From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

A SIMPLE MOTION PLANNING ALGORITHM
FOR GENERAL ROBOT MANIPULATORS

Tomés Lozano-Pérez
MIT Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Mass. 02139 USA

Abstract: This paper presents a simple and efficient algorithm, using
configuration space, to plan collision-free motions for general manipu-
lators. We describe an implementation of the algorithm for manipula-
tors made up of revolute joints. The configuration-space obstacles for
an n degree-of-freedom manipulator are approximated by sets of n—1
dimensional slices, recursively built up from one dimensional slices.
This obstacle representation leads to an efficient approximation of the
free space outside of the configuration-space obstacles.

1. Introduction

This paper presents an implementation of a new motion planning al-
gorithm for general robot manipulators moving among three-dimen-
sional polyhedral obstacles. The algorithm has a number of advan-
tages: it is simple to implement, it is fast for manipulators with
few degrees of freedom, it can deal with manipulators having many
degrees of freedom (including redundant manipulators), and it can
deal with cluttered environments and non-convex polyhedral obsta-
cles. An example path obtained from an implementation of the algo-
rithm is shown in Figure 1.

The ability to automatically plan collision-free motions for a ma-
nipulator given geometric models of the manipulator and the task is
one of the capabilities required to achieve task-level robot programming
[15]. Task-level programming is one of the principal goals of research
in robotics. It is the ability to specify the robot motions required
to achieve a task in terms of task-level commands, such as “Insert
pin-A in hole-B”, rather than robot-level commands, such as “Move
to 0.1,0.35,1.6”.

The motion-planning problem, in its simplest form, is to find a
path from a specified starting robot configuration to a specified goal
configuration that avoids collisions with a known set of stationary
obstacles. Note that this problem is significantly different from, and
quite a bit harder than, the collision detection problem: detecting
whether a known robot configuration or a path would cause a col-
lision {1, 4]. Motion planning is also different from on-line obstacle
avordance: modifying a known robot path so as to avoid unforeseen
obstacles |6, 9, 10, 11..

Although general-purpose task-level programming is still many
years away, some of the techniques developed for task-level program-
ming are relevant to existing robot applications. There is, for exam-
ple, increasing emphasis among major robot users on developing tech-
niques for off-line programming, by human programmers, using CAD
models of the manipulator and the task. In many of these applications
motion planning plays a central role. Arc welding is a good example;
specifying robot paths for welding along complex three-dimensional
paths is a time-consuming and tedious process. The development of
practical motion-planning algorithms could reduce significantly the
programming time for these applications.

A great deal of research has been devoted to the motion-planning

626 / SCIENCE

problem within the last five to eight years, e.g., [2, 3, 5, 7, 8, 12, 13,
14, 16, 17, 19, 20|. But, few of these methods are simple enough and
powerful enough to be practical. Practical algorithms are particularly
scarce for manipulators made up of revolute joints, the most popu-
lar type of industrial robot. I know of only three previous motion-
planning algorithms that are both efficient and reasonably general
for revolute manipulators with three or more degrees of freedom ‘2,
7, 12|. Brooks’s algorithm [2] has demonstrated impressive results,
but is fairly complex. Faverjon’s algorithm |7, on the other hand, is
appealingly simple. The basic approach of the algorithm described
here is closely related to the method described by Faverjon. Many of
the details of the present algorithm, however, especially the treatment
of three-dimensional constraints and the free space representation, are
new and more general.

—_— — e

e

LS

| _

Figure 1. A path for all six links of a Puma. plus a three-fingered

hand. obtained using the algorithm described here.



The approach taken in this algorithm is similar to that of |7, 8,
12, 13 in that it involves quantizing joint angles. It differs in this
respect from exact algorithms such as {17, 19]. On the other hand,
the quantization approach lends itself readily to efficient computer
implementation.

The purpose of this paper is to show that motion planning for
general manipulators can be both simple and relatively efficient in
most practical cases. I see no reason why motion planning should
be any less practical than computing renderings of three dimensional
solids in computer graphics. In both cases, there are many simple
numerical computations that can benefit from hardware support. In
fact, it is worth noting that in the examples in Figure 1 it took about
the same time to compute the hidden-surface displays in the figures
as to compute the paths.

2. The Basic Approach: Slice Projection

The configuration of a moving object is any set of parameters that
completely specify the position of every point on the object. Con-
figuration space (C-space) is the space of configurations of a moving
object. The set of joint angles of a robot manipulator constitute
a configuration. Therefore, a robot’s joint space is a configuration
space. The cartesian parameters of the robot’s end effector, on the
other hand, do not usually constitute a configuration because of the
multiplicity of solutions to a robot’s inverse kinematics. It is possible
to map the obstacles in the robot’s workspace into its configuration
space i3, 4, 5, 13. 147, These C-cpace obstacles represent those config-
urations of the moving object that would cause collisions. Free space

1s defined to be the complement of the C-space obstacles.

Motion planning requires an explicit characterization of the robot’s

free space. The characterization may not be complete, for example,
it may cover only a subset of the free space. But. without a charac-
terization of the free space, one is reduced to trial and error methods
to find a path. In this paper we show how to compute approximate
characterizations of the free space for simple manipulators. By simple
manipulators we mean manipulators composed of a non-branching se-
quence of links connected by either revolute or prismatic joints (see
‘18 for a treatment of the kinematics of simple manipulators). We
restrict the position of link zero of a simple manipulator to be fixed.
Most industrial manipulators (not including parallel-jaw grippers) are
simple manipulators in this sense.

The C-space obstacles for a manipulator with n joints are, in
general, n-dimensional volumes. Let C denote an n dimensional C-
space obstacle for a manipulator with n joints. We represent approx-
imations of C by the union of n — 1 dimensional slice projeciions 13,
14 . Each n — 1 dimensional configuration in a slice projection of C
represents a range of n dimensional configurations (differing only in
the value of a single joint parameter) that intersects C.

A slice projection of an n dimensional C-space obstacle is defined
by a range of values for one of the defining parameters of the C-space
and an n — 1 dimensional volume. Let the @ = (q1,...,9n} denote
a configuration, where each ¢; is a joint parameter, each of which
measures either angular displacement (for revolute joints) or linear
displacement (for prismatic joints). Let {q | ¢; € [a, 3 } be the set
of all configurations for which ¢; € [a, 8. and let 7; be a projection
operator such that

F](Ql-n-uqu) = (QI-“w(I]fl“JJ»l"--:q'ﬂ)

Then, the slice projection of the obstacle C for values of q, € ‘o, B s

TC g g, < 0.3}
The definition of slice projection is illustrated in Figure 2. In the
example above, joint ; above is called the slice joint while the other

joints are known as free joints.

A
s
B — =2
a.L
i

Figure 2. Slice Projection of a three-dimensional obstacle into a

list of two-dimensional slices that are in turn represented by one-

dimensional slices.

Note that a slice projection is a conservative approximation of a
segment of an n dimensional C-space obstacle. An approximation of
the full obstacle is built as the union of a number of n— 1 dimensional
slice projections, each for a different range of values of the same joint
parameter (Figure 2). Each of the n— 1 dimensional slice projections,
in turn, can be approximated by the union of n — 2 dimensional
slice projections and so on, until we have a union of one dimensional
volumes, that is, linear ranges. This process is illustrated graphically
in Figure 2. Note that the slice projection can be continued one more
step until only zero dimensional volumes (points) remain, but this is
wasteful.

Consider a simple two-link planar manipulator whose joint pa-
rameters are q; and g2. C-space obstacles for such a manipulator are
two dimensional. The one dimensional slice projection of a C-space
obstacle C for g1 € [a, 8] is some set of linear ranges {R;} for g¢s.
The ranges must be such that if there exists a value of gz, call it w,
and a value g; € |a, 8], call it ¢, for which (¢, w) € C, then w is in
one of the R, (Figure 2).

A representation of a configuration space with obstacles is illus-
trated in Figure 3b, for the two link manipulator and obstacles shown
in Figure 3a. The actual configuration space is the surface of a torus
since the top and bottom edge of the diagram coincide (0 = 27), as
do the left and right edge. The obstacles are approximated as a set
of g2 ranges (shown dark) for a set of values of g;. The resolution is
2 degrees along the g; axis.

QA2

Fal

a)

2w °q,

b)

Figure 3. (a) Two link revolute manipulator and obstacles. (b)
Two dimensional C-space with obstacles approximated by a list of
one dimensional slice projections (shown dark). The initial and final
positions of the manipulator are shown in the input space and the
C-space.

For general manipulators with 7 links, the configuration space
can be constructed as follows:

PERCEPTION AND ROBOTICS / 627



To compute C-space(t):

1. Ignore links beyond link . Find the ranges of legal values of

g; by considering rotating link ¢ around the positions of joint 1
determined by the current value ranges of ¢;,...,¢,_;.

2. If = = n then stop, else sample the legal range of ¢, at the
specified resolution. Compute C-space(i + 1) for each of these

value ranges of ¢;.

Observe that the basic computation to be done 1s that of determining
the ranges of legal values for a joint parameter given ranges of values

of the previous joints. This computation is the subject of Section 3.

The recursive nature of the C-space computation calls for a re-
cursive data structure to represent the C-space. In my implementa-
tion I use a tree whose depth is n— 1, where n is the number of joints,
and whose branching factor is the number of intervals into which the
legal joint parameter range for each joint is divided (Figure 4). The
leaves of the tree are ranges of legal (or forbidden) values for the
joint parameter n. Many of the internal nodes in the tree will have
no descendants because they produce a collision of some link 7 < n.

The main advantage of a representation method built on recur-
sive slice projection is its simplicity. All operations on the represen-
tation boil down to dealing with linear ranges, for which very simple
and efficient implementations are possible. The disadvantages are
the loss of accuracy, and the rapid increase of storage and processing
time with dimensionality of the C-space. Contrast this approach with
one that represents the boundaries of the obstacles by their defining
equations |4, 5. Using the defining equations is cleaner and more
accurate, but the algorithms for dealing with interactions between
obstacle boundaries are very complex. I believe that the simplicity
of slice projection outweighs its drawbacks. These drawbacks can be
significantly reduced by exercising care in the implementation of the
algorithms.

[QEEESD]
8 (

&1L 00)

Figure 4. The recursive nature of the C-space leads to a recursive
data structure: an n-level tree whose leaves represent legal ranges of
configurations for the robot manipulator.

3. Slice Projections for Polygons

The key step in our approach is computing one dimensional slice
projections of C-space obstacles. That is, determining the range of
forbidden values of one joint parameter, given ranges of values for all
previous joint parameters. We will illustrate how these ranges may
be computed by considering the case of planar revolute manipulators
and obstacles.

Assume that joint k, a revolute joint, is the free joint for a one-
dimensional slice projection and that the previous joints are fixed
at known values. Note that we assume, for now, that the previous
joints are fixed at single values rather than ranges of values; we will
see in Section 3.3 how to relax this restriction. We require that the
configuration of the first k — 1 links be safe, that is, no link intersects
an obstacle. This is guaranteed by the recursive computation we saw

628 / SCIENCE

in Section 2. Given these assumptions, we need to find the ranges
of values of the single joint parameter g, that are forbidden by the
presence of objects in the workspace.

The ranges of forbidden values for ¢, will be bounded by angles
where link k is just touching an obstacle. For polygonal links moving
among polygonal obstacles, the extremal contacts happen when a
vertex of one object is in contact with an edge of another object.
Therefore, the first step in computing the forbidden ranges for g is
to identify those critical value some
1s in contact with a link edge or some link vertex is in contact with
an obstacle edge (Figure 5).

The link is constrained to rotate about its joint, therefore every
point on the link follows a circular path when the link rotates. The
link vertices, in particular, are constrained to known circular paths.
The intersection of these paths with obstacle edges determine some
of the critical values of g, for example, B in Figure 5. As the link
rotates, the obstacle vertices also follow known circular paths relative
to the link. The intersection of these circles with link edges determine
the remaining critical values for g. for example, A in Figure 5.

Figure 5. Contact conditions for computing one dimensional slice
projections: (a) Vertex of obstacle and edge of link (b) vertex of link
and edge of obstacle. The circles indicate the path of the vertices as
the link rotates around the specified joint.

Determining whether a vertex and an edge segment can intersect
requires first intersecting the circle traced out by the vertex and the
infinite line supporting the edge to compute the potential intersection
points. The existence of such an intersection is a necessary condition
for a contact between link and obstacle, but it is not suffictent. Three
additional constraints must hold (Figure 6): in-edge constraint — the
intersection point must be within the finite edge segment, not just the
the line supporting the edge; orientation constraint — the orientation
of the edges at the potential contact must be compatible, that is,
the edges that define the contact vertex must both be outside of the
contact edge; reachability constraint — for non-convex objects, there
must not be other contacts that prevent reaching this point.

The in-edge constraint can be tested trivially given the potential
contact point and the endpoints of the contact edge. Since we know
that the contact point is on the line of the edge, all that remains to
be determined is whether it lies between the endpoints of the edge.
This can be done by ensuring that the 7 and y coordinates of the
contact point are within the range of r and y coordinates defined by
the edge endpoints. Note that for contacts involving link edges and
obstacle vertices, the position of the endpoints of the link edge must
be rotated around the joint position by the computed value of the
Joint angle at the contact.

The orientation constraint can also be tested simply. All that is
required is that the two edges forming the contact vertex be on the
outside of the contact edge. Polygon edges are typically oriented so
that they revolve in a counterclockwise direction about the boundary.
Therefore, the outside of the polygon is on the right of the edge as we



traverse the boundary. Given this. the feasibility of a contact can be
verified simply by comparing the absolute orientations of the edges

involved in the contact.

Figure 6. Given the intersection of a vertex circle and an edge line,
the following conditions must be met for a feasible contact: (a) The
contact must be in the edge segment. contact 1 satisfies this but 1’
does not (b) The edges that define the contact vertex must both be
outside of the contact edge, contact 1 satisfies this but contact 2 does
not. (c) The contact must be reachable, contact 1 satisfies this. but
contact 3 does not (this condition is only relevant for non-convex

objects).

The reachability constraint. on the other hand. requires examin-
ing all the contacts of the link with a given obstacle that satisfy the
first two constraints. For each contact angle ¢ we determine whether
values of q; greater than ¢ cause collision or whether values less than
g cause collision (Section 3.2). The contact angles together with the
collision directions can be merged to form the ranges of forbidden
values for g,. This process is illustrated in Figure 7.

Figure 7. Constructing ranges of forbidden values using the potential

contact angles and the collision directions.

Our discussion thus far has been limited to situations where all
the joints except the last have known fixed values. The definition of
one-dimensional slice projections allows all the joints, save one free
joint. to be within a range, not just a single value. We can readily
convert, the lice projection problem {for ranges of joint values) to
the simpler crossection projection problem (for single joint values)
we have already discussed. The idea 1s to replace the shape of the
link under consideration by the area it sweeps out when the joints
defining the slice move within their specified value ranges 15, 14
Any safe placement of the expanded link represents a range of legal
displacements of the original link within the specified joint ranges.

In most cases, instead of computing the exact swept volumes,
we can use a very simple approximation method. Assume the manip-
ulator is positioned at the configuration defined by the midpoint of
all the joint value ranges specified for the slice projection. Compute
the magnitude, &;. of the largest cartesian displacement of any point
on link k in response to any displacement within the specified range
of joint values. If we “grow™ each link by its corresponding radius éy.

the grown link includes the swept area.

4. Slice Projections for Polyhedra

T . T B B PSP DUR direct
I ne Dasic approd(u descriopeda 1n oecuioll o Caliligd Ovel unicot

RPN
1]

three dimensional manipulators and obstacles. There is, however.
one significant difference: there are three types of contacts possible
between three dimensional polyhedra. The three contact types are:
{type A} vertex of obstacle and face of link, (type B) vertex of link
and face of obstacle. and (type C) edge of link and edge of obstacle.

Lot us consider type B contacts first. Each revolute joint is char-
acterized by an axis of rotation. As the joint rotates. link vertices
trace circles in a plane whose normal is the joint axis. The intersec-
tion of this cirdJe with the plane supporting an obstacle face defines
two candidate points of contact. As in the two-dimensicnal case. pos-
sible contacts must satisfy three constraints to be feasible: in-face

constraint the contact must be within the obstacle face. orlentation

constraint - all of the link edges meeting at the vertex must be outside
of the obstacle, and reachability constraint - for non-convex polyhe-
dra, there must not be any earlier contacts that prevent reaching this
one.

The in-face constraint can be checked using any of the existing
algorithms for testing whether a point is in a polygon. The orienta-
tion constraint can be enforced by checking that the dot products of

the face normal with each of the vectors from the contact vertex to ad-

jacent vertices is positive [5°. The reachability constraint is enforced
exactly as in the two-dimensional case by merging the forbidden angle
ranges.

Type A contacts are handled analogously to type B contacts
except that now the vertex belongs to an obstacle and the face to a
link. The axis of rotation is still that of the manipulator joint.

Detecting type C contacts require detecting the intersection of a
line {supporting a link edge) rotating about the joint axis and a sta-
tionary line {(supporting an obstacle edge). Of course, an intersection
point must be inside both edge segments to be feasible. There is also
an orlentation consiraint which is a bit more difficult to derive than
those for type A and B contacts but not particularly difficult to check
(for the derivation, see i5).

5. Free Space Representation

Having obtained a conservative approximation of the C-space obsta-
cles, the free space is simply the complement of all the obstacles. Since
the obstacles are ultimately represented as sets of linear ranges, the
complement is trivial to compute. A two dimensional free space, for
example, will be represented as a list of one dimensional slices. Each
slice represents the ranges of legal values of go for some small range
of values of ¢;. This is in itself a reasonably convenient representa-
tion of the free space but not very compact. If we were to try to
find paths through the individual slices a great deal of time would
be wasted searching through nearly identical slices. A more compact
representation is called for. one that captures some of the coherence
between adjacent slices.

The free space representation I use is made up of regions. A
region is made up out of overlapping ranges from a set of adjacent
slices (Figure 8). The area of common overlap of all the slices in a
region is rectangular and called the region’s kernel In practice, we
require some minimum overlap between slices in the same regions to
avoid very narrow kernels.

Frce space regions are non-convex and so points within the region
may not always be connectable by a straight line. There is, however,
a simple method for moving between points within the region: move
from each point along its slice to the edge of the kernel and connect

these kernel points with a straight line.

PERCEPTION AND ROBOTICS / 629



To search for a path between points in different regions requires
representing the connectivity of the regions. We build a region graph
where the nodes are regions and the links indicate regions with com-
mon boundary. Associated with each region are a set of links to
adjacent regions, each link records the area of overlap. Regions have
neighbors primarily in the g; direction: for these neighbors, the range
of go values at the common region boundary is stored with the link.

Figure 8. (a) Region definition for two link C-space. The rectangular
regions are the region kernels. The shaded area shows region Rs. (b)
Region graph corresponding to the regions in part A. The link labels
indicate the existence of a common boundary in the ¢; and/or g2

directions.

By construction, regions only have g2 neighbors at the 0 = 27 bound-
ary, anywhere else the region is bounded above and below by obsta-
cles.

In general, each n dimensional slice is represented as a list of
n— 1 dimensional slices and one dimensional slices are a list of ranges
of joint values. We have seen that two dimensional regions are con-
structed by joining neighboring one dimensional slice-projections. In
principle, we could construct three dimensional regions by joining
neighboring two dimensional regions, and so on. Instead, for three
dimensional C-spaces we simply build two dimensional regions for
each range of values of the first joint parameter and represent the
connectivity among these regions in the region graph (Figure 9). The
connectivity is determined by detecting overlap between region ker-
nels in neighboring two dimensional slices, that is, slices obtained by
incrementing or decrementing the first joint parameter. When overlap
exists, the area of overlap is associated with the corresponding link in
the region graph. This method is readily extended to n dimensional
slices by considering as neighbors slices obtained by incrementing or
decrementing one of the first n — 2 joint parameters used to define
the two dimensional slice.

Path searching is done by an A~ search in the region graph from
the region containing the start point to the region containing the goal
point.

q€lx,¢]

Figure 9. Region connectivity for three dimensional slices; regions

can have neighbors in ¢ direction.

6. Heuristics for building the C-space

Having built a C-space, it may be searched repeatedly for different
paths. Changes to the environment, however, will cause parts of the

630 / SCIENCE

C-space to be recomputed. In rapidly changing environments, it may
not be appropriate to compute the complete C-space since only small
sections of the C-space will ever be traversed.

The path shown in Figure 1 was computed using two simple
heuristics to subset the C-space: First plan a path for the first 3 links
and a simple bounding box for the rest of the manipulator (the last
three links, the end-effector and the load). The origin and goal for this
path arc chosen to be the closest points in free space to the actual
origin and goal. Having found such a path, there remains finding
paths in the full-dimensional C-space between the actual origin (resp.
goal) and the origin (resp. goal) of the path. This strategy has the
effect of decoupling the degrees of freedom. For all these paths, we
compute only the portion of the C-space bounded by the joint values
of the origin and goal configurations.

7. Discussion

The main advantages of the algorithm described here are: it is simple
to implement, it is fast for manipulators with few degrees of free-
dom, it can deal with manipulators having many degrees of freedom
including redundant manipulators, and it can deal with cluttered en-
vironments and non-convex polyhedral obstacles. The total wall-clock
time to compute the C-space obstacles and then plan a path for the
two-link example shown in Figure 3 and 10 is six seconds on a Sym-
bolics 3600 Lisp Machine with floating-point operations performed in
software. These times could be improved by carefully re-coding the
algorithm, but they are already quite a bit faster than a human using

an interactive programming system (on-line or off-line).

Figure 10. (a) Regions for example in Figure 3 (b) Path found be-
tween start (1) and goal {4) configurations (c¢) Some intermediate
configurations.

The main disadvantages of the algorithm are: the approxima-
tions introduced by the quantization may cause the algorithm to miss
legal paths in very tight environments, and the rapid growth in exe-
cution time with the number of robot joints. This last drawback is
probably inherent in any general motion planner; the worst-case time
bound will be exponential in the number of degrees of freedom {19'.

The performance of this algorithm shows that motion planning
algorithms can be fast enough and simple enough for practical use. 1
believe that in many applications automatic motion planning will be
more time effective than interactive off-line programming of robots.
In fact, the planning times will probably be on the order of the times
required to perform hidden surface elimination in graphics systems.



Acknowledgments. This report describes research done at the Arti-

ficial Intelligence Laboratory of the Massachusetts Institute of Technology.

Support for the Laboratory’s Artificial Intelligence research is provided in
part by a grant from the System Development Foundation, in part by the
Advanced Research Projects Agency under Office of Naval Research con-
tracts NOCO14-85-K-0214 and N00014-82-K-0334 and in part by the Office
of Naval Research under contract N00014-82-K-0494. The author’s research
is also supported by an NSF Presidential Young Investigator grant.

Bibliography

1. J. W. Boyse, “Interference Detection Among Solids and Sur-
faces”™, Comm. of ACM, Vol. 22, No. 1, Jan. 1979.

2. R. A. Brooks, “Planning Collision-Free Motions for Pick-and-
Place Operations”, Intl. J. Robotics Research, Vol. 2, No. 4,
1983.

3. R. A. Brooks and T. Lozano-Pérez, “A Subdivision Algorithm
in Configuration Space for Findpath with Rotation”, in Proc.
Eighth Int. Joint Conf. on A I, Aug. 1983. Also IEEE Trans.
on SMC, Vol. SMC-15, No. 2, 224 -233, Mar/Apr 1985. Also
MIT AI Memo 684, Feb. 1983.

4. J. F. Canny, “Collision Detection for Moving Polyhedra”, Proc.
European Conf. A I, 1984. Also MIT Al Memo 806, Oct. 1984.

5. B. R. Donald, “Motion Planning with Six Degrees of Freedom”,
MIT Al Tech. Rep. 791, May 1984.

6. E. Freund, “Collision Avoidance in Multi-Robot Systems”, Proc.
Second Intl. Symp. Robotics Research, Kyoto, August 1984.
Published by MIT Press, Cambridge, Mass.

7. B. Faverjon, “Obstacle Avoidance Using an Octree in the Con-
figuration Space of a Manipulator”, Proc. IEEE Intl. Conf.
Robotics, Atlanta, March 1984.

8. L. Gouzenes, “Strategies for Solving Collision-Free Trajectory
Problems for Mobile and Manipulator Robots”, Intl. J. Robotics
Research, Vol. 3, No. 4, 1984.

9. N. Hogan, “Impedance Control: An Approach to Manipulation”,
Amer. Control Conf., June 1984,

10. O. Khatib and J. F. Le Maitre, “Dynamic Control of Manip-
ulators Operating in a Complex Environment”, Proc. Third
CISM-IFToMM, Udine, Italy, Sept. 1978.

11. B. H. Krogh, “Feedback Obstacle Avoidance Control”, Proc.
21st Allerton Conf., Univ. of Ill., Oct. 1983.

12. C. Laugier and F. Germain, “An Adaptive Collision-Free Tra-

13.

14.

18.
19.

20.

jectory Planner”, Proc. Int. Conf. Adv. Robotics, Tokyo, Sept.
1985.

T. Lozano-Pérez, “Automatic Planning of Manipulator Transfer
Movements”, IEEE Trans. on SMC, Vol. SMC-11, No. 10, 681
- 698, Oct. 1981. Also MIT AI Memo 606, Dec. 1980.

T. Lozano-Pérez, “Spatial Planning: A Configuration Space Ap-
proach”, IEEE Trans. on Computers, Vol C-32, No. 2, 108 - 120,
Feb. 1983. Also MIT Al Memo 605, Dec. 1980.

. T. Lozano-Pérez, “Robot Programming”, Proceedings of the IEEE,

Vol 71, No. 7, 821 - 841, July 1983. Also MIT Al Memo 698,
Dec. 1982.

. T. Lozano-Pérez and M. A. Wesley, “An Algorithm for Planning

Collision-Free Paths Among Polyhedral Obstacles”, Comm. of
the ACM, Vol. 22, No. 10, 560 - 570, October 1979.

. C. O’'Dinlaing, M. Sharir, and C. K. Yap, “Retraction: A New

Approach to Motion Planning”, 15th ACM STOC, 207 - 220,
1983.

R. P. Paul, Robot Mamipulatars. MIT Press, 1981,

J. Schwartz and M. Sharir, “On the Piano Mover’s Problem 117,

Courant Inst. of Math. Sci. Tech. Rep. 41. Feb. 1982.
S. Udupa, “Collision Detection and Avoidance in Computer Con-

trolled Manipulators”, Proc. Fifth Intl. Joint Conf. Al Cam-
bridge, 1977.

PERCEPTION AND ROBOTICS / 631



