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Abstract 

A new approach to the formulation and solution of the prob- 
lem of recovering scene topography from a stereo image pair is 
presented. The approach circumvents the need to solve the cor- 
respondence problem, returning a solution that makes surface in- 
terpolation unnecessary. The methodology demonstrates a way 
of handling image analysis problems that differs from the usual 
linear-system approach. We exploit the use of nonlinear func- 
tions of local image measurements to constrain and infer global 
solutions that must be consistent with such measurements. Be- 
cause the solution techniques we present entail certain computa- 
tional difficulties, significant work still lies ahead before they can 
be routinely applied to image analysis tasks. 

1 Introduction 

The recovery of scene topography from a stereo pair of images 
has typically proceeded by three, quasi-independent steps. In the 
first step, the relative orientation of the two images is determined. 
This is generally achieved by selecting a few scene features in one 
image and finding their counterparts in the other image. From 
the position of these features, we calculate the parameters of the 
transformation that would map the feature points in one image 
into their corresponding points-in the other image. Once we have 
the relative orientation of the two images, we have constrained 
the position of corresponding image points to lie along lines in 
their respective images. Now we commence the second phase in 
the recovery of scene topography, namely, determining a large 
number of corresponding points. The purpose of the first step 
is to reduce the difficulty involved in finding this large set of 
corresponding points. 

Because we have the relative orientation of the two images, we 
only have to make a one-dimensional search (along the epipolar 
lines) to find points in the two images that correspond to the 
same scene feature. This step, usually called solving the “cor- 
respondence” problem, has received much attention. Finding 
many corresponding points in stereo pairs of images is difficult. 
Irrespective of whether the technique employed is area-based cor- 
relation or that of edge-based matching, the resultant set of cor- 
responding points is usually small, compared with the number of 
pixels in the image. The solution to the correspondence problem, 
therefore, is not a dense set of points over the two images but 
rather a sparse set. Solution of the correspondence problem is 
made more difficult in areas of the scene that are relatively fea- 
tureless or when there is much repeated structure, constituting 
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local ambiguity. To generate the missing intermediate data, the 
third step of the process is one of surface interpolation. 

Scene depth at corresponding points is calculated by simple 
triangulation; this gives a representation in which scene depth 
values are known for some set of image plane points. To fill this 
out and to obtain a dense set of points at which scene depth is 
known, an interpolation procedure is employed. Of late there has 
been significant interest in this problem and various techniques 
that use assumptions about the surface properties of the world 
have been demonstrated [1,3,5,8]. Such techniques, despite some 
difficulties, have made it possible to reconstruct credible scene 
topography. 

Of the three steps outlined, the initial one of finding the rela- 
tive orientation of the two images is really a procedure designed 
to simplify the second step, namely, finding a set of matched 
points. We can identify several aspects of these first two steps 
that suggest the need for an alternative view of the processes 
entailed in reconstructing scene topography from stereo image 
pairs. 

The techniques employed to solve the correspondence problem 
are usually local processes. When a certain feature is found in 
one image, an attempt is made to find the corresponding point 
in the other image by searching for it within a limited region 
of that image. This limit is imposed not just to reduce com- 
putational costs, but to restrict the number of comparisons so 
that false matches can be avoided. Without such a limit many 
points may “match” the feature selected. Ambiguity cannot be 
resolved by a local process; some form of global postmatching 
process is required. The difficulties encountered in featureless 
areas and where repeated structure exists are those we bring 
upon ourselves by taking too local a view. 

In part, the difficulties of matching even distinct features are 
self-imposed by our failure to build into the matching procedure 
the shape of the surface on which the feature lies. That is, when 
we are doing the matching we usually assume that a feature lies 
on a surface patch that is orthogonal to the line of sight - and 
it is only at some later stage that we calculate the true slope 
of the surface patch. Even when we try various slopes for the 
surface patch during the matching procedure, we rarely return 
after the surface shape has been estimated to determine whether 
that calculated shape is consistent with the best slope actually 
found in matching. 

In the formulation presented in the following sections, the 
problem is deliberately couched in a form that allows us to ask 
the question: what is the shape of the surface in the world that 
can account for the two image irradiances we see when we view 
that surface from the two positions represented by the stereo 
pair? We make no assumptions about the surface shape to do 
the matching - in fact, we do not do any matching at all. What 
we are interested in is recovering the surface that explains simul- 
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taneously all the parts of the irradiance pattern that are depicted 
in the stereo pair of images. We seek the solution that is globally 
consistent and is not confused by local ambiguity. 

In the conventional approach to stereo reconstruction, the fi- 
nal step involves some form of surface interpolation. This is 
necessary because the previous step - finding the corresponding 
points - could not perform well enough to obviate the need to 
fabricate data at intermediate points. Surface interpolation tech- 
niques employ a model of the expected surface to fill in between 
known values. Of course, these known data points are used to 
calculate the parameters of the models, but it does seem a pity 
that the image data encoding the variation of the surface be- 
tween the known points are ignored in this process and replaced 
by assumptions about the expected surface. 

In the following formulation we eliminate the interpolation step 
by recovering depth values at all the image pixels. In this sense, 
the image data, rather than knowledge of the expected surface 
shape, guide the recovery algorithm. 

We previously presented a formulation of the stereo recon- 
struction problem in which we sought to skirt the correspon- 
dence problem and in which we recovered a dense set of depth 
values [6]. That approach took a pair of image irradiance pro- 
files, one from the left image and its counterpart from the right 
image, and employed an integration procedure to recover the 
scene depth from what amounted to a differential formulation 
of the stereo problem. While successful in a noise-free context, 
it was extremely sensitive to noise. Once the procedure, which 
tracked the irradiance profiles, incurred an error recovery proved 
impossible. Errors occurred because there was no locally valid 
solution. It is clear that that procedure would not be successful 
in cases of occlusion when there are irradiance profile sections 
that do not correspond. The approach described in this paper 
attempts to overcome these problems by finding the solution at 
all image points simultaneously (not sequentially, as in the pre- 
vious formulation) and making it the best approximation to an 
overconstrained system of equations. The rationale behind this 
methodology is based on the Expectation that the best solution 
to the overconstrained system will be insensitive both to noise 
and to small discrepancies in the data, e.g., at occlusions. While 
the previous efforts and the work presented here aimed at simi- 
lar objectives, the formulation of the problem is entirely different. 
However, the form of the input - image irradiance profiles - is 
identical. 

The new formulation of the stereo reconstruction task is given 
in terms of one-dimensional problems. We relate the image ir- 
radiance along epipolar lines in the stereo pair of images to the 
depth profile of the surface in the world that produced the irradi- 
ante profiles. For each pair of epipolar lines we produce a depth 
profile, from which the profile for a whole scene may then be 
derived. The formulation could be extended directly to the two- 
dimensional case, but the essential information and ideas are bet- 
ter explained and more easily computed in the one-dimensional 
case. 

We couch this presentation in terms of stereo reconstruction, 
although there is no restriction on the acquisition positions of 
the two images; they may equally well be frames from a motion 
sequence. 

2 Stereo Geometry 

As noted earlier, our formulation takes two image irradiance pro- 
files - one from the left image, one from the right - and describes 
the relationship between these profiles and the corresponding 
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Figure 1: Stereo Geometry. The two-dimensional arrangement 
in the epipolar plane that contains the optical axis of the left 
imaging system. 

depth profile of the scene. The two irradiance profiles we con- 
sider are those obtained from corresponding epipolar lines in the 
stereo pair of images. Let us for the moment consider a pair of 
cameras pointed towards some scene. Further visualize the plane 
containing the optical axis of the left camera and the line joining 
the optical centers of the two cameras, i.e., an epipolar plane. 
This plane intersects the image plane in each camera, and the 
image irradiance profiles along these intersections are the cor- 
responding irradiance profiles that we use. Of course, there are 
many epipolar planes, not just the one containing the left optical 
axis. Consequently, each plane gives us a pair of corresponding 
irradiance profiles. For the purpose of this formulation we can 
consider just the one epipolar plane containing the left optical 
axis since the others can be made equivalent. A description of 
this equivalence is given in a previous paper [6]. Figure 1 depicts 
the two-dimensional arrangement. AB and GH are in the camera 
image planes, while 0~ and OR are the cameras’ optical centers. 
D is a typical point in the scene and AD and GD are rays of light 
from the scene onto the image planes of the cameras. From this 
diagram we can write two equations that relate the image coor- 
dinates ZZ, and ZR to the scene coordinates z and t. These are 
standard relationships that derive from the geometry of stereo 
viewing. For the left image 

2 =L -=- 
--t fL 

, 

while for the right image 
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where 
g&R) = xRcos’ - 

isin+ 
xRSin(b+icos(b 

In addition, it should be noted that the origin of the scene co- 
ordinates is at the optical center of the left camera, and therefore 
the z values of all world points that may be imaged are such that 

2x0 

3 Irradiance Considerations 

From any given point in a scene, rays of light proceed to their 
image projections. What is the relationship between the scene ra- 
diance of the rays that project into the left and the right images? 
Let us suppose that the angle between the two rays is small. The 
bidirectional reflectance function of the scene’s surface will vary 
little, even when it is a complex function of the lighting and 
viewing geometry. Alternatively, let us suppose that the surface 
exhibits Lambertian reflectance. The scene radiance is indepen- 
dent of the viewing angle; hence, the two rays will have identi- 
cal scene radiances, irrespective of the size of the angle between 
them. For the model presented here, we assume that the scene 
radiance of the two rays emanating from a single scene point is 
identical. This assumption is a reasonable one when the scene 
depth is large compared with the separation distance between 
the two optical systems, or when the surface exhibits approxi- 
mate Lambertian reflectance. It should be noted that there are 
no assumptions about albedo (i.e., it is not assumed to be con- 
stant across the surface) nor, in fact, is it even necessary to know 
or calculate the albedo of the surface. Since image irradiance is 
proportional to scene radiance, we can write, for corresponding 
image points, I 

IL(zL)= IR(SR) 

1~ and IR are the image irradiance measurements for the left 
and right images, respectiveIy. It should be understood that 
these measurements at positions XL and XR are made at image 
points that correspond to a single scene point x. 

While the above assumption is used in the following formula- 
tion, we see little difficulty in being less restrictive by allowing, 
for example, a change in linear contrast between the image profile 
and the real profile. 

4 Integral Equation 

Let us consider a single scene point x. For this scene point, 
we can write IL(X) = IR(x). This equality relation holds for any 
function F of the image irradiance, that is, F( IL(Z)) = F( IR( X)). 
If we let p select the particular function we want to use from so-me 
set of functions, we shall write 

The set of functions we use will be the set of all nonlinear func- 
tions for which F(pl, I) # a(pl,pz)F(pz, I) for all p. A specific 
example of such a function is F(p, I) = P. 

The foregoing functions relate to the image irradiance. We can 
combine them with expressions that are functions of the stereo 
geometry. In particular, for the as yet unspecified function 2’ of 
5, we can write 

We have written z as 44 to emphasize the fact that the depth 
profile we wish to recover t is a function of X. Should a more 
concrete example of our approach be required, we could select 
T( 5) = In( 5), which, w h en combined with the example for F 
above, gives us 

d 
IL*(X)- In( 

dz -&’ = IR’(z);idz Id-+) 

We now propose to develop the left-hand side of the above 
expression in terms of quantities that can be measured in the 
left stereo image, and develop -the right-hand side in terms of 
quantities from the right stereo image. If’we were to substitute 
XL for z in the left-hand side of the above expression and XR for z 
in the right-hand side, we would have to know the correspondence 
between XL and XR. This is a requirement we are trying to avoid. 
At first, we shall integrate both sides of the above expression with 
respect to z before attemping substitution for the variable x: 

/ 

b 

a 
F(p.~R(&(+~ , 

where a and 6 are specific scene points. Now let us change the 
integration variable in the left-hand side of the above expression 
to ZL, and the integration variable in the right-hand side to XR: 

/ 

bL 

OL 
F(P, Wd&T(~)d~L = 

/ 

h 
F(P, IR(zR))U(XR)dXR 9 (1) 

aR 

where 

Equation (1) is our formulation of the stereo integral equa- 
tion. Given that we have two image irradiance profiles that are 
matched at their end points - i.e., UL and 6~ in the left image 
correspond, respectively, to OR and bR in the right image - then 
Equation (1) expresses the relationship between the image irra- 
diance profiles and the scene depth. It will be noted that the 
left-hand side of Equation (1) is composed of measurements that 
can be made in the left image of the stereo pair, while measure- 
ments in the right hand side are those that can be made in the 
right image. In addition, the right-hand side has a function of the 
scene depth as a variable. Our goal is to recover z as a function 
of the right-image coordinates XR, not as a function of the world 
coordinates x. Once we have %(xR), we can transform it into any 
coordinate frame whose relationship to the image coordinates of 
the right image is known. 

The recovery of Z(xR) is a two-stage process. After first solving 
Equation (1) for U(XR), we integrate the latter to find %(XR) by 
using 

TbR(xR)- 
b+gRbR)h) 

+R) = 
1 

TbRbR) - 
(8 + gRbR)h) 

z(“R) 
) + /., u(X’R)dX’R . 

aR 

In this expression one should note 
and UL are corresponding points. 

that z(dR) is known, since aR 

PERCEPTION AND ROBOTICS / 691 



It is instructive as regards the nature of the formulation if we 
look at the means of solving this equation when we have dis- 
crete data. In particular, let us take another look at an example 
previously introduced, namely, 

F(PlO = lQ 

and hence 

/ 
bL IL%L) -dxL = 

/ 
6R hxP(ZR)U(Q&hz , 

=L *L “R 

and then 

+R)= 
(a+gR(zR)h) 

gR(zR)- fh'J;; U(tiR)ds'R ' 

where 

K = (gR(aR) - 
b + gR(aR)h) 

+‘R) 
1 

Suppose that we have image data at points ~~1~2~2, .,,, ZL~ 
that lie between the left integral limits and, similarly, that we 
have data from the right image, between its integral limits, at 
points xRl,ZR2, . . . . xRn. Further, let us approximate the integrals 
as follows: 

c * y = 2 J!R'(zRj)l/(zRj) 
j=l j=l 

In actual calculation, we may wish to use a better integral for- 
mula than that above, (particularly at the end points), but 
this approximation enables us to demonstrate the essential ideas 
without being distracted by the details. Although the above 
approximation holds for all values of p, let us take a finite set 
of values, Pi,p2, ----9Prn, and write the approximation out as a 
matrix equation, namely, 

L 
Let us now recall what we have done. We have taken a set 
of image measurements, along with measurements that are just 
some non-linear functions of these image measurments, multi- 
plied them by a function of the depth, and expressed the rela- 
tionship between the measurements made in the right and left 
images. Why should one set of measurements, however purpose- 
fully manipulated, provide enough constraints to find a solution 
with almost the same number of variables as there are image 
measurements? The matrix equation helps in our understand- 
ing of this. First, we are not trying to Iind the solution for the 
scene depth at each point independently, but rather for all the 

points simultaneously. Second, we are exploiting the fact that, if 
the functions of image irradiance used by us are nonlinear, then 
each equation represented in the above matrix is linearly inde- 
pendent and constrains the solution. There is another way of 
saying this: even though we have only one set of measurements, 
requiring that the one depth profile relates the irradiance profile 
in the left image to the irradiance profile in the right image, and 
also relates the irradiance squared profile in the left image to the 
irradiance squared profile in the right image, and also relates the 
irradiance cubed profile etc., provides constraints on that depth 
profile. 

The question arises as to whether there are sufficient con- 
straints to enable a unique solution to the above equations to 
be found. This question really has three parts. Does an integral 
equation of the form of Equation (1) have a unique solution? This 
is impossible to answer when the irradiance profiles are unknown; 
even when they are known an exceedingly difficult problem con- 
fronts us [2,4]. Does the discrete approximation, even with an 
unlimited number of constraints, have the same solution as the 
integral equation ? Again this is extremely difficult to answer 
even when the irradiance profiles are known. The flnal question 
relates to the finite set of constraint equations, such as those 
shown above. Does the matrix equation have a unique solution, 
and is it the same as the solution to the integral equation? Yes, 
it does have an unique solution - or at least we can impose so- 
lution requirements that makes a unique answer possible. But 
the question that asks whether the solution we find is a solution 
of the integral equation remains unanswered. From an empiri- 
cal standpoint, we would be satisified if the solution we recover 
is a believable depth profile. Issues about sensitivity to noise, 
function type, and the form of the integral approximation will 
be discussed later in the section on solution methods. 

bet us return to considerations of the general equation, E&m- 
tion (1). We have just remarked upon the difficulty of solving 
this equation, so any additional constraints we can impose on 
the solution are likely to be beneficial. In the previous section 
on geometrical constraints, we noted that an acceptable solution 
has z < 0 and hence %(zR) < 0. Unfortunately, solution methods 
for matrix equations (that have real coefficients) find solutions 
that are usually unrestricted over the domain of the real num- 
bers. To impose the restriction of %(zR) < 0, we follow the 
methods of Stockham [7]; instead of using the function itself, we 
formulate the problem in terms of the logarithm of the function. 
Consequently, in Equation (1) we usually set T( 5) = ln( $), 
just as we have done in our example. It should be noted that 
use of the logarithm also restricts z > 0 if z < 0. To construct 
the z < 0 side of the stereo reconstruction problem, we have 
to employ reflected coordinate systems for the world and image 
coordinates. Use of the logarithmic function ensures t < 0 and 
allows us to use standard matrix methods for solving the system 
of constraint equations. Once we have found the solution to the 
matrix equation, we can integrate that solution to Iind the depth 
profile. 

In our previous example, we picked F(p, I) = P. In our ex- 
periments, we have used combinations of different functions to 
establish a particular matrix equation. For example we have used 
functions such as 

F(P, 0 = IcospI~ 

= (f:+Q 
= P 
= sinpl 
= (p+I)i 

and we often use image density rather than image irradiance. 
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The point to be made here is that the form of the function F in 
the general equation is unrestricted, provided that it is nonlinear. 

Equation (1) provides a framework for investigating stereo re- 
construction in a manner that exploits the global nature of the 
solution. This framework arises from the realization that non- 
linear functions provide a means of creating an arbitary number 
of constraints on that solution. In addition, the framework pro- 
vides a means of avoiding the correspondence problem, except 
at the end points, for we never match points. Solutions have 
the same resolution as the data and this allows us to avoid the 
interpolation problem. 

5 Solution Methods 

Equation (1) is an inhomogeneous Fredholm equation of the first 
kind whose kernel function is the function F(p, IR(zR)). To solve 
this equation, we create a matrix equation in the manner previ- 
ously shown in our example. We usually approximate the inte- 
gral with the trapezoidal rule, where the sample spacing is that 
corresponding to the image resolution. Typically we use more 
than one functional form for the function F, each of which is 
parameterized by p. We have noticed that the sensitivity of the 
solution to image noise is affected by the choice of these func- 
tions, although we have not yet characterized this relationship. 
In the matrix equation, we usually pick the number of rows to 
be approximately twice the number of columns. However, owing 
to the rank-deficient nature of the matrix and hence to the se- 
lection of our solution technique, the solution we recover is only 
marginally different from the one obtained when we use square 
matrices. 

Unfortunately, there are considerable numerical difficulties as- 
sociated with solving this type of integral equation by matrix 
methods. Such systems are often ill-conditioned, particularly 
when the kernel function is a smooth function of the image co- 
ordinates. It is easy to see that, if the irradiance function varies 
smoothly with image position, each column of the matrix will be 
almost linearly dependent on the next. Consequently, it is advis- 
ible to assume that the matrix is rank-deficient and to utilize a 
procedure that can estimate the actual numerical rank. We use 
singular-valued decomposition to estimate the rank of the ma- 
trix; we then set the small singular values to zero and find the 
pseudoinverse of the matrix. Examples of results obtained with 
this procedure are shown in the following section. 

An alternative approach to solving the integral equation is 
to decompose the kernel function and the dependent variable 
into orthogonal functions, then to solve for the coefficients of 
this decomposition, using the aforementioned techniques. We 
have used Fourier spectral decomposition for this purpose. The 
Fourier coefficients of the depth function were then calculated by 
solving a matrix equation composed of the Fourier components 
of image irradiance. However, the resultant solution did not vary 
significantly from that obtained without spectral decomposition. 

While the techniques outlined can handle various cases, they 
are not as robust as we would like. We are actively engaged 
in overcoming the difficulties these solution methods encounter 
because of noise and irradiance discontinuities. 

6 Results and Discussion 

Our examples make use of synthetic image profiles that we have 
produced from known surface profiles. The irradiance profiles 
were generated under the assumptions that the surface was a 
Lamb&an reflector and that the source of illumination wa a 

Figure 2: Planar Surface. At the upper left is depicted the recov- 
ered depth from the two it-radiance profiles shown in the lower 
half. For comparison, the actual depth is shown in the upper 
right. 

point source directly above the surface. This choice was made 
so that our assumption concerning image irradiance, namely, 
that I(zL) = I(ZR) at matched points, would be complied with. 
In addition, synthetic images derived from a known depth pro- 
file allow comparison between the recovered profile and ground 
truth. Nonetheless, our goal is to demonstrate these techniques 
on real-world data. It should be noted that the examples used 
have smooth irradiance profiles; they therefore represent a worst 
case for the numerical procedures, as the matrix is most ill- 
conditioned under these circumstances. 

Our first example, illustrated in Figure 2, is of a flat surface 
with constant albedo. In the lower half of the figure, the left 
and right irradiance profiles are shown, while in the upper right, 
ground truth - the actual depth profile as a function of the image 
coordinates of the right. image, ZR - is shown. The upper left 
of the figure contains the recovered solution. The limits of the 
recovered solution correspond to our selection of the integral end 
points. This solution was obtained from a formulation of the 
problem in which we used image density instead of irradiance in 
the kernel of the integral equation, and for which the function T 
was w&J). 

The second example, Figure 3, shows a spherical surface with 
constant albedo, except for the stripe we have painted across 
the surface. The recovered solution was produced from the same 
formulation of the problem as in the previous example. The 
ripple effects in the recovered profile appear to have been induced 
by the details of the recovery procedure; the attendant difficulties 
are in part numerical in nature. However, any changes made in 
the actual functions used in the kernel of the equation do have 
effects that cannot be dismissed as numerical inaccuracies. 

As we add noise to the irradiance profiles, the solutions tend to 
become more oscillatory. Although we suspect numerical prob 
terns, we have not yet ascertained the method’s range of effec- 
tiveness. This aspect of our approach, however, is being actively 
investigated. 

In the formulation presented here, we have used a particular 
function of the stereo geometry, 5, in the derivation of Equation 
(1) but we are not limited to this particular form. Its attractive- 
ness is based on the fact that, if we use this particular function of 
the geometry, the side of the integral equation related to the left 
image is independent of the scene depth. We have used other 
functional forms but these result in more complicated integral 
equations. Equations of these forms have been subjected to rela- 
tively little study in the mathematical literature. Consequently, 
the effectiveness of solution methods on these forms remains un- 
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Figure 3: Spherical Surface with a Painted Stripe. 

known. 
In most of our study we have used T( 2) to be In(3) and 

the properties of this particular formulation should be noted. It 
is necessary to process the right half of the visual field sepa- 
rately from the left half. The integral is more sensitive to image 
measurements near the optical axis than those measurements off- 
axis. In fact, the irradiance is weighted by the reciprocal of the 
distance off-axis. If we were interested in an integral approxima- 
tion exhibiting uniform error across the extent of that integral, 
we might expect measurements that had been taken at interval 
spacings proportional to the off-axis distance to be appropriate. 
While it is obvious that two properties of a formulation that 
match those of the human visual system do not in themselves 
give cause for excitement it is worthy of note that the formula- 
tion presented is at least not at odds with the properties of the 
human stereo system. 

On balance, we must say that significant work still lies ahead 
before this method can be applied to real-world images. While 
the details of the formulation may be varied, the overall form 
presented in Equation (1) seems the most promising. Nonethe- 
less, solution methods for this class of equations are known to 
be difficult and, in particular, further efforts towards the goal of 
selecting appropriate numerical procedures are .essential. 

In formulating the integral equation, we took a function of the 
image irradiance and multiplied it by a function of the stereo 
geometry. To introduce image measurements, we changed vari- 
ables in the integrals. if we had not used the derivative of the 
function of the stereo geometry, we would have had to introduce 
terms like & and & into the integrals. By introducing the 
derivative we avoided this. However, we did not really have to 
select the function of the geometry for this purpose; we could 
equally well have introduced the derivative through the function 
of image irradiance. Then we would have exchanged the calcula- 
tion of irradiance gradients for the direct recovery of scene depth 
(thus eliminating the integration step we now use). Our selection 
of the formulation presented here was based on the belief that 
irradiance gradients are quite susceptible to noise; consequently 
we prefered to integrate the solution rather than differentiate the 
data. In a noise-free environment, however, both approaches are 
equivalent (as integration by parts will confirm). 

7 Conclusion 

The formulation presented herein for the recovery of scene depth 
from a stereo pair of images is based not on matching of image 
features, but rather on determining which surface in the world 
is consistent with the pair of image irradiance profiles we see. 
The solution method does not attempt to determine the nature 

of the surface locally; it looks instead for the best global solu- 
tion. Although we have yet to demonstrate the procedure on 
real images, it does offer the potential to deal in a new way with 
problems associated with albedo change, occlusions, and discon- 
tinuous surfaces. It is the approach, rather than the details of a 
particular formulation, that distinguishes this method from con- 
ventional stereo processing. 

This formulation is based on the observation that a global solu- 
tion can be constrained by manufacturing additional constraints 
from nonlinear functions of local image measurements. Image 
analysis researchers have generally tried to use linear-systems 
theory to perform analysis; this has led them, consequently, to 
replace (at least locally) nonlinear functions with their linear ap- 
proximation. Here we exploit the nonlinearity; “What is one 
man’s noise is another man’s signal.” 

While the presentation of the approach described here is fo 
cussed upon stereo problems, its essential ideas apply to other 
image analysis problems as well. The stereo problem is a con- 
venient problem on which to demonstrate our approach; the for- 
mulation of the problem reduces to a linear system of equations, 
which allows the approach to be investigated without diversion 
into techniques for solving nonlinear systems. We remain act- 
tively interested in the application of this methodology to other 
problems, as well as in the details of the numerical solution. 
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