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Abstract 
A method is presented for the recovery of the 3-D motion 

parameters of a rigidly moving textured surface. The novelty of 
the method is based on the following two facts : 
1) no point-to-point correspondences are used, and 
2) “stereo” and “motion” are combined in such a way that no 
correspondence between the left and the right stereo pairs is 
required. 

1. Introduction 
An important problem in Computer Vision is to recover the 3- 

D motion of a moving object from its successive images. Dynamic 
visual information can be produced by a sensor moving through 
the environment and/or by independently moving objects in the 
observer’s visual field.The interpretation of such dynamic imagery 
information consists of dynamic segmentation, recovery of the 3-D 
motion ( of the sensor and the objects in the environment ) as 
well as determination of the structure of the environmental 
world. The results of such an interpretation can be used to 
control behavior as for example in robotics, tracking, and 
autonomous navigation. Up to now there have been, basically, 
three approaches towards the solution of this problem: 

1) The first assumes the dynamic image to be a three- 
dimensional function of two spatial arguments and a temporal 
argument. Then if this function is locally well-behaved and its 
spatiotemporal derivatives are computable, the image velocity or 
optical flow may be computed([7,9,10,17,23,35,391). 

2) The second method for measuring image motion considers 
the cases where the motion is “large” and the previous technique is 
not applicable. In these instances the measurement technique 
relies upon isolating and tracking highlights or feature points in 
the image through time. In other words operators are applied on 
both dynamic frames which output a set of points in both images, 
and then the correspondence problem between these two sets of 
points has to be solved (i.e. finding which points on both dynamic 
frames are due to the projection of the same world 
point)([3,21a,21b, 6,32,331). 

In both the above approaches, after the optical flow field or 
the discrete displacements field (which can be sparse) are 
computed, algorithms are constructed for the determination of the 
three-dimensional motion , based on the optical flow or discrete 
displacements values ([l, 4, 5a, 5b, 8, 18, 19, 24, 2526, 27, 28, 29, 
30,32,33,34,36,3&W. 

3) The three-dimensional motion parameters are computed 
directly from the spatial and temporal derivatives of the image 
intensity function. In other words, iffis the intensity function and 
(u,v) the optical flow at a point, then the equation fXu+fYv +ft= 0 
holds approximately. All the methods in the category are based on 
the substitution of the optical flow values in terms of the three 
dimensional motion parameters in the above equation, and there is 
very good work in this direction ([22,11,21). 

As the problem has been formulated over the years, one 
camera is used and so the three dimensional motion parameters 
that have to be computed and can be computed, are five (two for the 
direction of translation and three for the rotation). In our 

approach, we consider a binocular observer, and so all six 
parameters of the motion can be recovered. 

2. Motivatidn and Previous Work 
The basic motivation for this research is the fact that optical 

flow (or discrete displacement) fields produced from real images by 
existing techniques are corrupted by noise and are partially 
incorrect ([331). Most of the algorithms in the literature that use 
the retinal motion field to recover three-dimensional motion fail 
when the input (retinal motion) is noisy. Some algorithms work 
reasonably for images in a specific domain. 

Some researchers ([26, 40, 41, 42, 8, 431) developed sets of 
non-linear equations with the three-dimensional motion 
parameters as unknowns, which are solved by iterations and 
initial guessing. These methods are very sensitive to noise, as it 1s 
reported in [26, 40, 8, 431. On the other hand, other researchers 
([30, 181) developed methods that do not require the solution of 
non-linear systems, but the solution of linear ones. Despite that, 
under the presence of noise, the results are not satisfactory ([30, 
181). 

Bruss and Horn ([5al) presented a least-squares’ formalism 
that tried to compute the motion parameters by minimizing a 
measure of the difference between the input optic flow and the 
predicted one from the motion parameters. The method, in the 
general case, results in solving a system of non-linear equations 
with all the inherent difficulties in such a task, and it seems to 
have good behavior with respect to noise only when the noise in the 
optical flow field has a particular distribution. Prazdny, Rieger, 
and Lawton presented methods based on the separation of the 
optical flow field in its translational and rotational components, 
under different assumptions (124,251). But difficulties are reported 
with the approach of Prazdny in the present of noise ([44]), while 
the methods of Rieger and Lawton require the presence of 
occluding boundaries in the scene, something which cannot be 
guaranteed. Finally, Ullman in his pioneering work ([321) 
presented a local analysis, but his approach seems to be sensitive 
to noise, because of its local nature. 

Several other authors ([19, 381) use the optical flow field and 
its first and second spatial derivatives at corresponding points to 
obtain the motion parameters. But these derivatives seem to be 
unreliable with noise, and there is no known algorithm which can 
determine them reasonably in real images. Others ([ll) follow an 
approach based partially on local interpretation of the flow field, 
but it can be proved ([341) that any local interpretation of the flow 
field is unstable. 

At this point it is worth noting that all the aforementioned 
methods assume an unrestricted motion (translation and rotation). 
In the case of restricted motion (only translation), a robust 
algorithm has been reported by Lawton ([45]), which was 
successfully applied to some real images. His method is based on a 
global sampling of an error measure that corresponds to the 
potential position of the focus of expansion (FOE); finally, a local 
search is required to determine the exact location of the minimum 
value. However, the method is time-consuming, and is likely to be 
very sensitive to small rotations. Also the inherent problems of 
correspondence, in the sense that there may be drop-ins or drop- 
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outs in the two dynamic frames, is not taken into account. All in 
all, most of the methods presented up to now for the computation of 
three-dimensional motion depend on the value of flow or retinal 
displacements. Probably there is no algorithm until now that can 
compute retinal motion reasonably (for example, 10% accuracy) in 
real images.Even if we had some way, however, to compute retinal 
motion in a reasonable (acceptable) fashion, i.e.with at most an 
error of lo%, for example, all the algorithms proposed to date that 
use retinal motion as input, would still produce non-robust results. 
The reason for this is the fact that the motion constraint (i.e., the 
relation between three-dimensional motion and retinal 
displacements) is very sensitive to small perturbations ([471). 
Table 1 shows how the error of motion parameters grows as the 
error in image point correspondence increases when B-point 
correspondence is used, and Table 2 shows the same relationship 
when 20-point correspondence is used with 2.5% error on point 
correspondences based on a recent algorithm of great 
mathematical elegance. 

(Tables 1 and 2 are from [30].) 
Table 1: Error of motion parameters for 8-point correspondence 

for 2.5% error in point correspondence. 
Error of E (essential parameters) 73.91% 
Error of rotation parameters 38.70% 
Error of translations 103.60% 

Table 2: Error of motion parameters for 20-point correspondence 
for 2.5% error in point correspondence. 

Error of E (essential parameters) 19.49% 
Error of rotation parameters 2.40% 
Error of translations 29.66% 

It is clear from the above tables that the sensitivity of the 
algorithm in [30] to small errors is very high. It is worth noting at 
this point that the algorithm in [301 is solving linear equations, but 
the sensitivity to error in point correspondences is not improved 
with respect to algorithms that solve non-linear equations. Also, it 
is worth mentioning at this point that the same behavior is present 
in the algorithms that compute 3-D motion in the case of planar 
surfaces ([301). 

Finally, the third approach, which computes directly the 
motion parameters from the spatiotemporal derivatives of the 
image intensity function, gets rid of the correspondence problem 
and seems very promising. In [ll, 22, 141, the behavior with 
respect to noise is not discussed. But extensive experiments (13111, 
implementing the algorithms presented in [2] show that noise in 
the intensity function affects the computed three-dimensional 
motion parameters a great deal. We should also mention that the 
constraint fxu + fyv + ft = 0 is a very gross approximation of the 
actual constraint under perspective projection ([461). So, despite 
the fact that no correspondences are used in this approach, the 
resulting algorithms seem to have the same sensitivity to small 
errors in the input as in the previous cases. This fact should not be 
surprising, because even if we avoid correspondences, the 
constraint between three-dimensional motion and retinal motion 
(regardless of whether the retinal motion is expressed as optic flow 
or the spatiotemporal variation of the image intensity function1 
will be essentially the same when one camera is used (monocular 
observer, traditional approach). This constraint cannot change, 
since it relates three-dimensional motion to two-dimensional 
motion through projective geometry. 

So, as the problem has been formulated (monocular observer), 
it seems to have a great deal of difficulty. This is again not 
surprising, and the same problem is encountered in many other 
problems in computer vision (shape from shading, structure from 
motion, stereo, etc.). There has recently been an approach to 
combine information from different sources in order to achieve 
uniqueness and robustness of low level visual computations (1471). 
With regard to the three-dimensional motion parameters 
determination problem, why not combine motion information with 
some other kind of information? It is clear that in this case the 

constraints will not be the same, and there is some hope for 
robustness in the computed parameters. As this other kind of 
information that should be combined with motion, we choose 
stereo.The need for combining stereo with motion has recently 
been appreciated by a number of researchers ([13, 37, 12, 471). 
Jenkin and Tsotsos, ([131), used stereo information for the 
computation of retinal motion, and they presented good results for 
their images. Waxman et al., (13711, presented a promising method 
for dynamic stereo, which is based on the comparison of image flow 
fields obtained from cameras in known relative motion, with 
passive ranging as goal. Whitman Richards, ([481), is combining 
stereo disparity with motion in order to recover correct three- 
dimensional configurations from two-dimensional images 
(orthography-vergence). Finally, Huang and Blostein, ([121), 
presented a method for three-dimensional motion estimation that 
is based on stereo information. In their work, the static stereo 
problem as well as the three-dimensional matching problem have 
to be solved before the motion estimation problem. The emphasis is 
placed on the error analysis, since the amount of noise (in typical 
image resolutions) in the input of the motion estimation algorithm 
is very large. 

So a natural question arises: is it possible to recover three- 
dimensional motion from images without having to go through the 
very difficult correspondence problem? And if such a thing is 
possible, how immune to noise will the algorithm be? In this 
paper, we prove that if we combine stereo and motion in some sense 
and we avoid any static or dynamic correspondence, then we can 
compute the three-dimensional motion of a moving object. At this 
point, it is worth noting recent results by Kanatani ([15, 16l),that 
deal with finding the three-dimensional motion of planar contours 
in small motion, without point correspondences. These methods 
seem to suffer from numerical errors a great deal, but they have a 
great mathematical elegance. 

As the problem has been formulated over the years, usually 
one camera is used and so the 3-D motion parameters that can be 
computed are five : 2 for the direction of translation and 3 for the 
rotation. In our approach, we assume a binocular observer and so 
we recover 6 motion parameters : 3 for the translation and 3 for the 
rotation. 

With the traditional one camera approach for the estimation of 
the 3-D motion parameters of a rigid planar patch, it was just 
mentioned ([261),that one should use the image point 
correspondences for object points not on a single planar patch when 
estimating 3-D motions of rigid objects. But it was not known 
how many solutions there were, what was the minimum number 
of points and views needed to assure uniqueness and how could 
those solutions be computed without using any iterative search 
(i.e. without having to solve non-linear systems ) It was proved 
([27,28,301) that there are exactly two solutions for the 3-D 
motion parameters and plane orientations, given at least 4 
image point correspondences in two perspective views, unless 
the 3x3 matrix containing the canonical coordinates of the 
second kind ([201) for the Lie transformation group that 
characterizes the retinal motion field of a moving planar patch, 
has multiple singular values. However, the solutions are unique if 
three views of the planar patch are given or two views with at 
least two planar patches. In our approach, the duality problem 
does not exist for two views, since two cameras are used (and so 
the analysis is done in 3-D 1. In this paper, we present a method for 
the recovery of the 3-D motion of a rigidly moving surface patch, by 
a binocular observer without using correspondence neither for the 
stereo nor for the motion. We first analyze the case of planar 
surfaces and then we develop the theory for any surface. 

The organization of the paper is as follows: the next Section 
3 describes how to recover the structure and depth of a set of 3-D 
planar points from their images in the left and right flat retinae, 
without using any point correspondences. We also discuss the 
effect of noise in the procedure and we describe a method for the 
improvement of the two camera model using three cameras 
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(trinocular observer ). Section 4 gives a method for the recovery 
of the 3-D direction of translation of a translating set of planar 
points from their images without using any correspondence; it 
furthermore introduces the reader to Section 5 which deals with 
the solution of the general problem ( the case where the set of 3-D 
planar points is moving rigidly - - i.e. translating and rotating). 
Section 6 describes the theory for the determination of 3-D motion 
for any kind of surface that moves with an unrestricted motion. 

3. Stereo without correspondence 
In this section we present a method for the recovery of the 3-D 

parameters for the sot of 3-D planar points from their left and 
right images without using any point-to-point correspondence; 
instead we consider all point correspondences at once and so there 
is no need to solve the difficult correspondence problem in the case 
of the static stereo. Let an orthogonal Cartesian coordinate 
system OXYZ be fixed with respect to the left camera, with 0 at 
the origin (0 being also the nodal point of the left eye) and the Z- 
axis pointing along the optical axis. Let the image plane of the left 
camera be perpendicular to the Z-axis at the point (O,O,f ), (focal 
length=f). Let the nodal point of the right camera be at the point 
(d,O,O) and its image plane be identical to the left one; the 
optical axis of the right camera (eye) points also along the Z-axis 
and passes through point (d,O,O) (see Figure 1.). Consider a set of 
3-D points A = { (Xi,Yi,Zi ) / i= 1,2,3 . . . n } lying on the same 
plane(see Figure l.), the latter being described by the equation : 

Let Ol,O, be the origins of the two-dimensional orthogonal 
z=p*x+q*y+c (1) 

coordinate systems on each image plane; these origins are located 
on the left and right optical a xes while the corresponding 
coordinate systems have their y-axes parallel to the axis OY, and 
their x-axes parallel to OX. Finally let { (xli,yli) / i= 1,2,3 . . . n } 
and { (xri,yri) / i= 1,2,3 _.. n } be the projections of the points of 
set A on the left and right retinae, respectively, i.e. 

f*Xi ( 2 )  

% =  7 
f*Yi 1 3 )  

- -  

YlL-- z, ! i= 1,2,3 . . . n 

f*(Xi-d) f*Yi 
x =- (4) y,i= z. (5) / i=1,2,3 . . . R 

t-1 Z 
Let (WYlJ and (xri,yri) be corre;ponding points in the two 

frames. Then we have that: 

*li f*d (6) -xri= - 
Z I 

where Zi, the depth of the 
(7) 

having those projections. 
It can be proved ([491), that the quantity 

where 

k20 A k+, m,n E z- {O}, 

is directly computable and equal to: 

n Y;i n 
Ix 2 31 *Yz: n r ‘ri *‘PI -= -- 

Z i= l  f*d 
(9) 

1=1 1 
i= l  f’d 

k 
nyll 1 

n 

Ix - --1: k 
z-c 1 l *[ i: p*x 

r=l l z=l 
Y11 - z 

1=1 1=1 

The left-hand side of equation (lo), is computable without 
using any point-to-point correspondence (see above). If we write 
equation (10) for three different values of k, we obtain the 
following linear system in the unknowns p,q,c which in general 
has a unique solution (except for the case where the projection of 
all points of set A, have the same y-coordinate in both frames): 

where we used equation ( 9 ) to the left hand sidesThe solution of 
the above system recovers the structure and the depth of the points 
of set A without any correspondence. 

3.3 Practical Considerations 
We have implemented the above method for different values 

of kl,kz,ks and especially for the cases: 
a) kl =0 k2 = l/3 k3 =2/3 
b) kl =0 k2 = II3 k3 = l/5 

The noiseless cases give extremely accurate results. 
Before we proceed, we must explain what we mean by noise 

introduced in the images. When we say that one frame (left or 
right) has noise of a%, we mean that if the plane contains N 
projection points we added [(N*a)/lOO] randomly distributed 
points. ( Note: [] denotes the integer part of its argument). 

When the noise in both frames is kept below 2% then the 
results are still very satisfactory. When the noise exceeds 5% then 
only the value of p gets corrupted, but the values of q and c remain 
very satisfactory. To correct this and get satisfactory results for 
high noise percentages, we devised the following method that uses 
three cameras : 

” We consider the three camera configuration system as in 
Figure 2., where the top camera has only vertical displacement 
with respect to the left one. If all three images are corrupted by 
noise ( ranging from 5% to 20% ) then application of the 
algorithm ( Proposition 3.1 ) to the left and top frames will give 
very reasonable values for p and c and corrupt q, which q, as 
well as c, are accurately computed from the application of the 
same algorithm to the right and left frames “. 

So, by applying our stereo (without correspondence) 
algorithm to the 3-camera configuration vision system, we obtain 
accurate results for the parameters describing the 3-D planar 
patch, even for noise percentages of 20% or slightly more, and for 
different amounts of noise in the different frames. 

4,Recovering the direction of translation. 
Here we treat the case where the points of set A just rigidly 

translate, and we wish to recover the direction of the translation. 
In this case, the depth is not needed but the orientation of the 
plane is required. The general case is treated in the next section. 

3.1 Proposition: Using the aforementioned nomenclature, the 
parameters p, q and c of the plane in view, are directly 
computable ([49]) without using any point-to-point 
correspondence between the two frames . Actually one can prove 
that: 

4.1 Technical prerequisites. 
Consider a coordinate system OXYZ fixed with respect to 

the camera; 0 coincides with the nodal point of the eye, while the 
image plane is perpendicular to the Z-axis ( focal length=f ), that 
is pointing along the optical axis (see Figure 3.). 
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Let us represent points on the image plane with small letters 
4e.g (x,y)) and points in the world with capital ones (e.g. (X,Y,Z)). 
Let us consider a point P=(Xr,Yr,Z1) in the world, with 
perspective image (xl,yl), where xl = ( f *X1 )/Z and y1 = ( PYl)/Z. 
If the point P moves to the position P’= (Xz,Y2,Z2) with 

X2=X1 +AX (14) 
Y2=Y1 +AY (15) 
Z2 = Z1 +AZ (16) 

then we desire to find the direction of the translation 
(AXlAZ,AYIAZ). If the perspective image of P’ is ( x2,y2 ), then the 
observed motion of the world point in the image plane is given by 
the displacement vector : ( xg-xl, yz-y1 ) (which in the case of very 
small motion is also known as “optical flow”). 

We can easily prove that: 

f+ Ax - x1 *AZ 

x2 - x1 = 
z, + AZ 

(17) 

f*AY-y,*AZ 
Y, -Y, = z +AZ 

(18) 

Under the assumption thdt the motion in depth is small with 
respect to the depth, the equations above become: 

f*AX-xl*AZ 
x2 - x1 = 

Z. 
(19) 

f*AY-y,*AZ 

Y2 -Y, = (20) 

The above equations relas the retinal motion ( left-hand 
sides ) to the world motion AX, AY, AZ. 

4.2 Detecting 3-D direction of translation without 
correspondence. 

Consider again a coordinate system’OXYZ fixed with respect 
to the camera as in Figure 4., and let A={ (Xi,Yi,Zi) /i= 1,2,3 . . . n}, 
such that 

Zi= p*Xi+q*Yi+C I i= 1,2,3 _.. n 
that is the points are planar. Let the points translate rigidly 
with translation (AX,AY,AZ), and let { (xi,yi ) / i= 1,2,3 . . . n } 
and { (xi),yi) ) / i= 1,2,3, .._ n } be the projections of the set A 
before and after the translation, respectively. Consider a point 
(xi,yi) in the first frame which has a corresponding one (xi’,yi) ) in 
the second (dynamic) frame. For the moment we do not worry 
about where the point (x i’, yi’ ) is, but we do know that the 
following relations hold between these two points: 

f*AX - x1 * AZ 
x -x = (21) 1 1 Z 

f+AY - y, * AZ 
Y, - Yi = 

Z 
(22) 

where Zi is the depth of the 3-D point whose projection (on the first 
dynamic frame) is the point (xi,yi). Taking now into account that 

1 f-P*xi --4*Yi 
-= 
Z c*f 

the above equatiohs become: 

(23) 

x; - x y(f*Ax-xl *AZ)* 
f-P*xi -9*Yi 

c*f 
(24) 

y;-yl=(f*AY-yl*AZ)* 
f-P*%i -4*Y, 

c*f 
(25) 

If we now write equation (24) for all the points in the two 
dynamic frames and sum the resulting equations up, we take: 

” ” 

2 (+r,)= 2 r(f’Ax-x,‘~)* 
f-P’I, -q*Yl 

1 
r=L I=1 c’f 

or 

(26) 

Similarly, if we do the same for equation (ZS), we take: 

~,(,;-,,I= ;,L(f**Y-y,*Az)* f-p’~:tp’y’l 
or 

n /‘~-p*x,-q’y,)*AY-y,‘~--p*r,-q*y,)*bZ gi-0=&l&-,’ c*/ 
1 (27) 

_ - 

At this point it has to be understood that equations (26) 
and (27) do not require our finding of any correspondence. By 
dividing equation (26) by equation (27), we get: 

-~ d__. .---- 

-= (281 

I&;- gz ,I, “,’ x I- *f l c f-P’xlr-q’YJ - cf-P*xI‘-q*YI, )‘Y(, 1 

Equation (28) is a lmear equation m the unknowns AX/AZ , 
AYIAZ and the coefficients consist of expressions involving 
summations of point coordinates in both dynamic frames; for 
the computation of the latter no establishment of any point 
correspondences is required. So, if we consider a binocular 
observer, applying the above procedure in both left and right 
“eyes”, we get two linear equations (of the form of equation (28)) 
in the two unknowns AXIAZ , AYIAZ, which constitute a linear 
system that in general has a unique solution. 

4 Z&What the previous method is not about 
If one is not careful1 when analyzing the previous method, 

then he might think that all the method does, is to correspond the 
center of mass of the image points before the motion with the 
center of mass of the image points after the motion, and then based 
on that retinal motion to recover three dimensional motion. But 
this is wrong, because perspective projection does not preserve 
simple ratios, and so the center of mass of the image points before 
the motion does not correspond to the center of mass of the image 
points after the motion. All the above method does, is aggregation 
of the motion constraints; it does not correspond centers of mass. 

4.3 Practical considerations. 
We have implemented the above method with a variety of 

planes as well as displacements; noiseless cases give exremely 
accurate results, while cases with noise percentages up to 20% 
(even with different amounts of noise in all four frames ( first left 
and right second left and right ) ) give very satisfactory results (an 
error of at most 5% ).We now proceed considering the general 
case. 

5. Determining unrestricted 3-D motion of a rigid planar 
patch without point correspondences. 

Consider again the imaging system (binocular) of Figure 4., 
as well as the set A= { ( Xi,Yi,Zi) / i= 1,2,3 . . . n } such that: 

Zi=p*Xi+q*Yi+C / i= 1,2,3 . . . n 
i.e. the points are planar; let B be the plane on which they lie. 
Suppose that the points of the set A move rigidly in space 
(translation plus rotation ) and they become members of a set A’ = 
{ ( X:,Yi’,Z: ) /“i=1,2,3 . . . n }. Since all o f the points of set A 
move rigidly, it follows that the points of set A’ are also planar; 
let B’ be the (new) plane on which these points lie. 
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In other words the set A becomes A’ after the rigid motion 
transformation. We wish to recover the parameters of this 
transformation . From the projection of sets A and A’ on the left 
and right image planes and using the method described in Section 
3 the sets A and A’ can be computed. In other words, we know 
exactly the positions in 3-D of all the points of the sets A and A’ 
(and this has been found without using any point 
correspondences - Section 3). 

So, the problem of recovering the 3-D motion has been 
transformed to the following: 
“Given the set A of planar points in 30 and the set A’ of new 
planar points, which has been produced by applying to the points of 
set A a rigid motion transformation, recover that transformation.” 

Any rigid body motion can be analyzed to a rotation plus a 
translation; the rotation axis can be considered as passing 
through any point in the space, but after this point is chosen, 
everything else is fixed. 

If we consider the rotation axis as passing through the center 
of mass (CM) of the points of set A, then the vector which has as its 
two endpoints the centers of mass CMA and CMAI of sets A and 
A’ respectively, represents the exact 3-D translation. 

So, for the translation we can write: 

translation = T = (X,Y,Z) = CM,, - CM, 

It remains to recover the rotation matrix. 
Let, therefore, nl and n2 be the surface normals of the planes B 
and B’. Then, the angle 9 between nl and n2 , where 

co& = 
5 * “2 

Iln1 II * II n2 II ’ with ’ * 
’ the inner-product operator 

represents the rotation around an axis 0~02 perpendicular to the 
plane defined by nl and ng, where 

“1 x “2 

*lo2 = 11 n, X n, 11 ’ 
with ’ X ’ the cross-product operator 

From the’axis 6102 and the angle 8 we develop a rotation 
matrix RI. The matrix R1 does not represent the final rotation 
matrix since we are still missing the rotation around the surface 
normal. Indeed, if we apply the rotation matrix RI and the 
translation T to the set A, we will get a set A” of points, which is 
different than A’, because the rotation matrix RI does not include 
the rotation around the surface normal n2. 

So we now have a matching problem : on the plane B’ we 
have two sets of points A’ and A” respectively, and we want to 
recover the angle Q by which we must rotate the points of set A” 
(with respect to the surface normal n2 1 in order to coincide with 
those of set A’, 

Suppose that we can tind angle a. From @ and n2 we construct 
a new rotation matrix R2 . The final rotation matrix R can be 
expressed in terms of R1 , R2 as follows: R= R1R2. 
It therefore remains to explain how we can compute the angle @ 
For this we need the statistical definition of the mean direction. 

Definition 1. 
Consider a set A={ (Xi,Yi) / i= 1,2,3 . . . n } of points all of 

which lie on the same plane. Consider the center of mass, CM, 
of these points to have coordinates (X,,,Y,,). Let also circle 
(CM,1 ) be the circle having its center at ( Xcm,Ycm > and radius of 
length equal to l.Let Pi be the interse-ctions of the vectors CMAi 
with the circumference of the circle (CM,l), i= 1,2,3 . . . n. Then the 
“mean direction” of the po- ints of the set A, is defined to be the 
vector MD, where 

MD= i CMPj 

It is clear that the ve&%‘r of the mean direction is 
intrinsically connected with the set of points considered each 
time, and if the set of points is rotated around an axis 
perpendicular to the plane and passing through CM, by an angle 

o, the new mean 
same angle 0. 

direction vector is the previous rotated by the 

So, returning to the analysis of our approach, the angle Q is 
the angle between the vectors of mean directions of the sets A’ 
and A” ( which have obviously, common CM’s). 

Moreover, it is obvious that the angle @, and therefore the 
rotation matrix R2, cannot be computed in the case the mean 
direction is 0 (i.e. in the case the set of points is characterized by a 
point symmetry). 

6. Determining unrestricted 3-D motion of a rigid surface 
without point correspondences 

In this section we conkider the problem of the recovery of 
unrestricted 3-D motion of non-planar surfaces. Again, we consider 
a set of rigidly moving points, and we assume that the depth 
information iSavailable. In another work ([491), we describe how to 
recover the depth of a set of non-planar points from their stereo 
images without having to go through the correspondence problem. 
So consider the imaging system ( binocular 1 of Fig.5, and a set 
A = { Pi = (Xi, Yi, Zi ) / i = 1,2,3 . . . n } of 3-D non-planar points. The 
coordinates are with respect to a fixed coordinate system that will 
be used throughout the paper (we can consider as this system 
either the system of the left or right camera, or the head frame 
coordinate system). Applying the method described in [49] , from 
the left and right images of the points of set A, we can recover the 
members of A themselves, i.e. their 3-D coordinates. Suppose now 
that the points of the set A move rigidly in space ( translation plus 
rotation ) and that they become members of the set A’ = { P’i = 
‘Xi, Y’i, Z’i ) / i= 1,2,3 . . . n }. It is evident that the set A’ can be 
recovered exactly as the set A with the method described in [49] . 
In other words, the set A becomes A’ after the rigid motion 
transformation. We wish to recover the parameters of this 
transformation. We have already stated that from the projection of 
the sets A and A’ on the left and right image planes and using the 
method described in 1491 , the sets A and A’ can be computed. 
Hence we know exactly the positions of the points of the sets A and 
A’ (and we came up with this result whithout relying to any point- 
to-point correspondence ). So, for the purposes of this section we 
will assume that the depth information is available. 

From the above discussion, we see that the problem of 
recovering the 3-D motion has been transformed to the following: 
rr Given the set A of nonplanar points and the set A’ corresponding 
to the new positions of the initial points after they have experienced a 
rigid motion transformation, recover that transformation, without 
any point-to-point correspondences! ” 

Any rigid motion can be analyzed to a rotation plus a 
translation; the rotation axis can be considered as passing through 
the any point in space, but after this point is chosen, everything 
else is fixed. 

If we consider the rotation axis as passing through the origin 
of the coordinate system, then if the point ( Xi, Yi, Zi ) G A moves to 
a new position (X’i, Y’i, Z’i ) < A’, the following relation holds: 

(X’i,Y’i,Z’i)‘=R(Xi,Yi,Zi)’ +T /i=1,2,3...n (29) 
where R is the 3x3 rotation matrix and T=(AX, AX, AZ ) ’ is the 
translation vector. We wish to recover the parameters R and T, 
without using any point-to-point correspondences. 

Let:(Xi,Yi,Zi)’ G Pi and (X’i,Y’i,Z’i)‘~P’l/i=1,2,3...n 
Then, equation ( 29 1 becomes: 

Pi = R P’l + T Ii- 1,2,3 . . . n 
Summing up the above n equations and dividing by the total 
number of points, n, we get: 

n n 

Ix P. 
L 

x P. 
1 

i=l -1 R i=l 
-+T (30 ) 

n n 
From equation (30) it is clear that if the rotation matrix R is 
known, then the translation vector T can be computed. So, in the 
sequel, we will describe how to recover the rotation matrix R. In 
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order to get rid of the translational part of the motion we shall 
transform the 3-D points to ” free ” vectors by subtracting the 
center-of-mass vector, Let, therefore, CMA and CMA* be the 
center-of-mass vectors of the sets of points A and A’ respectively; 
i.e. CMA = C ( Pi / n ) and CMA~ = C ( P’l/ n >. We furthermore 
define: 

Vi = Pi-CMA / i=1,2,3...n 
V’i = P’i - CMA~ / i= 1,2,3 ,,, n 

With these definitions, the motion equation ( 29 ), becomes : 
v’i = Rvi / i=1,2,3 . . . n 

where R is the ( orthogonal ) rotation matrix. 
If we know the correspondences of some points ( at least three ) 
then the matrix R can in principle be recovered, and such efforts 
have been published [12] . But we would like to recover matrix R 
without using any point correspondences. 
Let, 

vi = (vq, vYi,vzi) / i=1,2,3...n 
V'i = ( V’T,V’yi, V’%) / i=1,2,3 . . . n 

Note that vi and v’i are the position vectors of the members of sets 
A and A’ respectively with respect to their center-of-mass 
coordinate systems. 
We wish to find a quantity that will uniquely characterize the 
whole sets A and A’ in terms of their ” relationship ” ( rigid motion 
transformation ). We have found that the matrix consisting of the 
second order moments of the vectors vi and v’i has these 

VE 

Y- v= 

From these relations, we have that : 

properties. In particular, let 
” m- 

5 v2xi 5 vxivyi 
i=l i=l 

n 

i flvYivxi bYi 
i =l 

; VXiVZi 
n 
‘vYivZi 

i=l i =1 

_ 

5 v9 2xi 
n 
z v’xiv’yi 

i=l i =I 

n 
x v’yiv’xi hry ZYi 

i=l i=l 

i v’xiv’zi ; v’yiv9zi 
i=l i=l 

n 

’ vXivZi 
t=l 

;: VYiVZi 

i=l 

n 
c v2q 

i =l 

I L 

n 

c v’xiv’zi 
i =I 

n 
c vpyivyzi 

i=l 

;: v’ 2Zi 
i =l 

I 

V’ = If ( v’xi, v’yi, V’Zi ) t ( v’+ v’yi, V’Zi ) = 
1=1 

= z R( vxi, vyi, vzi )” ( vxi, vyi, vzi ) ti = R v R’ 
1 

so, V’= RVRt (311 
At this point it should be mentioned that equation (31) represents 
an invariance between the two sets of 3-D points A and A’, since 
the matrices V and V’ are similar. In other words we have 
discovered that matrix V remains invariant under rigid motion 
transformation. The reason that the quantity (matrix) V remains 
invariant is much deeper and very intuitive, and it comes from the 
principles of Classical Mechanics ( see also APPENDIX ). From 

now on, the recovery of the rotation matrix R is simple and comes 
from basic Linear Algebra. Furthermore equation ( 3 ) implies that 
the matrices V and V’have the same set of eigenvalues (150 I). 
But sinceV and V’ are symmetric matrices, they can be expanded 
in their eigenvalue decomposition, i.e. there exist matrices S, T, 
such that: 

V=SDSr 
V’ =T DTt 

(32) 
(33) 

where S, T are orthogonal matrices having as columns the 
eigenvectors of the matrices V and V’ respectively ( e.g. i-th column 
corresponding to the i-th eigenvalue) and D diagonal matrix 
consisting of the eigenvalues of the matrices V and V’. We have to 
mention at this point that in order to make the decomposition 
unique we require that the eigenvectors in the columns of matrices 
S and T be orthonormal. 

From equations ( 31 ), ( 32 ), ( 33 ) we derive that matrices T 
and RS both consist of the orthonormal eigenvectors of matrix V’. 
In other words, the columns of matrices RS and T must be the 
same, with a possible change of sign. So, the matrix RS is equal to 
one of eight possible matrices, Ti , i= 1,..,8. Thus, R =TIST v 
i=1,..,8. But the rotation matrix is orthogonal and it has 
determinant equal to one. Furthermore, if we apply matrix R to 
the set of vectors v; then we should get the set of vectors v; ‘. So, 
given the above three conditions and Chasles t.heorem, the matrix 
R can be computed uniquely. 

There is something to be said about the uniqueness properties 
of the algorithm. When all the eigenvalues of the matrix V have 
multiplicity one then the problem has a unique solution. When 
there are eigenvalues with multiplicity more than one, then there 
is some inherent symmetry in the problem that exhibits some 
degeneracy properties. For example, if the surface in view (i.e. the 
surface on which the points lie) is a solid of revolution, then there 
is an eigenvalue (of the matrix V) with multiplicity 2, and only the 
eigenvector corresponding to the axis of revolution can be found. 
The other two eigenvectors define a plane vertical to the axis of 
revolution. So, in this case there is an inherent degeneracy. We 
are currently working towards a complete mathematical 
characterization of the degenerate cases of the problem. We are 
also developing experiments to test the robustness of the method as 
well as setting up the equipment for experimentation in natural 
images. 

7. Conclusion and future work. 
We have presented a method on how a binocular (or 

trinocular) observer can recover the structure, depth, and 3-D 
motion of rigidly moving surface patch without using any static or 
dynamic point correspondences. We are currently setting up the 
the experiment for the application of the method in natural 
images.We are also working towards a theoretical error analysis of 
the presented methods as well as the development of experiments 
to test the robustness of these methods. 
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APPENDIX 
We know that the quotient of two quantities is often not a 

member of the same class as the dividing factor, but it may belong 
to a more complicated class. To support this statement we need 
only recall that the quotient of two integers is in general a 
rational number. Similarly the quotient of two vectors cannot be 
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defined consistently whithin the calss of vectors. we need a class 
that is a superset of that of vectors, namely the ciass of tensors. 
The quantity that is known as moment of inertia of a rigid body 
with respect to its axis of rotation is defined as. I = L 1 w, where I, 
L, and o are the moment of inertia of the considered body, the ( 
total ) angular momentum of the body and its angular velocity 
with respect to its axis of rotation, say 00’, respectively. It is not 
therefore surprising to find that I is a new quantity, namely a 
tensor of the second rank. In a Cartesian space of three 
dimensions, a tensor T of the k-th rank may be defined for our 
purposes as a quantity having 3k components Tiliais...ik that 
transform under an orthogonal transformation of coordinates, A , 
according to the following relation ( see [ 511 1: 

3 

T.’ . . I’~I’~I’~ . . . igk (~‘1 = x 
i .i_. . . . i. 

aipl ilai,2’2 . . . aiy i Til’2i3...ik(~) 
kk 

By this definition, ‘t’hi’ 3 2 ‘= 9 components of a tensor of the 
second rank transform according to the equation: 

3 

Tij= 1 aikajlTkl 
k,l = 1 

If one wants to be rigorous, one must distinguish between a 
second order tensor T and the square matrix formed from its 
components. A tensor is only defined in terms of its transformation 
properties under orthogonal coordinate transformations However, 
in the case of matrices there is no restriction in the kind of 
transformations it may experience. But considering the restricted 
domain of orthogonal transformations, there is a practical as well 
as important identity. The tensor components and the matrix 
elements are manipulated in exactly the same fashion; as a matter 
of fact for every tensor equation there will be a corresponding 
matrix equation, and vice versa. Consider now an orthogonal 
transformation of coordinates defined by a matrix A. Then the 
components of a square matrix V will now be: V = A V Ax 

3 
or equivalently: Vij = E &kVklajl 

k.1 = 1 
If we now denote by Iu the 3x3 matrix that corresponds to the 
inertia tensor of the second rank, I , we are able to write the 
followinB eauation: r= AZA’, where, 

In the al bc we matrix, mi is the mass of the i-th “particle ” (point) 
and (xi, yi, zi)Eri is its position vector with respect to the 
considered coordinate system. Restricting ourselves in the center- 
of-mass coordinate system, with respect to which the rigid motion 
is viewed as consisting only of a rotational part (see previous 
discussion and [52] ), and recalling that the rotation matrix R 
defines an orthogonal transformation of the coordinates, we can 

I’XX I’,, I’XZ 

[ 

I’,, I’, I’,, 
I’zx I’,, I’zz 1 = R 

where the primed and the unprimed factors refer to quantities 
measured with respect to the center-of-mass coordinate system 
after and before the transformation ( rigid motion 1 respectively. 
Consider now the diagonal matrix: 

D__[ 4 3 i ] ,where Q is an arbitrary scalar. 

From basic Linear Algebra, it follows that:D=RDRz (2). The 
above relation (2) will clearly hold for the case of 
Q E Cmi(xi2 + yi’ + zi2) = Cmi(ri - r; 1, where q is the position vector 
of the ith ” particle ” ( point ) with mass mi with respect to the 
center-of-mass coordinate system. At this point recall that the 
orthogonal transformations preserve inner products. Hence, ifri’ is 
the new position vector with respect to the same coordinate 
system C center-of-mass 1, of the i-th “particle” ( point ), the 
following equation will obviously hold: r’i * r’i = q * r; I i= 1,2,3 . ..n 
Therefore:Q’ E C mi (x’i’ + y’i2 + z’i2 ) = C mi(xi2 + yi2 + zi2 ) s Q 
and the equation ( 2 ) can now be written as follows: D’ = RDR’(3). 
Recall that the primed quantities refer to the center-of-mass 
coordinate system after the the rigid motion. Finally, subtracting 
equation (3) from equation ( 1 1 and recalling from Linear Algebra 
that: R Al R’ - R A2 R’ = R ( Al - A2 1 for any two matrices Al, 
and A2 of appropriate order. we conclude that. 

CIIljX’i2 CIZliX’iy’i Cm,x’,z’, 
i 

i i 

i i ii ’ 1 rmix l2 Txiyi rxizLl 

CITliy’iX’i CIIliy’i2 Cllliy’iZ’i = R CRliyiXi CIYliyi2 EmiyjZi 

I CIlljZ'jX'i Cllliy'iZ'i CIYliZ'i2 EllljZjXi CllliyiZi Cl&Z i2 
i i i I I i i i 

J L 
I 

L IJ 
in other words the right matrix is an invariant under orthogonal 
transformations, and such a transformation is the rigid motion as 
viewed from the center-of mass coordinate system. Certainly the 
moment of inertia matrix I can be used instead of the matrix V 
(recall section 6), but the matrix V is of a simpler form and so it is 
better to be used for calculations. The moment of inertia matrix 1, 
facilitates a uniqueness analysis of the problem. 

I Figure 4. 

Figure 5. 
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