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Abstract 

Previous research on analyzing time-varying image 
sequences has concentrated on finding the necessary 
(and sufficient) conditions for a unique 3-D solution. 
While such an approach provides useful theoretical 
insight, the resulting algorithms turn out to be too sensi- 
tive to be of pratical use. We claim that any robust 
algorithm must improve the 3-D solution adaptively over 
time. As the first step toward such a paradigm, in this 
paper we present an algorithm for 3-D motion computa- 
tion, given time-varying optical flow fields. The surface 
of the object in the scene is assumed to be locally 
planar. It is also assumed that 3-D velocity vectors are 
piecewise constant over three consecutive frames (or 2 
snapshots of flow field). Our formulation relates 3-D 
motion and object geometry with the optical flow vector 
as well as its spatial and temporal derivatives. The 
deformation parameters of the first kind, or 
equivalently, the first-order flow approximation (in space 
and time) is sufficient to recover rigid body motion and 
local surface structure from the local instantaneous flow 
field. We also demonstrate, through a sensitivity 
analysis carried out for synthetic and natural motions in 
space, that 3-D inference can be made reliably. 

1. INTRODUCTION 

When an object moves relative to a viewer, the pro- 
jected image of the object also moves in the image 
plane. By analyzing this evolving image sequence, one 
hopes to extract the instantaneous 3-D motion and sur- 
face structure of the object. The path from time- 
varying imagery to its corresponding 3-D description 
may be divided into two relatively independent steps: (1) 
computation of 2-D image motion from the image 
sequence, and (2) computation of 3-D motion and struc- 
ture of objects from 2-D motion. This paper deals with 
the latter issue. 

__________________----------------------------------------------- 
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The relations between 2-D motion and 3-D environ- 
ment are formulated in terms of non-linear equations. 
This non-linearity prevents us from solving them in a 
trivial way, which makes the problem mathematically 
interesting. The schemes used to interpret 2-D motion 
information can be classified into two categories depend- 
ing on the kind of 2-D motion representation utilized. 
One may use the motion of distinct, well-isolated feature 
points [6]. The other approach uses the continuous flow 
field within a small region [4]. While either method has 
its own merits and drawbacks, the second approach 
leads to stable solutions provided that the partial 
derivatives of the flow field are available [8]. Waxman 
and Wohn [9] developed the methods of extracting the 
partial derivatives of the flow field directly from evolving 
contours over time. They have demonstrated that the 
combined algorithms of 2-D flow computation and 3-D 
structure and motion computation are quite stable with 
respect to input noise and changes in surface structure. 

Although the approach of Waxman et. al. behaves 
much better than its predecessors, it is still questionable 
that all the partial derivatives of flow up to second 
order could be recovered reliably enough to produce a 
meaningful 3-D solution. While no rigorous analysis on 
the behavior of this algorithm has been so far con- 
ducted, it has turned out that, in general, the second- 
order derivatives determine the accuracy of 3-D solution, 
and they are not reliable as the field of view decreases 
under 20’. 

Our approach is based on the derivatives of flow up 
to the first order. In our recent experiments conducted 
on various natural images, we found that the first-order 
derivatives can be recovered with greater accuracy than 
those of second-order. However, the first-order deriva- 
tives alone do not provide the sufficient condition for 
solving 3-D motion. We obtain additional constraints by 
introducing the temporal derivatives of optical flow. 
The new representational scheme of 2-D motion then 
consists of four first-order spatial derivatives and two 
first-order temporal derivatives of local flow field. We 
call these partial derivatives “deformation parameters of 
the first kind”. The idea of utilizing multiple frames has 
been proposed by several researchers for a restricted 
class of rigid-body motion [3], for semi-rigid motion 
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under orthographic projection [7], and for determining 
the focus of expansion (or contraction) [l]. 

In Section 2, we begin our discussion of the 3-D 
motion recovery process, adopting the new flow represen- 
tation scheme. The formulation given here relates this 
new local representation, of an optical flow to object 
motion and structure, in terms of eight non-linear alge- 
braic equations. This formulation requires that the 
object surface be approximated as locally planar and 
that 3-D velocities do not change over a short period of 
time. Our method reveals certain families of degenerate 
cases for which the temporal derivatives of flow do not 
provide sufficient independent information. In certain 
cases, the temporal change of the first-order derivatives 
may be used. In some other cases, multiple solutions 
may result due to the non-linearity. The complete solu- 
tion tree is also presented. We conduct a stability 
analysis of the algorithm in Section 3. Some results of 
experiments conducted on synthetic data as well as real 
time-varying images are presented. Concluding remarks 
and our future direction follow in Section 4. 

2. SPATIO-TEMPORAL IMAGE DEFORMATION 

Adopting a 3-D coordinate system (X, Y, Z) as in 
[4] (See Figure l), the relative motion is represented in 
terms of viewer motion: the translational velocity 

v =(Vx, v,, Vz), and the rotational velocity 
62 = (R,, n2,, f12,). The origin of the image coordinate 
system (z, y) is located at (X, Y, Z) = (0, 0, 1). 

As a point P in space (located by position vector 
R) moves with a relative velocity U = - (V + RX R), 
The corresponding point p moves with a velocity: 

(2.111) 

These equations define an instantaneous image flow 
field, assigning a unique 2-D image velocity v to each 
direction (3, y) in the observer’s field of view. 

2.1. Spatial Coherence of Optical Flow 

Equations (2.1) constitute two independent relations 
among seven unknowns. Various techniques for recover- 
ing the 3-D parameters differ by the way the additional 
constraints are provided. We shall consider only a sin- 
gle, smooth surface patch of some object in the field of 
view, such that the surface is differentiable with respect 
to the image coordinates. Let us further assume that 
such surface patch be locally approximated by a planar 
surface in space as: 

(2.2) 

Substituting the above into the flow relation (2.1), we 
get expressions in the form of a second-order flow field 
with respect to the image coordinates (z,y). On the 
other hand, non-planar surfaces generate flows which 
are not simple polynomials in the image coordinates. 

Following [8], we form the partial derivatives of 
flow in equations (2.1) with respect to the image coordi- 
nates and evaluate them at the image origin; we get the 
following four independent relations: 

a,v, 
V = 
x,x - 

I b dX 
= v; + vi p, 

dvx = 
%Y - 

i-b &I 
= vf: q + R,, 

&J, 

vY,x = ax 
I I 

= v; p - cl,, 

vY,Y = 

au, 

I 1 dY 0 
= v; + v; q, 

where we 
parameters 

have introduced the normalized 

(2.3a) 

(2.3b) 

(2.3~) 

(2.3d) 

mot ion 

vi=-, v+-, v$!E YY VY 

ZO ZO zo . 
(2.4a,b,c) 

The quantities on the left-hand side represent the 
relative motion (or geometrical deformation) in an 
infinitesmal neighborhood. The above process adds 4 
relations while replacing the unknown Z with p and q. 
Now we have 6 relations (equations (2.1) evaluated at 
the origin and (2.3)) and 8 unknowns. 

2.2. Temporal Coherence of Optical Flow 

Unlike [4] and [8] in which the additional con- 
straints are obtained by introducing higher-order deriva- 
tives of flow, we observe that the flow field itself changes 
smoothly over time unless the following situation(s) 
occur: 

1) abrupt change of 3-D motion in time, and/or 
2) abrupt change of object distance in time. 

For the latter case, it can be easily shown that the tem- 
poral change of object distance is given by: 

1 dZ 

i b - =- 
-gy dt 

v; + p (If,{ + sz,) + 9 (Vb - W(2.5) 

and the previous assumption on surface planarity elim- 
inates this possibility. This observation leads us to 
investigate the way flow field changes over time. Now, 
let us assume that 3-D motion parameters do not change 
at all during an infinitesimal time period. 
Differentiating (2.1) with respect to time, and utilizing 
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(2.5): 

(2.6a) 

(2.6b) 

where S = - Vi -P vu, -9 vy. S describes the rate of 
depth change in time, normalized by Z, the absolute dis- 
tance. The above quantities represent the flow changes 
in time, at the center of the image coordinates. Notice 
that we have obtained two independent relations 
without introducing any additional unknown. 

There is a class of motion for which equations (2.6) 
become redundant and do not provide any new con- 
straint. In such a case, we observe that the temporal 
change of spatial deformation may also provide indepen- 
dent relations: 

\ 

z - Vf: f12,, (2.7b) 

V;q f-& - V; f-ly, (2.7~) 

= -v; s + v;q y + v;p St, + v; clt, 

where y = v;- pv;I - qv;. 
(2.74 

2.3. Recovery of 3-D Motion 

Once the deformation parameters are obtained, we 
can proceed to recover the 3-D motion and structure of 
a surface patch. The eight equations to be solved ((2.1), 
(2.3) and (2.6)) involve eight unknowns: Vi, Vg, Vi, 
f-k, fb, fh P and 9. We first observe that Vi and 
Vb are coupled with p and q as seen in equations (2.3). 
This suggests to us a two-step method: (1) to solve for 
the products as a whole, and (2) to separate them into 
individual parameters. The detailed derivation may be 
found in [ll]. When VL= 0, 3-D motion is restricted to 
the motion parallel to the image plane. Substituting 

G = 0 into the original equations (2.3), one can see 
that the coupled terms Vfcp, Vkq, V&p, Vkq cannot 
be separated. We now utilize the temporal change of 
the spatial deformation parameters: vZ,zt, vz,yt, vy,,t and 
vy,yt, as depicted in equations (2.7). They provide 
sufficient constraints for solving for 3-D parameters. 

In summary, one can determine 
uniquely except the following cases: 

3-D motion 

6) 

(ii) 

3. 

Stationary flow: The flow field does not change 
over time. Our method fails to recover 3-D motion. 

v; =o: Motion is parallel to the image plane. 
Dual solution may exist. 

The complete solution tree is presented in Figure 3. 

SENSITIVITY ANALYSIS AND EXPERI- 
MENT 

Unlike other existing algorithms such as (5,8], our 
method solves for 3-D motion without involving any 
searching or iterative improvement. Given the perfect 
deformation parameters (or flow field), the algorithm 
recovers the exact 3-D solution. In practice, however, 
there are various factors which reduce the accuracy of 
deformation parameters. Beside the sources of error 
common to any early vision processing such as the error 
due to digitization, camera distortion, noise, truncation 
error due to discrete arithmetic, etc., there are several 
other factors which affect the accuracy of calculated 
values of deformation parameters. In principle, the 
deformation parameters may be obtained first by recov- 
ering optical flow and secondly by taking the partial 
derivatives of optical flow. But’ since the differentiation 
process will amplify noise, we are unlikely to recover 
these partial derivatives reliably. 

3.1. Recovery of Optical Flows 

In our experiment conducted on the natural time- 
varying image, contours are used as a primary source of 
information. The following factors concerning various 
stages of the flow computation must be considered and 
their effects must be analyzed. 

Imperfect contour extraction and false matching: 
Since we utilize the contours to sample the image 

deformation experienced by a neighborhood in the 
image, for all points on a contour in the fifst image 
there must be corresponding points on the matching con- 
tour in the second image, and vice versa. Hence con- 
tours such as those which corresponds to extremal boun- 
dary or shadow boundary must be excluded. However, 
there is no reliable method for classifying edges into 
meaningful categories, based on the local intensity meas- 
urement. In fact, the analytic boundaries of flow field 
suggest a way of classifying edges [2]. 

The performance of edge operators severely affects 
the forthcoming computation. In our current implemen- 
tation, contours are obtained from the zerocrossings of 
V2G*I. Although zerocrossings possess many attractive 
features by itself, they may not correspond to the actual 
meaningful edges. 
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Imperfect normal flow estimation: Having deter- 
mined the pair of matching contours, one can measure 
only the norms/ flow around the contour, whereas the 
motion along the contour is invisible. We make use of 
geometrical displacements normal to contours as shown 
in Figure 2. Since the points along the contour generally 
have some component of motion tangential to the con- 
tour as well, the measured normal flow in this way is not 
exactly equal to the true normal flow. In most cases, 
the effect of this tangential component on the resulting 
full flow is not negligible and the 3-D solution becomes 
of no use at all. In this regard, we developed an algo- 
rithm which iteratively improves the normal flow esti- 
mates [12]. 

Inaccurate flow model: Given the normal flows, the 
deformation parameters (or equivalently optical flow) 
can be recovered by the Velocity Functional Method 
proposed by [9]. It considers the second-order flow 
approximation as the starting point of flow recovery. It 
then computes the best-fitting second-order flow from 
the local measure of normal flow. Although the second- 
order terms will not be used at the later stage of 3-D 
motion computation, they are included here in order to 
“absorb” noise, and thereby to obtain more accurate 
spatial deformation parameters. Currently temporal 
deformation parameters are obtained by subtracting the 
spatial deformation parameters over two consecutive 
image frames. Alternatively, as a better approach, the 
velocity can be approximated as the truncated Taylor 
series in the spatio-temporal coordinates (z, y, t). 

In general, such approximation is not exact. It 
involves the truncation error which is characterized by 
many quantities. However, as we have mentioned in 
Section 2, the second-order approximation is exact for 
planar surfaces. For curved surfaces, it has been shown 
that the exact error formula is determined mainly by the 
surface curvature and the size of the neighborhood [lo). 
By keeping the neighborhood size small enough, one can 
still rely on the second-order model. 

Non-uniform 3-D motion: In the mathematical 
sense, non-uniformity of motion is not a problem since 
all we need is the change of flow in infinitesmal time 
period. In practice, we have to subtract (or 
differentiate) two flow fields, which means three 
snapshots of images are needed at least. The motion is 
assumed to be constant during this time interval. The 
effect of 3-D motion change, i.e. acceleration, on the 
first-order image deformation can be shown to be pro- 
portional to the amount of acceleration. 

3.2. Experiment 

In the first experiment, we test the sensitivity of the 
proposed algorithm by using synthetically generated 
data. Typical sensitivity is well illustrated by the fol- 
lowing case. A planar surface in space is described by 
z = Zu+pX + qY with Z0 = 10 units, and p and q 
corresponding to slopes of 30’ and 45’, respectively. The 
observer moves with translational velocity V = (5, 4, 3) 
units/frame and rotational velocity ha = (20, -10, 30) 
degrees/frame. On the image plane we specify two alge- 
braic curves along which the normal Aow can then be 
computed exactly (S ee Figure 4a). We then perturb the 
magnitude and direction of the normal flow vectors ran- 
domly (from a uniform distribution), ‘bounded by a 
specified percentage of the exact normal flow (Figure 
4b). The viewing angle is fixed at 20’. The Velocity 
Functional Method is then applied to the input normal 
flows (Figure 4~). We consider three measures of sensi- 
tivity which characterize the relative error in surface 
orientation es, in translation eT, and in rotation eR . 
One can see from Table 1 that the sensitivity of 3-D 
structure and motion predictions is fairly linear to the 
normal flow. We have found that perturbations to the 
normal flow of about 20% can be tolerated down to 
fields of view of about 10’. 

In the next example, the normal flow vectors are 
measured from the synthetic images. The same contours 
defined above undergo the following motion: transla- 
tional velocity V’ = (0.06, 0.03, -0.04) and rotational 
velocity !J = 0. The slope of the surface is measured 
roughly as p = 30’ and q = 45’ . Three frames of digi- 
tal images (of size 256 by 256) were generated from the 
graphical simulation program (Figures 5a). Normal 
flows along the contours are measured from the pair of 
consecutive frames (Figure 5b). The iterative process in 
[12] was used to recover the full flows (Figure 5~). The 
3-D parameters computed from this full flow are: V’ = 
(0.059, 0.028, -0.038) units/frame, ib = (-0.0021, 0.0006, 
-0.0007) degrees/frame, p = 31.87’ and q = 46.26’ . 

As the last example, Figure 6a shows one of three 
consecutive images obtained from the natural environ- 
ment. A CCD camera with known viewing angle and 
focal length was attached to-a robot arm so that the 
camera can follow a predetermined trajectory. The 
images are 385 by 254 in size, with 6 bits of resolution. 
The motion between the successive frames is given as 
V’ = (0.6, -0.25, 0.4) and R = 0. The orientation of the 
table was given as p = -10’ and q = 55’. A pyramid- 
based flow recovery scheme being developed is applied to 
the input images. Figure 6b shows the flow field 
obtained from the first two frames, assuming that the 
entire image consists of a single planar surface. 3-D 
parameters computed from this flow field are: V’ = 
(0.45, 0.18, 0.57) units/frame, n = (0.028, -0.037, 0.021) 
degrees/frame, p = -25.11’ and q = 56.29’ . 
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4. CONCLUDING REMARKS 

This work is a part of the hand-eye coordination 
project at Robotics Laboratory, Harvard University. In 
order to provide 3-D geometrical information of scene 
from visual data, binocular/time-varying images will he 
used as main visual source. 

\Ve presented an algorithm which wcovers 3-D 
structure and motion from the first-order deformation 
parameters. In most cases, such cdeformation parame- 
ters can be recovered quite reliabllr. 1”\*e carried ollt a 
sensitivity analysis for synthetic and natllral motions in 
space, to demonstrate that 3-D information can also be 
recovered reliably. Although many independent factors 
affect the accuracy of 3-D solution, we have found, 
through various experiments, that the temporal defor- 
mation given as II, t and uY t plays t-he major role on 
the sensitivity. hlore work should be done on the fiow 
recovery scheme. 1\7e are currently investigating a 
muti-resolution approach which integrates several 
different methods of flow computation. The 3-D solution 
can also be improved further by exploiting the idea of 
3-D motion coherence on the level of 3-D motion compu- 
tation. We are developin, 0 a predicti\re filtering scheme 
based on a dynamic model. 
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Table . 

eT eR 

0.000% 0.000% 
0.171% 1.493% 
1.294% 4.532% 
4.324% 8.218% 
10.080% 11.115% 
18.338% 12.523% 

Relatil-e error in 3-D solution with 
respect to the noise in normal flex-. 

Figure 1. 3-D coordinate system and 2-D image coord- 
inates with motion relative to an object. 
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Figure 2. Estimating normal flow. 
The normal flow cannot be obtained exactly 
due to the tangential component. 
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no solution 6% unique vncv v I/ v 
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unique 
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dual 
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unique 

a) y-7 L i 
L! 0 

frame #I frame #2 frame #3 

Figure 5. Recovering optical flow from contours. 
a) contours on the image planes as input. 

(3 frames&are shown.) 
b) measured normal flow along the contours 

(from frame #l and #2). 
c) optical flow field recovered. 

Figure 3. Solution tree for 3-D structure 
and motion algorithm. 

b) 
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7 

CT 
- -,+.- --- . . -ci 

a . . . . A- x...... 

Figure 4. Recovering full flow from normal flow. 
a) contours on the image plane. 
b) normal flow along the contours as 

input (no noise added). 
c) optical flow field recovered. 

Figure 6. Recovering optical flow from natural images. 
a) input images. (One frame is shown). 
b) flow field recovered (with zerocrossings). 

PERCEPTION AND ROBOTICS / 675 


