space to the actual

origin and goal. Having found such a path, there remains finding

pdt h\ III the full-dimonsional C-space between the actual origin (resp.
goal) and the origin (resp. goal) of the path. This strategy has the

effect of decoupling the degrees of freedom. For all these paths, we

compute only the portion of the C-space bounded by the joint values

of the origin and goal configurations.

7. Discussion

The main advantages of the algorithm described here are: it is simple

to implement, it is fast for manipulators with few degrees of free-

dom, it can deal with manipulators having many degrees of freedom

including redundant manipulators, and it can deal with cluttered en-

vironments and non-convex polyhedral obstacles. The total wall-clock

time to compute the C-space obstacles and then plan a path for the

two-link example shown in Figure 3 and 10 is six seconds on a Sym-

bolics 3600 Lisp Machine with floating-point operations performed in

software. These times could be improved by carefully re-coding the

algorithm, but they are already quite a bit faster than a human using

an interactive programming system (on-line or off-line).

Figure 10. (a) Regions for example in Figure 3 (b) Path found be-

tween start (1) and goal (4) configuratrons (c) Some intermediate

configurations.

The main disadvantages of the algorithm are: the approxima-

tions introduced by the quantization may cause the algorithm to miss

legal paths in very tight environments, and the rapid growth in exe-

cution time with the number of robot joints. This last drawback is

probably inherent in any general motion planner: the worst-case time

bound will be exponential in the number of degrees of freedom 19

The performance of this algorithm shows that motion planning

algorithms can be fast enough and simple enough for practical use. I

believe that in many applications automatic motion planning will be

more time effective than interactive off-line programming of robots.

In fact: the planning times will probably be on the order of the times

required to perform hidden surface elimination in graphics systems.

630 / SCIENCE

Acknowledgments. This report describes research done at the Arti-

ficial Intelligence Laboratory of the Mnssnchusetts Institute of Technology.
Support for the Laboratory’s Artificial Intelligence research is provided in

part by R grant from the System Development Foundation, in part by the

Advanced Research Projects Agency under Office of Nnvnl Research con-

tracts NCICiO14-85-K-0214 rend NO0014-82-K-0334 nnd in part by the Office

of Navnl Research under contract NOOO14-82-K-0494. The author’s research

is also supported by an NSF Presidential Young Investigator grant.

Bibliography
1. J. W. Boyse, “Interference Detection Among Solids and Sur-

faces”, Comm. of ACM, Vol. 22, No. 1, Jan. 1979.

2. R. A. Brooks, “Planning Collision-Free Motions for Pick-and-

Place Operations”, Intl. J. Robotacs Research, Vol. 2, No. 4,

1983.

3. R. A. Brooks and T. Lozano-Pkrez, “A Subdivision Algorithm

in Configuration Space for Findpath with Rotation”, in Proc.

Eighth Int. Joint Conf. on A I, Aug. 1983. Also IEEE Trans.
on SMC, Vol. SMC-15, No. 2, 224 -233, Mar/Apr 1985. Also

MIT AI Memo 684, Feb. 1983.

4. J. F. Canny, “Collision Detection for Moving Polyhedra”, Proc.

European Conf. A I, 1984. Also MIT AI Memo 806, Oct. 1984.

5. B. R. Donald, “Motion Planning with Six Degrees of Freedom”,

MIT AI Tech. Rep. 791, May 1984.

6. E. Freund, “Collision Avoidance in Multi-Robot Systems”, Proc.

Second Intl. Symp. Robotics Research, Kyoto, August 1984.

Published by MIT Press, Cambridge, Mass.

7. B. Faverjon, “Obstacle Avoidance Using an Octree in the Con-

figuration Space of a Manipulator”, Proc. IEEE Intl. Conf.

Robotics, Atlanta, March 1984.

8. L. Gouzenes, “Strategies for Solving Collision-Free Trajectory

Problems for Mobile and Manipulator Robots”, Intl. J. Robotacs
Research, Vol. 3, No. 4, 1984.

9. N. Hogan, “Impedance Control: An Approach to Manipulation”,

Amer. Control Conf., June 1984.

10. 0. Khatib and J. F. Le Maitre, “Dynamic Control of Manip-

ulators Operating in a Complex Environment”, Proc. Third

CISM-IFToMM. Udine, Italy, Sept. 1978.

11. B. H. Krogh, “Feedback Obstacle Avoidance Control”, Proc.

21st Allerton Conf., Univ. of Ill., Oct. 1983.

12. C. Laugier and F. Germain, “An Adaptive Collision-Free Tra-

jectory Planner”, Proc. Int. Conf. Adv. Robotics, Tokyo, Sept.

1985.

13. T. Lozano-Perez, “Automatic Planning of Manipulator Transfer

Movements”, IEEE Trans. on SMC, Vol. ShlC-11, No. 10, 681
- 698. Oct. 1981. Also MIT AI Memo 606, Dec. 1980.

14. T. Lozano-Pbrez, “Spatial Planning: A Configuration Space Ap-

proach”, IEEE Trans. on Computers, Vol C-32, No. 2, 108 - 120,

Feb. 1983. Also MIT AI Memo 605, Dec. 1980.

15. T. Lozano-Perez, “Robot Programming”. Proceedzngs of the IEEE,
Vol 71: No. 7, 821 - 841, July 1983. Also MIT AI Memo 698,

Dec. 1982.

16. T. Lozano-PCrez and M. A. Wesley, “An Algorithm for Planning

Collision-Free Paths Among Polyhedral Obstacles”1 Comm. of

the ACM. Vol. 22: No. 10. 560 - 570. October 1979.

17. C. O’Dtinlaing. M. Sharir. and C. K. Yap, “Retraction: A New

Approach to Motion Planning’. 15th ACM STOC. 207 220,
1983.

18. R. P. Paul. Robot Manipulators. \1IT Press. 1981.

19. J. Schv.artz and M. Sharir. “On the> Pinno ILIover’s Problem II”.

Courant Inst. of Math. Sci. Tech. Rep. 41. Feb. 1982.

20. S. Udupa, “Collision Detection and Avoidance in Computer Con-

trolled Manipulators”, Proc. Fifth Intl. Joint Conf. AI, Cam-
bridge, 1977.

PERCEPTION AND ROBOTICS / 63 1

