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ABSTRACT 

It is sometimes desirable to compute depth 
from unregistered pairs of images. I show that it 
is possible to calculate the two 'epicentres' and 
the relation governing pairs of epipolar lines, 
given 8 corresponding points in the two images in 
any coordinate system. This reduces the matching 
problem to one dimensional searches along pairs of 
epipolar lines and can be readily automated using 
any stereo algorithm. Depth, however, does not 
seem to be derivable without extra information. I 
show how to compute depth in two such instances, 
each involving two 'pieces' of information. 

1 INTRODUCTION 

One often encounters unregistered pairs of 
stereo images (e.g. in microscopy) from which three 
dimensional information is nevertheless desired. 
This provided the motivation for the work reported 
here. Longuet-Higgins (1981) has shown that the 
camera geometry is fixed (assuming perspective 
projection) by the coordinates of 8 corresponding 
points in a certain coordinate frame. The latter 
entails knowledge of the 'natural origins' (defined 
as the point where the respective optic axis meets 
the image plane) and the orientations of both the 
image coordinate systems - in other words, the 
registration information. He also gave an 
algorithm to compute depth given this information. 
When images are unregistered, however, neither the 
natural origins nor the relative image orientation 
may be known. To what extent can one then succeed 
in recovering structure (depth)? 

I show that it is possible in the absence of 
any registration information whatever (i.e., given 
just the 8 corresponding points in arbitrary image 
coordinate systems) to work out the location of the 
'epicentres' - where the interocular axis 
intersects the image planes and through which all 
epipolar lines pass - and the relation governing 
pairs of epipolar lines (defined in Section 4), one 
in each image. This reduces the rest of the 
matching problem to one dimensional searches along 
pairs of epipolar lines - which can be automated 
using any stereo algorithm. 
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Although it seems that structure cannot be 
inferred from the image data alone in the absence 
of any registration information whatever, full 
registration information is also not necessary. 
For example, given either (a) the direction of 
displacement (two direction cosines) of one camera 
with respect to the optic axis of the other, or (b) 
the orientation of the optic axis of one camera 
with respect to that of the other, I show how 
structure can be recovered. 

2 BACKGROUND 

I keep to the notation used by Longuet-Higgins 
(1981). Let a point in the scene have 3D 
coordinates (xl&&) and (X'I,X'2,X'3) with 
respect to the left and the right optic centres. 
Then its left and right image coordinates (measured 
from the natural origins) 
(x1/x3&‘&), and 

are (x1,x2) = 
(x’l ,x12) = (x’l/x’3,x’2/x’3), 

assuming unit focal length in both images without 
loss of generality. Thus image coordinates 
x3=1=x13, so that Xi=Xi/X3 and 
(i,j=1,2,3). 

X'j=X'j/X'3 

Let the right camera position and orientation 
be obtained by displacing the left camera by a 
vector T and then rotating it so that its new 
orientarion can be obtained from the 
applying the rotation matrix RT. 

old by 
Then the two sets 

of 3D coordinates are related by X'j=Rjk(Xk-Tk), 
implicit summation convention implied hereinafter. 
Now from the Cartesian components of 1, construct 
an antisymmetric matrix S 

Longuet-Higgins shows that the matrix Q=RS 
satisfies the relations 

X'iQijXj=O , (i,j=1,2,3) (1) 

and hence 

X'iQijxj=O , (i,j=1,2,3) (2) 

for any point. Notice that (1) and (2) continue to 
hold under image magnification and length-scale 
changes to the displacement T. For convenience, 
one chooses lTl=l. Given eight independent pairs 
of correspon?Ting points - barring special cases 
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(see Longuet-Higgins (1984)) -, it is 
straightforward to compute the 8 independent ratios 
of the elements of Q as solutions to an 8 by 8 
linear simultaneous system of equations. In the 
same paper, Longuet-Higgins also shows how to 
extract R and T (from Q), and hence structure. 

3 TRANSFORMATION UNDER ROTATION AND TRANSLATION 

Now consider a rotation of the right image 
(described by the rotation matrix RZ'(g)) about its 
optic axis -the z' axis - by some angle 'g' as 
introducing registration error in the orientation. 
By writing (2) as a matrix equation 

(x' )TQ x=0; (3) 

i .e., 

(RZ'(dx')T(R,'(g)Q) x=0, (4) 

we immediately see that the image pair still 
satisfies an equation of the form (2) but with 

Q +Q'=Rz' (s>Q. (5) 

All that needs to be done to get things right is to 
absorb the extra rotation in R, i.e., 

R +&I (g).Rl. (6) 

Next we consider the effect of displacing the 
image origins by (uI,u2) and (u'I,u'2) in the left 
and the right images respectively. Then 
Xi + C’Xi’Ui, 

u3=u3'=0). 
and x'j + E'j=x' *-u'j, (i,j=1,2,3; 

Starting with ($) yields, after 
algebraic manipulation, the relation 

c'iQ"ijcj=O, or, (c ' )TQ"k >=O; (7) 

where 

u3=O=u'3, 

Q"ij=Qij, (i,j=1,2) 

Q" lj=Qn+r, 

Q”23=Q23=s, 

Q"31 =Q31 +r ' , 

Qi’32=Q32+s ' , 

Q"33=Q33+to+tlo+v; 

i.e., 

Q +Q"= 

Here 

till 412 

421 Q22 

Q13+r 

Q23+s 

(74 

(7b) 

(7c) 

(7d) 

(74 

Uf) 

(79) 

1 (8) 

Q31+r' Q32+s' Q33+to+t'o+vJ l 

Pa) 

[ r’s’I=Cu’1u’21 Qll Q12 

i I Q21 Q22 3 
(gb) 

to=Q31q+Q3pq, m> 

t’o=u’l.Q13+u’2-Q23, (W 

and 

v=r'.uI+s' .u2=u'I.r+u'2.s. (94 

Combined rotations and translations of the image 
coordinate systems can be readily described by 
replacing Q in (7)-(g) with Q' of (5). The image 
coordinates, therefore, always obey a relation of 
the form (2), or equivalently, (3), whatever the 
coordinate system. Using this observation, I show 
how to work out the locations of the epicentres and 
the relation governing pairs of epipolar lines. 

4 EPICENTRES AND EPIPOLAR LINES 

Where the interocular axis intersects the 
image planes are the two epicentres. Now imagine a 
family of planes passing through the interocular 
axis. Each such plane intersects each image plane 
in a straight line (which naturally passes through 
the respective epicentre), giving rise to pairs of 
epipolar lines. Let the left and the right 
epicentres be lotted at (~I,7c2) and (~'I,n'2). The 
equation of a straight line of slope m passing 
through (nI,n2) is (52-n2)=m(cI-nI). Similarly, 
denoting by m' the slope of the corresponding 
epipolar line, the equation of the latter is 
(c'2-n12)=m'(<'I-7+). [The geometric motivation 
presented here is not essential. One can simply 
postulate the existence of epicentres and epipolar 
lines and the arguments go through.] Now any point 
on a certain epipolar line in one image can match 
any point on the corresponding epipolar line in the 
other image. Given that all matched points obey 

by inserting for <'2 and c2 from 
above into the matrix 

representation of (7), that 

=o (10) 

for all values of 51 and F'I. The left hand side 
is a second order inhomogeneous polynomial in 51 
and E'1 and can vanish identically if and only if 
the coefficient of each term vanishes. This yields 
four equations. The first of them, arising from 
the vanishing coefficient of the (c'I)(<I) term, 
immediately gives the relation 

m=-(Q"II+m1.Q"21)/(Q"12+m' l Q"22) (11) 

governing the slopes of a pair of epipolar lines. 
Note that it is independent of the normalisation of 
Q" . The solution to the rest of the matching 
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problem can be mechanised by the use of any stereo 
algorithm. 

The condition that the coefficient of the term 
in 5'1 must vanish yields, after substituting (11) 
for m, a polynomial in m' which must vanish. 
Equating the coefficient of each power of m' to 
zero gives two linear inhomogeneous equations in 
the two unknowns ~c1 and 712: 

Similarly, the condition that the coefficient of 
the term in c1 vanish yields 

WlP’21 
= c-Q"31 -Q"321. (13) 

That the constant term also vanishes can be 
verified by inserting the coordinates of the two 
epicentres in (7) and using (12) and (13). In the 
process, one obtains two interesting equations 
- one for each epicentre: 

[n ‘1, 71: ‘2, llQ”=O, (14) 

and 

Q"[nl, 712, llT=O; (15) 

implying that 

det lQ"l=O. (16) Q21=T2.R23-T3.R22, and Q22=T3.R21-Tl.R23. 

This serves as a check on the accuracy of the data 
and the calculations. 

Alternatively, observing that the last row and 
column of Q" in (8) are linear combinations of the 
rows and columns of Q, it is readily seen that 
detlQ"l=O if and only if detlQl=O. That detlQl=O 
follows from the fact that detlQl=detlRl.detlSl, 
and it can be verified that detlSl=O. 

(14) 
Starting with (3) and using the equivalents of 
and (15) in the 'natural' coordinate system, 

i.e., 

[p'1, ~‘2, llQ=O (14& 

and 

where (~1~~2) and (~'1,~'2) are the epicentres in 
the natural coordinate system, an alternative form 
of Q" can also be given: 

Q"ij=Qij, (i.j=1,2) 

Q’3i=(U’l-P’l)Qli+(U12_p12)Q2i) (i=W) (17) 

5 SCENE RECONSTRUCTION 

Longuet-Higgins gives a method of recovering 
structure from Q. He also points out three 
equations relating the diagonal and the 
off-diagonal 
(17))s 

elements of the matrix QTQ (his eqn. 
the rotation matrix dropping out in the 

process. Three equations are not sufficient to 
determine the four unknowns u1,u2,u'1 and u'2 
needed to recover Q from (8) or (17). Thus given 
Q" alone, it does not seem possible to recover Q 
(whence structure). 

It is possible to recover structure, however, 
given either (a) the direction of displacement of 
one camera with respect to the optic axis of the 
other, or, (b) the orientation of the optic axis of 
one camera with respect to that of the other. Note 
that Qij=Q"ij, (i,j=1,2). From the image data, 
therefore, one can obtain three ratios between 
these four elements. Now, from Q=RS, 

Given R, and using EiX%=Ek, (i,j,k a cyclic 
permutation of 1,2,3), where FJ,, refers to the mth 
row of R regarded as a vector, (18) yields 

- 

=(R13.Q22-R23=Q12)/R32. (19) 

The two expressions for T3 in (19) provide an 
accuracy check. More importantly, it can happen 
that the right image (say) was rotated about its 
original position. This corresponds to an unknown 
rotation about the z' axis - represented by 
W(g) - g being the angle. The two expressions 
for T3 then force a constraint on tan(g). To see 
this, write the final rotation matrix as 

R + Rz'(d.R, 

where R is known (for example, (Arfken 1970)). 
That is, 
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Equating the two expressions for T3 in (19) and 
substituting for the new R from (20), one obtains 

tan(g)=-a/b, 

where 

a=(R13.Q21-R23=Q11)/R31 - (R13~Q22-R23~Q12)/R32, 

and 

b=(R23.Q21+R13.Qll)/R31 - (R23~Q22+R13.Q12)/R32. 

Wa) 

There are two possible solutions for g given 
tan (9). If the two images are coarsely aligned (by 
eye, say) then the small angle solution is the 
desired solution. 

Next consider known displacement (TI,T2,T3). 
Denoting the ratio QII/QI2 by a, (computed from 
data measurement), and setting RI2/RII=aI and 
RdRll=a2, it can be readily shown that 

a2=T3.(al+ax)/(T2+ax.T1)=flo (22) 

is a linear function of aI. Similarly, denoting 
the ratio Q22/Q21 by ay (measured), and setting 
R2I/R22=bI and R23/R22=b2 it can be verified that 

b2=T3.(bI+ay)/(TI+ay.T2)=f2(bI) 

is a linear function of bI. Then 

(23) 

2 2 
Rll+R12+R13- ' 

2 -1 and R:l+Rg2+RE3=1 

imply 

(24) 

and 

R;2=l/(l+b:+f;(bl)). (25) 

The rotation matrix R is characterised by the four 
unknowns RlI,R22,aI and bI, and has the form 

and 

& X3 =&k , 

(i,j,k being a cyclic permutation of 1,2,3), where 
I&,, refers to the mth row of R regarded as a vector, - 
gives 

aI+bI+fI(aI)+f2(bI)=O . (27) 

Since fI(aI) and f2(bI) are linear functions of aI 
and bI respectively, (27) takes the form 

or, 

bI=(c4-c2.aI)/(c3+cI.aI); 

where 

2 - c1=T3p 

c2=(T2+ax.Tl)(T +a .T )+a T2, 1 y 2 y'3 

C3=(T2+ax+(T +a .T )+a .T2, Iy2 x3 

and 

c4=-ax.ay. T$ 

(28) 

@a > 

(28b) 

(28~) 

(28d) 

There is now the last piece of unused information, 
the ratio Q22/Q12=ayx (measured). Writing this out 
explicitly, squaring it [to get rid of the 
square-roots from (24) and (25)], and using 
(22)-(28), one obtains a fourth degree polynomial 
equation in al: 

where 

(+Cafx. hl.h2-h3.h4] 

+(a$a~x. (el.h2+hl.e2)-(e .h th 3 4 3*e4)' 

nI=a,.n2, n2=T3/(T2+axJl), 

(29) 

Every relationship following from the equation 
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n3=ay.n4, nq=T3/(Tl+ay.T2); (29a) 

dI=(T3-TI.nI)2, 

d2=(l+ng).c$+2.n .n .c c +(l+ng).c$, 3 4 3’4 

d3=(l+ni), 

dq<(T3-TI.nJ).cJ-n3.c3.TI12; (29b) 

eI=-2.TI.n2.(T3-TI.nI), 

e2=2.[(l+ng).c c +n 1' 3 3*n4*(c1*c4-c2*c3) 

'C2mC4. (l+n2,)1 

e3=2.nI.n2, 

eq=-2[(T3-TI.n4).c4-n3.c3.TI].[cI.n3.TI 

+q.(TyTpq)l; (W 

hl=(Tpd2, 

h2=(l+ng).c:-2.c l.c2.n3.n4+(l+ng).c; , 

h3=(l+ng), 

and 

hq<cI.n3.TI+c2.(Tg-Tl.n4)12. (294 

Efficient subroutines exist (e.g. NAG) for 
obtaining the four roots of the polynomial. Having 
obtained al, R can be calculated using (22)-(26) 
and (28). Since R is real, only real roots are of 
interest. Of the real roots, only those which 
yield positive depth (both X3 and X'3>0) for all 
points are acceptable. Empirically, the polynomial 
always appears to have two real roots. Each root 
has a single combination of the signs of RII and 
R22 which yields positive depth for all data 
points. The nonveridical solution, however, 
produces a large origin shift (typically five times 
the image width) in one image, and small depths 
(typically a few tenths of the interocular 
distance). If the positions of the natural origins 
are known even roughly (e.g., they may be known to 
lie somewhere within the pictures), the veridical 
solution can be chosen quite unambiguously. 

Given 1 it is thus possible to compute R, and vice 
versa. 
(171, 

Hence Q can also be computed. From (8) or 
after re:caling Q", the unknown coordinates 

!:8; ~~)o~~~ir!~d" 
~'2) of the natural origins can 
The image coordinates can then 

be appropriateli transformed into their natural 
systems, whence depth can be calculated by the 
method prescribed by Longuet-Higgins: 

X3=L- (&-x'1~3).J / ml-x'1&3).~1, (30) 

X1=(X1)(X3), X2=&)(X3), and (31) 

X'j=Rjk(Xk-Tk). (i,j,k range over 1,2,3) (32) 

Note that x,ll',X,X' are now in the natural image -- 
coordinate system. 

6 SUMMARY 

Given 8 corresponding points in two images 
without any registration information whatsoever, it 
is possible to calculate the two epicentres and the 
relation governing the pairs of epipolar lines. 
The rest of the matching problem reduces to one 
dimensional searches along the epipolar lines and 
can be automated using any stereo matching 
algorithm. 

Although it would appear that structure cannot 
be inferred from the image data alone in the 
absence of any registration information whatever, 
full registration information is also not 
necessary. For example, given either (a) the 
direction of displacement of one camera with 
respect to the optic axis of the other, or, (b) the 
orientation of the optic axis of one camera with 
respect to that of the other, methods were 
described to obtain structure. 
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