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1 Abstract 
We present a new method, shape from darkness, for extracting surface 
shape information based on object self-shadowing under moving light 
sources. It is motivated by the problem of human perception of fractal 
textures under perspective. One-dimensional dynamic shadows are 
analyzed in the continuous case, and their behavior is categorized into three 
exhaustive shadow classes. The continuous problem is shown to be solved 
by the integration of ordinary differential equations, using information 
captured in a new image representation called the suntrace. The 
discretization of the one-dimensional problem introduces uncertainty in the 
discrete suntrace; however it is successfully recast as the satisfaction of 8n 
constraint equations in 2n unknowns. A form of relaxation appears to 
quickly converge these constraints to accurate surface reconstructions; we 
give several examples on simulated images. The shape from darkness 
method has two advantages: it does not require a reflectance map, and it 
works on non-smooth surfaces. We conclude with a discussion on the 
method’s accuracy and practicality, its relation to human perception, and its 
future extensions. 

2 Introduction 
We present a new, active method for obtaining shape information from low 
level cues. It exploits the information implicit in the shadows that an object 
or an object part casts upon itself or another object. In spirit, it is most like 
the photometric stereo method of Woodham (Woodham, 1981), in that it 
requires control over illuminant position. However, it also extends the 
exrsting work on shadow geometry of Shafer (Shafer, 1985) and others, and 
gives additional insight into the nature of shadows, especially in the cases 
where the objects are neither polyhedra nor smooth, or where the shadows 
are dynamically changing. The method has two major advantages. It 
appears to work best for textured objects, that is, where existing methods 
fail most badly. And it is more robust than existing methods, in that it 
requires little a priori information about a surface’s reflectance. Further, it 
illustrates the inherent utility-.-and complexity--of static or dynamic 
shadow-based cues for any integrated vision system, whether active or 
passive. 

3 Historical Background 
The method, which can be called shape from darkness, was motivated by an 
interest in the human perception of fractal textures. As Pentland has shown 
(Pentland, 1984), the fractal dimension of textured surfaces is a powerful 
feature on which the segmentation of an image can be based. He further 
observed that the image of a single fractal surface viewed under perspective 
has non-constant fractal dimension. It is conjectured that this change in 
measured feature is closely related to the change in overall local surface 
orientation of the surface with respect to the observer. If this is the case, 
then fractal dimension can serve as a basis for a “shape from fractal” 
method, similar to other gradient-based shape from x methods. 

However, the mathematics behind such relationships appear formidable. 
This is because the observed change in fractal dimension appears to be due 
to the increasing self-occlusion of the fractal surface as it is viewed at 
increasingly oblique angles. That is, unlike an airborne observer of a 
mountain range, an observer down in the foothills sees very little of the 
mountain peaks: he sees mostly the sides of foothills. The mathematical 
difficulty stems from the intractability of the threshold-like non-linear 
functions that express the nature of object occlusion; the difficulties are 
similar to the ones faced when trying to integrate object segmentation with 
standard shape from x methods. 
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Nevertheless, the problem does have the following analogue, which 
ultimately suggested the method reported here. It is that self-occlusion is 
very similar to shadowing: were a light source moved to the observer’s 
position, the self-occluded areas would now be the ones in shadow. Thus, 
instead of attempting to investigate the effect that varying surface 
orientations have on observed fractal properties (or, equivalently, the effect 
that varying observer positions have), one can explore the effects that 
varying light source positions have on the generation of a fractal’s shadows. 
Ideally, one would like to look into the shadows in order to see what 
information has been lost. 

Generating and analyzing shadow information allows for several 
computational efficiencies. Essentially, when working with shadows, one is 
doing rendering and shading under extreme conditions. The capture of 
shadow information from real imagery or the generation of shadows 
synthetically both result in binary imagery. Instead of collecting shading 
information that has a range of values, one obtains a characteristic function 
instead: zero means shadow, one means illuminated. Simple thresholding 
of actual imagery is usually all that is required, and the synthetic casting of 
shadows is a straightforward computation. The imagery that results can be 
seen as extreme shape from shading in another sense. A synthetic shadow 
image can be obtamed in the standard graphic rendering way by first 
thresholding the reflectance map: all gradients which reflect any light at all 
are set to one, and the remainder of the map stays at zero (for self- 
occluding). What results when an image is rendered with such a map is an 
image with extreme contrast; indeed, the contrast cannot be more extreme. 

Recovering the depth or orientation of those surface fragments that have 
been shadowed is clearly a difficult task given only one shadow image. As 
with many other problems in vision, many influences are conflated into the 
simple image observable, the shadow. The beginning of a shadow is 
determined not only by surface orientation and illuminant direction, but also 
by the absence of any prior surface to overshadow it. The termination of a 
shadow depends on the relative heights and orientations of both the 
shadowing and shadowed surface. Deconflating these influences in a single 
image is not necessarily impossible; it depends on the additional 
information and assumptions one also brings to the task. For example, if it 
is known that the surface is that of a hemisphere, its position and radius are 
easily recovered, even without knowledge of the illuminant direction. Less 
restrictive assumptions, such as the surface having a band-limited fourier 
spectrum (and therefore “smooth” in exactly this sense of smooth), may 
also admit to solutions, perhaps in a form analogous to the Logan theorem 
characterizing a signal by its zero-crossings (Logan, 1977). But still weaker 
assumptions, such as the surface simply being twice differentiable, probably 
do not lead to solutions at all. This is because smoothness as defined by 
differentiability is the assumption implicit in true shape from shading, and 
true shape from shading depends heavily on the amount of curvature in the 
reflectance map (Lee, 1985); the thresholded reflectance map has none. 

4 Problem Formalization 
The shape from darkness problem is more straightforward to solve by using 
multiple images. The observer and the objects can be held stationary, 
obviating any image-to-image correspondence problem, and what is moved 
is the light source, in a manner similar to photometric stereo. Photometric 
stereo usually can be done with three illuminant positions, although four is 
the usual number used in practice in order to prevent exactly the problem 
discussed here: objects in self-shadow. It is apparent that even four shadow 
images is woefully inadequate for shape from darkness under reasonable 
surface assumptions. Thus, the problem is relaxed to allow a fixed number 
of illuminant positions, the exact count and location of which are to be 
determined. The added complexity of increased imagery is n&igated in 
part by its binary nature, and in part by the lack of any necessity to calibrate 
the shadow reflectance map, since the latter is determined solely by the 
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illuminant 
terminator 

direction. One 
orientations. 

only needs to define the location of the shadow 

For simplicity in the discussion that follows, the problem is further reduced 
to its natural one-dimensional subproblem. That is, the algorithms 
presented here will discuss the recovery of a planar curve rather than a 
surface, given illuminants that lie in the plane of the curve. (The extension 
of the method to the full two dimensional case, including a discussion of the 
degrees of freedom of illuminant placement, is sketched later.) Thus, we 
assume that depth is a function solely of x, z-f(x), rather than z=f(x,y), and 
that the illuminants lie wholly within the xz plane. Note that photometric 
stereo has a similar one-dimensional analogue, with one-dimensional 
reflectance maps that are functions of curve derivative rather than of surface 
gradient. In one-dimensional photometric stereo, three lights are necessary 
to prevent objects--here, curves--from self-shadowing. 

5 The Continuous Problem 
It is instructive to consider the shape from darkness problem as a 
continuous problem first. Assume that the illuminant is an infinitely distant 
point source, and that the observer is infinitely far in the positive z 
direction. (Thus, instead of investigating the surface properties of a fractal 
seen under 

% 
rspective, we are now exploring the recovery of curve 

information om shadows generated under parallel illumination.) Given 
that the illuminant will appear in many orientations, it will be convenient to 
identify the illuminant with the sun, the positive direction of the x axis with 
the east, ilhtmination at zero slope with dawn, illumination at positive 
slopes with morning, and illumination from the positive z axis with noon: 
often these terms are more immediate and compact. 

As shown in the figure, it is easy to show that under these conditions all 
curve points fall into one of three classes of dynamic shadow behavior 
under increasing morning illumination, with analogous classes in the 
afternoon. A point either can become illuminated because it gradually is 
moved out from self-shadowing, or it can be always illuminated, or it can 
become illuminated because it gradually moves out from a cast shadow. 
These definitions can be made precise, at the given points: 

A minus point m has f(m) >=O such that for all x, x>m implies f(x) c= f(m) 
+ f(m)(x-m). (Implicitly, f”(m) c= 0.) Intuitively, a minus point can only 

be in shadow when it is (or would be) self-shadowed. It becomes 
illuminated precisely at the time of day when the rising illuminant’s slope is 
equal to f(m). When f(m) becomes illuminated, points to the immediate 
west of m remain in shadow; therefore, in the direction of illumination the 
transition at m is from illumination into darkness. This terminator travels 
west with increasing illumination, and crosses descending values off. Note 
that the shadow is caused by light grazing f(m), and it is therefore diffuse, 
especially at low illuminant slopes. Such a point is therefore called minus 
for five negatively flavored reasons (a sixth becomes apparent shortly): its 
second derivative is negative, its terminator goes from light to dark, the 
terminator travels west, the terminator descends, and the shadow is not 
sharp. 

A zero point z is such that for all x, x>z implies f(x) <= f(z). (Implicitly, 
f(z) <= 0.) Intuitively, a zero point is never shadowed (in the morning), not 
even at dawn. It becomes illuminated when the rising illurninant has slope 
equal to zero. It never experiences a terminator: it is characterized by zero 
shadow and zero change. 

A plus point p is every other point. Negating and manipulating quantifies 
yields: either f (p) C= 0 and it is not a zero point, or f(p) >= 0 and it is not a 
minus point. Intuitively, a plus point can only be shadowed due to cast 
shadows. It becomes illuminated when the rising illuminant grazes a minus 
point at m (illuminant slope is f(m)), such that f(m) = f(p) + f (m)(m-p). 
When f(p) becomes illuminated, points to the immediate east of p remain in 
shadow; therefore, in the direction of illumination the transition at p is from 
darkness into illumination (thus, plus). This terminator travels east (plus) 
with increasing illumination. Note that the shadow is caused by occlusion, 
and is therefore sharp (plus). (However, f ‘@) is not necessarily positive, 
and the terminator does not necessarily cross ascending values off.) 

The function f can therefore be partitioned into segments and the segments 
labeled by their shadow class. The grammar of segment labels is simple; in 
the morning it is given by the regular expression ((+-)*O)*. Such strings 
have three significant transitions. Plus to minus occurs at f’ = 0 with f at a 
local maximum. Minus to zero occurs at f = 0 with f at a local maximum. 
Minus to plus occurs at curious “second grazing” points, those points m 
where f(m) is equal to the illuminant slope, but where there is also a p>m 
with f(p) also equal to the illuminant slope, and f(p) = f(m) + f (m)(p-m). 
(The fourth transition, zero to plus, appears to have no special significance.) 

5.1 The Continuous Suntrace 
Quantitative reconstruction can be based on the integration of the derivative 
information intrinsic in the minus points. The reconstruction requires an 
additional representation of image information, called the suntrace, from 
which the requisite derivative information is obtained 

The suntrace is a mapping from the domain of the original curve into 
(morning) illumination slopes. For each x, it records the slope at which the 
value f(x) first became illuminated. The suntrace is a function of x, since a 
given f(x) can become illuminated only once. Depending on the underlying 
curve, the suntrace may be unbounded: although the entire curve must be 
illuminated no later than noon, noon corresponds to an unbounded 
illumination slope. 

Since zero points are illuminated at dawn, they have suntrace values 
identically zero; see Figure 1. Minus points are likewise easy to detect and 
label: they are exactly those points (in the morning) with negative (minus) 
suntrace derivatives, since their terminators move west with increasing 
illuminant slope. What remains are the plus points; they have positive 
(plus) suntrace derivatives. 

5.2 Solution Using ODES 
Given a morning suntrace, the underlying curve can be partially 
reconstructed A contiguous curve segment with minus labels can be 
integrated into a function segment by using the suntrace value of the point 
as the value of f’ at the point. The segment, however, must “float” at an 
unknown height until it is given an absolute height by the appropriate 
constant of integration. 

By definition, the function values of all plus points can be determined 
relative to the position of their corresponding minus points that shadow 
them. For a plus point p, the calculation is based on the relation f(m) = f(p) 
+ f (m)(m-p), where the corresponding minus point m is found in the 
suntrace as the least m greater than p that has the same illumination slope, 
f(m), that p has. Entire contiguous segments of plus edges can therefore be 
fixed in space, and joined to their integrated minus segment 

The now completed plus-minus complexes can themselves be joined one to 
another at their common “second grazing points” (that is, at minus-plus 
transitions). In this way, long, self-consistent segments of the curve result, 
but with each “floating” with respect to a constant of integration; see 
Figure 2. 

The fuller recovery can never be made since a simple morning suntrace 
provides no information about zero points. Their relative and actual depths 
can attain arbitrarily high values, and any self-consistent segments 
separated by zero points can freely float relative to each other, as long as the 
slope of the intervening zero segments remain negative. 

Pinning down the constant of integration and restricting the behavior of zero 
points can be achieved by using a second suntrace, usually the afternoon 
suntrace which maps illumination slopes from noon to dusk. It is apparent 
that the only point that can be labeled a zero point for both suntraces is the 
global maximum. All other points are shadowed at least once and can 
therefore be assigned a function value relative to some constant. What 
results, within the accuracy of the suntrace and the integration, is a 
reconstruction of the underlying curve with depth values relative to a single 
constant of integration: the global maximum. 
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UPPER u(fs(x)) <= u(x) + (fs(x)-x)*sfs(x) 

LOWER l(ls(x)) >= l(x) + (Is(x)-x)*sls(x) 

The shape from darkness method begins by collecting from the discrete 
suntrace, for every element x in the domain of the curve, information about 
such shadowers. The last shadower of f(x) is found in the morning in the 
following way. If f(x) fist became illuminated at time t+l, the last 
shadower of f(x) was the nearest eastern illuminated neighbor to f(x) at time 
t. The failing shadower of f(x) is the nearest eastern illuminated neighbor at 
time t+l. 

Fortunately, such information can be collected in one pass through the 
suntrace. Assuming both a morning and afternoon suntrace, each element x 
of the domain will gather eight pieces of information: for each of the four 
morning or afternoon last or failing shadowers, it stores their position and 
the time of their shadowing (t or t+l). 

6.2 The Eight Constraints per Point 
Given this information, each point in the domain affects and is affected by 
these four critical shadowers. Each point therefore participates in eight 
constraints, four to do the affecting, and four to be affected by. Given that 
the morning and afternoon suntraces are completely symmetrical, there are 
only four basic conceptual relations: forward or backward constraints on 
upper or lower bounds. The forward constraints propagate constraint 
information in the direction of the illuminant; the backward constraints 
propagate it against the illuminant. 

The forward constraints are based on the following observations. At point 
x, x’s upper bound can be no higher than the projected shadow of the upper 
bound of its last shadower. (If x’s upper bound were any higher, x would 
not be shadowed at time t). Similarly, at point x, x’s lower bound can be no 
lower than the projected shadow of the lower bound of its failing shadower. 
(If x’s lower bound were any lower, x would instead be shadowed at time 
t+l). 

In the morning, the forward constraint equations are therefore: 

UPPER u(x) c= u(ls(x)) - (Is(x)-x)*sls(x) 

LOWER l(x) >= l(fs(x)) - (fs(x)-x)*sfs(x) 

where u(.) and l(.) represent the upper and lower limits in effect at any time, 
Is(.) and fs(.) are the coordinates of the last shadower and failing shadower, 
and sls(.) and sfs(.) are the illumination slopes at the times of last shadow 
and failing shadow. 

The backward constraints are a bit trickier, but it is their feedback that 
seems to account for the method’s power. Consider the upper bound at x. 
Since the failing shadower must fail to shadow x, the upper bound of the 
failing shadow& is limited by the height at which it just barely fails to 
shadow x: the maximum allowable height for the failing shadower occurs 
when x i&elf is at its maximum. (If &e failing shadower’s upper bound 
were higher, it would instead shadow x.) This height can be determined by 
backprojecting the upper bound of x along the slope in effect at the failing 
shadow time, t+l. Similarly, consider the lower bound at x. Since the last 
shadower must successfully shadow x, the lower bound of the last shadower 
is limited by the depth at which it just barely succeeds in shadowing x; the 
minimum allowable depth for the last shadower occurs when x itself is at its 
minimum. (If the last shadower’s lower bound were smaller, it would 
instead fail to shadow x.) This height can be determined by backprojecting 
the lower bound of x along the slope in effect at the last shadow time, t. See 
Figure 4. 

In the morning, the backward constraint equations are therefore: 

Four similar constraints 
afternoon suntrace. 

apply to the information gathered for x from the 

It is surprising that these appear to be all the constraints possible (aside 
from the trivial constraint that u(x) > l(x)). Other relationships between the 
upper and lower bounds of x, upper and lower bounds of its last shadower, 
and upper and lower bounds of its failing shadower, do not appear to be 
constraining. For example, if x’s upper bound decreases, it has no effect on 
the upper bound of its last shadower. 

6.3 Solution Using Relaxation 
The specific family of constraints that result from a given suntrace have a 
complex interrelated structure. It is not apparent whether there is any 
special solution method applicable to this problem in general, or even for 
well-defined subclasses of curves. There are 8n inequalities in 2n 
unknowns, and there is a well-defined objective function to minimize: that 
is, the sum, over all x, of u(x) - l(x)). 

Although the problem might be solved using linear programming, a more 
attractive solution method is the use of a version of relaxation. 
Conceptually this consists of a number of successive iterations, in each of 
which the eight constraint equations are successively applied to each point x 
in the domain. If the application of any constraints results in better 
estimates for u(x) or l(x), they are updated. As in the continuous case, the 
only valid initial values are those of the global maximum (the only point 
labelled zero in both suntraces); its upper and lower limits are set arbitrarily 
to a pleasant value (say, zero) before the relaxation begins. 

In practice, convergence seems very rapid. Unlike some relaxation 
algorithms, updating is based on thresholds, so upper and lower bounds are 
only altered if they are moved closer together. The method is therefore more 
likely to terminate when it recognizes a lack of measurable progress. 

7 Experimental Red ts 
In the experiments that follow, some of the generalities of the algorithm 
were made particular. For ease of comparing the final reconstructed curve 
to the original, the global maximum of the reconstruction was initialized to 
its true known height. Sun positions were simulated at constant slope 
increment; thus, sun angles in the morning linearly increase in tangent. 
(Under this scenario, the sun literally rises, rather than travels an arc!) This 
policy of constant increment seems to be closely related to the encouraging 
accuracy obtained in the final processing step, where the final estimate of 
the curve is defined to be the curve midway between the computed upper 
and lower bounds. 

Each of these series of test images shows the following, 

The first figure of a series is the original curve, with its morning and 
evening suntraces. The domain of the original curve is aligned with the 
domain of the suntraces. Both suntraces have the axes for increasing sun 
slope pointing toward the curve. Thus, on all suntraces, the line nearest the 
curve is pure black, indicating all pixels have been illuminated. 

The second figure of a series is a record of the constraint processing. Initial 
estimates for upper and lower bounds as propagated from the global 
maximum have gradually approached each other, subject to the suntrace 
data. 

The third figure of the series shows final upper 
original curve, and the superimposed best estimate. 

and lower bounds, the 

The first series is an image of a self-similar mountain. It is approximately 
300 points wide by 85 points peak-to-peak. The suntrace was taken at 
increments of. 1, that is, at approximately four degrees, to a maximum of 30 
increments. The final estimate has a cumulative total error of less than 68 
(about .2 error per pixel, average), and a maximum single point error of less 
than 1.2. 

The second series is the same image, but with a suntrace increment of 1: 
that is, the first non-dawn suntrace is taken at 45 degrees, and only four 
increments are possible. Although not a realistic test, it demonstrates more 
visibly the method and its results, especially the goodness of the final 
estimate even under extremely severe conditions. 
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The third series demonstrates the applicability of the processing to very 
smooth imagery: a semicircle of radius 50, again under 30 increments of .l 
each. Maximum error occurs at the extreme left and right of the “table”, 
although reconstruction error within the circle is no more than 0.5. 

8 Discussion 
It appears that the accuracy of the final estimate is surprisingly good, and 
may be related to the use of constant illumination slope increment. 
Choosing the midway curve is guaranteed to minimize worst case error, 
since the midpoint can never be off more than half the available range. 

8.1 Performance 
Aside from the empirical data given above, little is known about the 
theoretic performance of the algorithms except in two worst cases. In terms 
of accuracy, the worst case image occurs in a monotonically decreasing 
function with positive curvature (as in z = l/(x+c)). Here, points at the 
extreme asymptotic end have little opportunity for feedback, so the range 
between upper and lower bounds is virtually the same as the initial forward 
constraints, length*(slope(t+l)-slope(t)); if slopes increase in constant 
increments, this is simply Iength+increment. In terms of convergence, it 
appears that certain square wave trains takes n iterations, where n is the 
number of pulses in the train. 

Shape from darkness has several advantages, most notably that it can 
exploit the surface information implicit in a class of dynamic shadows, with 
very little restrictions placed on the class of surfaces being shadowed: they 
need not be smooth. In particular, it can probably be useful in increasing 
the accuracy with which finely textured surfaces are viewed, especially 
under oblique illumination. It can also exploit smart cameras that run- 
length encode the incoming binary shadow imagery, but the exact 
information content of a shadow image, especially with respect to the 
information content in a gray scale image, remains to be explored. 

8.2 Practicality 
The utility of the method depends upon the extent to which shadowed 
imagery can be accurately obtained. This does not necessarily imply a 
completely controllable artificial light source: natural sources such as the 
sun can be used if there is concurrent accurate slope (or time of day) 
information. In effect, the method establishes an upper bound on the error 
of reconstruction for any series of shadowed imagery, artificial or 
otherwise. Like other shape from x methods, it is best seen as one of many 
possible sources of surface information. 

8.3 Relation to Human Perception 
The complexity of the data interaction does suggest why humans do not 
appear to derive much surface information from dynamic shadows. The 
necessity to store, in effect, an entire suntrace is probably excessive. On the 
other hand., if our earth rotated much faster (say, once every three seconds), 
there may have been more reason for natural systems to develop at least an 
approximate solution to the shape from darkness problem. 

8.4 Extensions 
The method admits of many extensions. The application of the method to 
real imagery must address the difficulties of specularity, mutual 
ilhrmination, and diffuse shadows. However, in a robot environment, much 
of the environment can be structured to make the problem easier. For 
example, having the knowledge that the object is on a fixed table at a given 
depth can aid in the setting of lower bounds. 

The extension to two-dimensional surfaces is probably the most critical. 
The problem can probably be decomposed for parallel processing in ways 
beyond the trivial one of partitioning the images in strips parallel to the 
illuminant direction; it may even be done in a hierarchical way. Selecting 
optimal sun positions with two degrees of freedom is challenging, but may 
reduce to two simple perpendicular transits. The problem is especially 
acute if sun and observers are allowed to be near, and observers are allowed 
to view off the normal axis; this is once again the original problem of 
fractals under perspective. 
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