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Abstract 

This paper presents a model of motion perception that 
utilizes the output of motion-sensitive spatiotemporal fil- 
ters. The power spectrum of a moving texture occupies 
a tilted plane in the spatiotemporal-frequency domain. 
The model uses 3-D (space-time) Gabor filters to sample 
this power spectrum. By combining the outputs of sev- 
eral such filters, the model estimates the velocity of the 
moving texture - without first computing component (or 
normal) velocity. A parallel implementation of the model 
encodes velocity as the peak in a distribution of velocity- 
sensitive units. For a fixed 3-D rigid-body motion, depth 
values parameterize a line through image-velocity space. 
The model estimates depth by finding the peak in the dis- 
tribution of velocity-sensitive units lying along this line. 
In this way, depth and velocity are simultaneously ex- 
tracted. 

1 Introduction 

Image motion may be used to estimate both the motion of ob- 
jects in S-space and 3-D structure/depth. Motion informat.ion 
ma) also he utilized for petcepetua,l organization, since regions 
that move in a “coherent” fashion may correspond to meaningful 
segments of the world around 11s. 

0ptical flow, a 2-D velocity vector for each small region of 
tile visual field, is one representation of image motion. To com- 
pute a velocity vector locally for each region of an image, there 
must hr motion information, i.e., changes in intensity over Gme, 
everywhere in the visual field. Depth may be recovered from im- 
age motion given prior knowledge of the 3-D rigid-body motion 
parameters. A drnse dept,h mpp is recoverable only if there is 
motion information throughout, the visual field. 

\C’ithout texture, a perfc>cLly smooth surface yields an image 
sequence in which most local regions do not change clcrer time. 
Rut in a highly tcxt,ured world {e.g., natural outdoor scenes 
with trees and grays), there is motion information throughout 
the visual field. This paper addresses the issues of extract,ing 
\-clocity and depth for each region of t,he visual field by taking 

advantage of the abundance of motion information in highly 
image seqitcnces. 
machine vision efforts that try t,o 

from image motion utilize just two frames from an image se- 

quencc --- either matching features from one frame to the next, 

extract information 

[l] or computing the change in intensity between successive 
frames along the image gradient direction [2}. In a highiy tex- 
tured world neither of these approaches seems appropriate, since 
there may br too many features for matching to be successful 

Figure 1: {from Ad&on and Bergen 151) Spatiotemporal Ori- 
entation. (a) a vertical bar translating to the right (b) the 

space a-time cube for a vertical bar moving to the right. (c) an 
L - t slice through t,he space-time cube. 

and the image gradient direction may vary randomly from point 
to point. 

There have recently been several approaches to motion mea- 
surcment based on spatiotemporal filtering [3,4,5,6,7] that uti- 
lize a large number of frames sampled closely together in time. 
These papers describe families of mot,ion sensitive mechanisms 
each of which is selective for mobion in different directions. 

In the next section, I describe a family of motion-sensitive 
Gabor filters. The mathematics of motion in the spatiotemporal- 
frequency domain, discussed i?l Section 3, is used in Section 4 to 
derive a model for extracting image velocity from the outputs 
of these filters. Section 5 presents a parallel implementation 
of the model that operates as a collectNion of velocity-eensitive 
mechanisms. Section 6 discusses how depth is encoded by these 
vclocit,y-sensitive mechanisms given prior knowledge of the 3-D 
r;gid-body motion parameters. Section 7 discusses the model’s 
outpcl~s for strongly oriented patterns that suffer from the aper- 
ture problem and suggests some future directions for this re- 
search. 

2 Motion-Sensitive Filters 

The conrclpt of orientation in spare-time is well explained by 
lIdelson and lkrgen (51. Figure 1 shows the space-t#ime cube for 
a vertical bar moving to the right. The slope of the edgea in an 
Y - t slice through this cube equals the horizontal component of 
the bar’s vrlocity. The most successful technique for estimating 
edge orientation ha.q been based on linear systems t.heory, e.g., 
as depicted in Figure l(c) convolution with linear filters. 

A 1-D Crabor filter [8] is simply a sine wave multiplied by a 
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Figure 2: The power spectra of the 12 motion-sensitive, Ga- 
bor-energy Gltcrs are posit,ioned in pairs on a cube in the spa- 
tiotemporal-frequency domain. 

G aussian window: 

Gabar(t) = G(t) sin(wt + fo) (1) 

where G(t) is a Gaussian. The power spectrnm of a sine wave, 

sin(wt), is a pair of impulses located at. w and --w in t,he fre- 

qucncy domain. The power spectrum of a Gaussian is itself a 
Gaussian (i.e., it is a lowpass filter). Since multiplication in the 
space (or time) domain is equivalent to convolution in the fre- 
quency domain, the power spectrum of a Gabor filter is a pair 
of Gaussians centered at (3 and -w in the frequency domain, 
i.e., it is an oriented bandpass filter. Thus, a Gabor function is 
loca!ized in a Gaussian window in t,he space (or time) domain, 
and it is localized in a pair of Gaussian windows in the frequency 
domain. 

Similarly, an example of a 3-D Gabor filter is 

Gnbor,(.7, y, t) = C(z, y, 1) sin(w,,z + wgOy + ulot) (2) 

wh:>re G(z,y,l) is a 3-D Gaussian. This function looks like a 
stack of plates with small plates on the top and bottom of the 
stack and the largest plate in the middle of the stack. The 
stack can be t,i!ted in any orientation in space-time. The power 
srjectrum of Equation (2) is a pair of 3-D Gaussiana. 

The mode! uses a family of Gabor-energy filters, each of 
which is the squared sum of the response of a sine- and cosine- 
I:hase Gabor filter, giving an output that is invariant to the 
phase of the signal. The presenet implementation uses 12 fil- 
Iprs. each tuned to the same range of spatial frequencies but to 
different spatiot empora! orientations. Their power spectra are 
positioned in pairs on a cube in the spatiotemporal-frequency 
c!:jrnain (Figure 2): four of them are at the eight corners of the 
cube, two at the centers of the four sides, and six at the mid- 
points of the ttvrlvc edges. For example, the filt,er that is most 
sensitive to down-left motion has tile following power spectnlm: 

G(w, - wo, wy - wo, wt - !JO) + G(w* + wo, "y + wo, wt + wg) (3) 

wLcre G(LJ=, CL+,, wt) is a 3-D Gaussian, wZ, wy, and wt are spatial 
and t,emyoral frequencies, and wg specifies the tuning frequency 
at which the filter achieves its peak output. Gabor filters can 
be built from separable components, thereby greatly increasing 
the eficiency of the computations. 

3 Motion in the Frequency Domain 

Now let us review some properties of image motion, first pre- 
sented by Watson and Ahumada [3,4], that are evident in the 
spatiotemporal-frequency domain. I shall begin by describing 
1-D motion in terms of spatial and temporal frequencies, and 
observe that t!le power spectrum of a moving 1-D signal occu- 
pies a line in the frequency domain. Analogously, the power 
spectnun of a translat$ing 2-D texture occupies a tilted plane in 
the frequency domain. 

3. l One-dimensional Motion. 

The spatia: frcqucnry of a moving sine wave is expressed in cy- 
cles per unit of diqtance (e.g., cycles per pixel), and its temporal 
frequency is cxprrssed in cycles per unit of time (e.g., cycles per 
frame). Velocity which is distance ovet time ot pixels per frame, 
equals the temporal frequency divided by the spatial frequency: 

i7 = LLy/wt (4 

Now consider a I-D signal, moving with a given velocity t’, 
that has many spatial-frequency components. Each such com- 
ponent wZ has a temporal frcquc*ncy of wtl = wZij, while each 
spatial-frequtncv component 2&T has twice the temporal fre- 
quency LLlfl = 2qfy. In fact., t&he temporal frequency of this 
moving signal, ,as a function of its spatial frequency, is a straight 
line passing through the origin, where the slope of the line is tt. 

3.2 Two-Dimensional Motion 

Analogously, 2-D pattrrns (textures) translating in the image 
plane occupy a p!ane in the spatiatPmpora!-frequency domain: 

Wt = IIW~ + UJWy (f4 

where tf = (u, 17) is the velocity of the pattern. For example, 
a region of a translating random-dot field or a translating field 
of normally distributed intensity values fills a plane in the fre- 
qurncy domain uniformly, i.e., t,he power of such an image se- 
quence is a constant within that. plane and zero outside of it (a 
dot or impulse, anr! a normally distributed random texture have 
equal power at all spatial frequencies). Because the motion of a 
small region of an image is approximated by translation in the 
image plane, the velocity of such a region may be computed in 
the Fourier domain by finding the plane in which a!! the power 
resides. The mot ion-srnsitive spatiotempora! Gabor filters in- 
trocluced txarlirr are an efficient way of “sampling” these power 
spectra (image a p!ane pngsing through the center of Figure 2). 

$ Motion Energy to Extract Image Flow 

Spatiotcmpora! bandpass filters like Gabor energy filters and 
those filters discussed in previous papers [4,5,7] are not vclocity- 
selective mechanisms, hub rathrr are tuned to particular spa- 
tiotemporal frequencies. Consider, for example, two sine grat- 
ings with the same velocity but different spatial frequencies 
(i.e., they have proportionately different temporal frequencies as 
well). A spatiotcmpora! bandpass filter will respond differently 
to these two signals even though they have the same velocity. 

hdotion-energy filters were first presented by Adelson and 
Bergen [5]. Watson and Ahumada [3,4] first explained that a 
mwing texture occupies a tilted plane in the frequency domain. 
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This section combines these two concepts and derives a tech- 
nique that uses a family of motion-energy filters to extract ve- 
locity. The role of the filters is to sample the power spectrum of 
the moving texture. By combinin g t,he outputs of several filters, 
the model cstimattls the slope of the plane (i.e., the velocity of 
the moving testurc.) directly from the motion energies wit,hout 
first computing component (or normal) velocity. 

4.1 Extracting Image Flow 

I+‘irst, I derive equations fot Gabor energy resulting from mo- 
tion of random textures or random-dot fields. Based on these 
rquations, I tbcn formulate a least-squares estimat.e of velocity. 

r’arseval’s theorem states that the integral of squared values 
3i’er the spatial domain is proportional to the integral of the 
squared Fourier components ovef the frequency domain. Convo- 
lution wiih a banrlpass filter results in a signal that is restricted 
to a limited range of frequencies. ‘l’herefore, the integral of the 
square of the convolved signal is proport(ional to the integral of 
the power within the original signal over this range of frequen- 
cues. 

The power spectrum of a normally dist,ributed random tex- 
ture (or random-dot field) fills a plane in the apatiotemporal- 
freq~~cncy domain uniformly (Equation 5). The power spectrum 
of a G abor filter is a 3-D G ausaian. By Parseval’s theorem Ga- 
bor energy, in response to a moving random texture, is propor- 
tional to the integral of the product of a Gaussian and a plane. 
For csamplc, the formula for the response of the G&or-energy 
iiltrr most scnsit ive to down-left motion is derived by suhstitut- 
ing Equation (5) for stt in Equation (3), and integrating over 
1 he frequency domain: 

I 
M 

2x: im 
I ~--C[(W*-~?r,)2+(~J~--W~,)t(~IW+tuW,--W~)21~w*~w ti (6) 

J-m J-m 

tvhrre k is a scale fnct.or and c depends on bhe bandwidth of the 
filter. This integral evaluates to 

(7) 

where 

f&f, v, k) = 
2klr -~-_I --.--. 

c&l2 t v2 + 1 (8) 

cw; 
f&u) = --.Iil 

u2+u $1 2 (9) 

Similar equations can be derived for all twelve Gabor-energy 
filters, thus yielding a system of twelve equations in the three 
unknowns (It, 7’. k). The factor tl(tt,~y, k) appears in each of 
these twelve equations. \Ye can eliminate it by dividing rach 
equation by the sum of all twelve of them resulting in a system 
of equations that, depend only on u and o. These equations pre- 
dict the output of Gabor energy filters due to local translat,ion. 
The predicted energies are exact for a pattern with a flat power 
spectrum (e.g., random-dot or random-noise fields). 

Now let us formulate the “best” choice for u and 31 as a least- 
squares estimate for this nonlinear system of equations. Let 0: 
Ii = 1 to. 12) be the twelve observed Gabor energies. Let 

~1~0, Ict R;(u, u) be the twelve predicted energies as in 
7. The least-squares est imate of v’= (u, u) minimizes 

Equation 

(11) 

‘I’l~e are st,antlard numerical methods for estimating ~7 = (u, u) 
to minimize E;quat ion (I I), e.g., the Gauss-Newton gradient- 
descent, method. In Section 5, I describe a parallel approach for 
finding this minimum. 

Since the system of equations is overconstrained (12 equa- 
tions in two unknowns), the residuals [Oi- R;(u, v)] may be used 
t.o comput,e a confidence index for the solution. I am investigat- 
ing the possibility of using, as potential confidence indices, the 
sum of the squares of t.he residuals, t,he variance of the residuals 
tlividcd by thc*ir mean, as well as the sharpness/width/curvature 
of the minima. Computations t,hat use the flow vectors as in- 

puts, e.g., for tstimat ing 3-D structure and motion, could weight 

each vect,or according to its confidence. 
In summary, an algorithm for extracting image flow proceeds 

as follows: 

1. 

2. 

3. 

4. 

4.2 

Convolve each ima.ge in the image sequence with a center- 

surround filter to remove the dc and lowest spatial fre- 

qucnrles. 

Compute motion energy as t,he squared sum of the sine- 
and cosine-phase Gahor filt#ers. 

Smooth the resulting motion energies and divide each by 
t,he sum of all twelve. 

Find the best choice of u and v to minimize Equation 

(1 l), e.g., by employing the Gauss-Newton method or the 
parallel approach presented in Section S. 

Results 

The system of equations discussed above are precisely correct 
only for images with a flat power spect#rum, but the model has 
been succesfully tested for a variety of computer-generated and 
natural itnages. 

Figure 4 shows the flow firld extract.ed from a random-dot 
image sequence of a sphere rotating about an axis through it,s 
center, in front of a stationary backgroltnd. 

Figure G shows t,he flow field extract.ed ftom a computer- 
generated image sequence Rying through Yosemite valley. Each 
frame of the sequence was generated by mapping an aerial pho- 
tograph onto a digital-terrain map (alititude map). The ob- 
server is moving towatd the righbward horizon. The clouds in 
the background v;ere generated with fractals (see recent SIG- 
GRAPH conference proceedings) and move to the tight while 
changing their s!iape over time. 

One way to test the accuracy of the flow field is to use it to 
compensate for the image motion by shifting each local region 
of each image in the sequence opposite to the ext,racted flow. 
This should result in a new image sequence that is motionless, 
i.e., the intensity at each pixel should not change over time. 
Figure G(d) h s ows the variance in the intensity at each pixel after 
compensating for the image motion in this way. The variance is 
very small for most of the landscape region indicating that the 
extracted flow field is quite accurate. Most of the high variance 
regions can be attributed to occlusions - more of the landscape 
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comes into view over time thereby changing the grey levels. The 
extracted flow field is erroneous in two regions: (1) the cloud 
motion is blurred over the landscape near the horizon; (2) some 
of the flow vectors near the bottom of the image are incorrect 
probably due t.o temporal alinsing and/or the aperture problem. 

The clouds change their shape over time while moving right- 
ward. Compensating for the extracted rightward flow yields 
stat.ionary clouds t,hat, still change t,heir shape over time result- 
ing in the high variance at the top of 6(d). The procedure of 
estimating image flow and then compensating for it has allowed 
us bo separat,e the cloud region from the rigidly moving land- 
scape. i fractal-based mode! for the recognition of nonrigid, 
turbulent, flows is presented by Heeger and Pentland [9]. 

5 A Parallel Implementation 

The lrrst step in the above algorithm is to find the minimum of 
a two-parameter function. One way to locate this minimum is 
to evaluate the function in parallel at a number of points (say, 
on a Iised square grid), and pick the smallest result. In the 
context of the mode!, each point on the grid corresponds to a 
velocity. Thus, evaluating the function for a particular point on 
the grid gives an output that, is velocity-sensitive. Local image 
velocity may be encoded as the minimum in the distribution of 
the outputs of a number of such velocity-sensitive units, each 
tuned to a different t;. The units tuned to velocities close to the 
true vrlocity will have relatively small outputs (small error), 
while those tuurd to velocities that deviate substantially from 
the tale velocity will have large outputs (large error). 

For a fixed velocit,y, the predicted motion entargies from the 
system of equations discussed above (e.g., Equation 7) are fixed 
constants - &note them by IV{. Thus, we may rewrite Equat,ion 
(11) for a fixed i; as 

Fj = f, [Oi - vJij]? W) 
a’=1 

wllcrr p’ is the response of a single velocity-sensit.ive unit and 
‘uJ;~ are constant wrights, each corresponding to one of the mo- 
t,ion energies for a particular velocit,y. A mechanism that com- 
putes a velocit.y-tuned output, from the motion-energy measure- 
ments performs t,hc following simple operations: 

by t’he sum ot average of a!! 1. Divitlcx each motion energy 
twelve motion rm~rgiea. 

2. Suhracts a constant from each of the results of Step (1). 

3. Sums the squares of the resu1t.s of Step (2). 
An example of the out,put,s of these velocity-t,uned units is 

shown in Figure 3(a) t.hat displays a map of ve1ocit.y space, with 
each point corresponding to a different velocity -- for example, 
d = (0,O) is at t.he cent.et of each image, u’ = (‘2,2) at the 
top-right corner. The brightness at each point is the output of 
a velocity-sensitive unit tuned t,o t,hat velocity, thetefore, the 
minimum in the distribution of responses corresponds to t.he 
v:e!ocity extracted by the mode!. 

6 Motion Energy to Recover Depth 

This sect,ion presents a technique for recovering a dense depth 
map from the velocity-sentive units discussed above given prior 

Figure 3: (a) velocity-sensitive units responding to a moving 
ranc!om-dot, field. The minimum in t.he distribution of responses 
corresponds to the velocity extracted by the mode!. (b) ve- 
locity-sensitive units responding to a single moving sinusoidal 
grating; the aperture problem is evident as there is a trough of 
minima. 

knowledge of the 3-D rigid-body motion parameters. There are 
a number of situations in which we have prior estimates of these 
parameters - for example, they may have been estimated from 
sparse image motion data or from other sensors, e.g., a mo- 
bile robot equipped with an inertia! guidance system moving 
through a static environment. 

First, I show that for a fixed 3-D rigid-body motion, depth 
values parametcrize a line through image-velocity space, Each 
point, on the surface of a rigidly moving surface patch has an 
associated velocity vector, d = (V,, Ii, V,), given by 

d=iixE+i! 
where fi = (LCI =,tiy,tit) ape the rotational components of the 
rigid motion, ? = ( tz, t,, lZ) are the translational components 
of the rigic! motion, and fi = [r, y, ~(7, y)] is the 3-D position of 
each point on the rigidly moving surface [lo]. 

Under orthographic projection, image velocity, u’ = (u,u) = 
(L>,Vv). Thus, we may rewrite Equation 13 as 

U = Wy%-wZy+tZ (14) 
U = -Wz% + wt2 + t, (15) 

For fixed r‘i, ?, .T, and v this is the paramet,ric form of the 
equation of a line -- cllanging t corresponds to sliding along 
this line. 

Now, I rxplain how to recover depth from the collection of 
velocity-sensitive units present,ed in the prcccdiug section. Since 
dcpt,h parameterizrs a line through velocity space, t,he local 
depth estimate corresponds to t!le minimum in the distribution 
of the out.puts of t,hose velacit,y-sensitive units that lie along this 
line. We need only locate the minimum along this line. 

Formally, WC substitute Equations 14 and 15 for u and u in 
Equation 11 giving 

F’(2) = qut4, WI 
12 

ZZ 
Cl Oi - Ri(u(t)j t1(t))]2 (16) 
i=l 

and pick t that minimizes F’(z). In this way, depth and velocity 
are simultaneously extracted from motion energy. 

A dept.h map recovered from the random-dot sphere se- 
quence discussed above is shown in Figure 5. The technique 
may be extended to perspective projection by approximating 
with locally orthographic projection. 
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7 The Aperture Problem 

An oriented pattern, such as a two-dimensional sine grating OP 
an rst,ended step edge suffers from what has been called the 
aperture problem (for example, see Hildreth ill]): there is not 
enough information in the image sequence to disambiguate the 
true motion of the pattern. At best, we may extract only one 
of the two ve1ocit.y components, as there is one extra degree of 
freedom. In the spatiotemporal-frequency domain, the power 
spectrum of such an image sequence is restricted to a line, and 
the many planes that contain the line correspond to the possible 
velocities. Normal flow, defined as the component of motion in 
the direction of the image gradient, is the slope of that line. 

Figure 3(b) shows the 0utput.s of velocity-sensitive units for 
a moving sinusoidal grating. The aperture problem is evident as 
there is a trough of minima. Preliminary investigation indicat,es 
that the velocity extracted by the model defaults to normal Row 
foor such strongly oriented patterns. Depth may be recovered 
even for local regions that suffer from t.he aperture problem - 
t!lough the velocity-sensit,ive units output a trough of minima, 
there will be a single minimum along a line passing across the 
trough. Future research will study how the velocity and depth 
e&mates vary for patterns that are more and more strongly 
oriented. 

8 Summary 

This paper presentIs a model for extracting velocity and depth 
at each location in the visual field by taking advantage of the 
abundance of motion information in highly textured image se- 
quences. The power spectrum of a moving textupe occupies a 
t iltcd plane in the spatiotcmporal-frequency domain. The model 
uses 3-D (space-time) Cabot filters to sample this power spec- 
trum and estimate the slope of the plane (i.e., the velocity of the 
moving te?:r:ture) without first computing component velocity. A 
parallel implementation of the model encodes velocity as the 
peak in a distribution of velocity-sensitive units. For a fixed 3- 
D rigid-body motion, depth values parametcrize a line through 
image-velocity space. The model estimates depth by finding the 
peak in the di$tribubion of velocity-sensitive units lying along 
this line. In this way, depth and velocity are simultaneously 
extracted from motion energy. 
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Figure 4: A rotating random-dot sphere. (a) one frame from the image sequence. (b) 
actual flow field. (c) extracted flow - the brightness of each vector is weighted by a 
confidence index computed from the residuals of the least squares. (d) difference between 
(b) and (c). 

Figure 5: (a) Actual depth map. (b) R 
difference between (a) and (b). 

ecovered depth map. (c) Absolute value of the 
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Figure 6: (a) one frame of an image sequence flying through Yosemite valley. (b) 
extracted flow field. (c) th e variance of image intensity over time at each pixel of the 
original image sequence. (d) variance after compensating for the image motion. 
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