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ABSTRACT ’ 

A shape representation is presented that has been shown 
competent to accurately describe an extensive variety of nat- 
ural forms (e g., people, mountains, clouds, trees), as well as 
man-made forms, in a succinct and natural manner. The ap 
preach taken in this representational system is to describe 
scene structure at a scale that is similar to our naive perceptual 
notion of “a part,’ by use of descriptions that reflect a possible 
formative history of the object, e.g., how the object might have 
been constructed from lumps of clay. For this representation to 
be useful it must be possible to recover such descriptions from 
image data; we show that the primitive elements of this repre- 
sentation may be recovered in an overconstrained and therefore 
potentially reliable manner. 

1 Introduction 

Most models used in vision and reasoning tasks have been of 
been of only two kinds: high-level, sped& models, e.g., of peo- 
ple or houses, and low-level models of, e.g., edges. The reason 
research has almost exclusively focused on these two types of 
model is a result more of historical accident than conscious de- 
cision. The well-developed fields of optics, material science and 
physics (especially photometry) have provided well worked out 
and easily adaptable models of image formation, while engi- 
neering, especially recent work in computer aided design, have 
provided standard ways of modeling industrial p&8, airplanes 
and so forth. 

Both the use of image formation model8 and specialized 
models has been heavily investigated. It appears to us that 
both types of models, although useful for many applications, 
encounter insuperable difficulties when applied to the problems 
faced by, for instance, a general purpose robot. In the next two 
subsections we will examine both type8 of model8 and outline 
their advantages and disadvantage8 for recovering and reason- 
ing about import,ant scene information. In the remainder of 
this section we will then mot,ivate, develop and investigate an 
alternative category of models. 

‘This research was made possible by National Science Foundation, Grant 
No. DCR85-19283, by Defense Advanced Research Projects Age& &tract 
no. MDA 903-83-C-0027, and by a grant from the Systems Development 
Foundation. I wish to thank Marty Fischler, Ruzena Bajcsy and Andy Witkin 
for their comments and insights. 

Figure 1: A scene constructed of IO0 primitives, less than lk 
bytes of information. 

1.1 Models of Image Formation 

Most recent research in computational vision has focused on us- 
ing point-wise models borrowed from optics, material science 
and physics. This research has been pursued within the genera1 
framework originally suggested by Marr [l] and by Barrow and 
Tenenbaum 121, in which vision proceeds through a succession 
of levels of representation. Processing is primarily data-driven 
(bottom-up), i.e., the initial level is computed directly from local 
image features, and higher levels are then computed from the 
information contained in small regions of the preceding levels. 

Problems for vision. Despite its prevalence, there are serious 
problems that seem to be inherent to thin research paradigm. Be- 
cause scene structure is underdetermined by the local image data 
[3], researchers have been forced to make unverifiable assump 
tions about large-scale structure (e.g., smoothness, isotropy) in 
order to derive useful information from their local analyses of the 
image. In the real world, unfortunately, such aaeumptions ate 
often seriously in error: in natural scene8 the image formation 
parameters change in fairly arbitrary ways from point to point, 
making any assumption about local context quite doubtful. As a 
result, those techniques that rely on strong Msumptions such as 
isotropy or smoothness have proved fragile and error-prone; they 
are simply not useful for many natural reener. 

That such difficulties have been encountered should not, pet- 
haps, be too surprising. It is emily demon8trated (by looking 
through a viewing or reduction tube) that people can obtain lit- 
tle information about the world from a local image patch taken 
out of its context. It ie also clear that detailed, analytic mod- 
els of the image formation ptoeerrr are not eraential to human 
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perception; humans function quite well with range fmder im- 
ages (where brightness is proportional to distance rather than 
a function of surface orientation), electron microscope images 
(which are approximately the reverse of normal images), and 
distorted and noisy images of all kids - not to mention draw- 
ings 141. 
Problems for reasoning. Perhaps even more fundamentally, 
however, even if depth maps and other maps of intrinsic sur- 
face properties could be reliably and densely computed, how 
useful would they be in reasoning tasks? Industrial vision work 
using laser range data has demonstrated that the depth maps, 
reflectance maps and the other maps of the 2-1/2D sketch are 
still basically just images. Although useful for obstacle avoid- 
ance and other very simple tasks, they still must be segmented, 
interpreted and so forth before it cau be used for any more so- 
phisticated task 151. 

1.2 Specialized Models 

The alternative to models of image formation has been engineering- 
style representations; e.g., CAD-CAM models of specific ob- 
jects that are to be identified and located. Such detailed, spe 
cific models have provided virtually all of the success stories 
in machine vision; nonetheless, such models have important 
inherent limitations. 
Problems for vision. As the object’s orientation varies these 
models produce a very large number of different pixel config- 
urations. The large number of possible appearances for such 
models makes the problem of recognizing them very difficult 
- unless an extremely simplified representation is employed. 
The most common type of ‘simplified representation is that of a 
wireframe model whose components correspond to the imaged 
edges. The use of au impoverished representation, however, 
generally means that the flexibility, reliability and discrim- 
inablity of the recognition process is limited. Thus research 
efforts employing specific object models have floundered when- 
ever the number of objects to be recognized becomes large, 
when the objects may be largely obscured, or When there are 
many unknown objects also present in the scene. 
Problems for reasoning. An even more substantive limita- 
tion of systems that employ only high-level, zpeeific models is 
that there is no way to learn new objects: new models must be 
specially entered, usually by hand, into the database of known 
models. This is a significant limitation, because the ability to 
encounter a new object, enter it into a catalog of known ob- 
jects, and thereafter recognize it iB an absolute requirement of 
truly general purpose robot. 

1.3 Part and Process Models 

In response to these difficult problems some researchers have 
begun to search for a third type of model, one with a grain size 
intermediate between the point-wine models of image formation 
and the complex, specific models of particular objects [6,7]. 

Recent research in graphics, biology, and physics has pro- 
vided us with good reason to believe that it may be possible to 
accurately describe our world by means of d few, commonly- 
occuring types of formative procezses [1,8,9,10]; i.e., that our 
world can be modeled as a relatively small zet of generic pro- 
cesses - for instance, bending, twisting, or interpenetration 
- that occur again 

and again, with the apparent complexity of our environment 
being produced from this limited vocabulary by compounding 
these basic forms in myriad different combinations. 

Moreover, some modern psychologists [18,19,20], aa well as 
the psychologists of the classic Gestalt movement, have argued 
that the initial stages of human perception function primarily 
to discover image features that indicate the presence of these 
generic categories of shape structure. They hrive presented 
strong evidence showing that we conceive of the world in terms 
of parts, and that the first stages of human perception are 
primarily concerned with detecting features tbat indicate the 
structure of those parts. This part-structure, then, seems to 
form the building blocks upon which we build the rest of our 
perceptual interpretation. 

Such part-and-process models offer considerable potential 
for reasoning tasks, because they describe the world in some- 
thing like “natural kind” terms: they speak quaIitatively of 
whole forms and of relations between parts of objects, rather 
than of local surface patches or of particular instances of ob- 
jects. It seenis, for instance, that we employ such btermediate- 
grain descriptions in commonsense reasoning, Beaming, and 
aualogical reasoning jl3,l4,lS]. 

The problem with forming such ‘parts” models is that they 
must be complex enough to be PeIiabIy recognizable, and yet 
simple enough to reasonably serve as building blocks for spe- 
cific object models. Current 3-D machine vision systems, for 
instance, typically use %arts* consisting of rectangular solids 
and cylinders. Unfortunately, such a representation is only 
capable of an extremely abstracted description of most natu- 
ral and biological forms. It cannot accurately and succinctly 
describe most natural animate forms or produce a succinct de- 
scription of complex inanimate forms such as clouds or moun- 
tains. If we retreat from cylinders to generalized cylinders we 
can, of course, describe such shapes accurately. The cost of 
such retreat is that we must introduce several 1-D functions 
describing the axis and cross-section shape; this makes the rep- 
resentation neither succinct nor intuitively attractive. 

2 A Representation 

The idea behind this representational system is to provide a vo- 
cabulary of models and operations that Will allow U8 to model 
our world as the relatively simple composition of component 
‘parts,’ parts that are reliably recognizable from image data. 

The most primitive notion in this represention is analogous 
to a “lump of clay,” a modeling primitive that may be deformed 
and shaped, but which is intended to correspond roughly to 
our naive perceptual notion of *a part.” For this basic mod- 
eling element we use a parameterized family of shapes known 
as a superquadrics [lO,ll], which are described (adopting the 
not.ation cos Q = C,,, sinw = S,) by the following equation: 

where x(q,w) is a t.hree-dimensional vectot that 8Weeps out 
a surface parameterized in latitude Q and longitude W, with 
the surface’s shape controlled by the parameters ~1 and ez. 
This family of functions includes cubes, cylinders, spheres, di- 
amonds 
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Figure 2: (a) A sampling of the basic forms allowed, (b) defor- 
mations of these forms, (c) a chair formed from Boolean combi- 
nations of appropriate!y deformed superquadrics. 

and pyramidal shapes as well as the round-edged shapes inter- 
mediate between these standard shapes. Some of these shapes 
are illustrated in Figure 2(a). Superquadrics are, therefore, a 
superset of the modeling primitives currently in common use. 

These basic “lumps of clay” (with various symmetries and 
profiles) are used as prototypes that are then deformed by 
stretching, bending, twisting or tapering, and then combined US- 
ing Boolean operations to form new, complex prototypes that 
may, recursively, again be subjected to deformation and Boolean 
combination [I2]. As an example, the back of a chair is a rounded- 
edge cube that has been flattened along one axis, and then bent 
somewhat to accommodate the rounded human form. The bot- 
tom of the chair is a similar object, but rotated 90*, and by ‘or- 
ing” these two parts together with elongated rectangular primi- 
tives describing the chair leg we obtain a complete description 
of the chair, as illustrated in Figure 2(e). We have found that 
this representational system haz a surpriringly powerful gener- 
ative power that allows the creation of a tremendous variety of 
form, such as is illustrated by Figure 1. 

This descriptive language is derigned to describe shapes in 
a manner that corresponds to a poraible formative history, e.g., 
how one would create a given shape by combining lumps of clay. 
Thus the description provides w with an explumtion of the image 
data in terms of the interaction of generic formative processes. 
This primitive explanation can then be refined by application of 
specific world knowledge and context, eventually deriving causal 
connections, affordances, and all of the other information that 
makes our perceptual experience appear 80 rich and varied. 

For instance, if we have parsed the chair in Figure 2(c) into its 
constituent parts we could deduce that the bottom of the chair is 
a stable platform and thus might be useful as a seat, or we might 
hypothesize that the back of the chair can rigidly move relative 
to the supporting rod, given the evidence that they are sepa- 
ral.e “parts” and thus likely separately formed. We believe that 
t.his process-oriented, possible-history form of representation will 
prove to be extremely useful for commonsense reasoning tasks. 

2.1 Building 3-D models 

This type of representation seems to produce models that rep- 
resent the shape “naturally.” We have, for instance, performed 
a protocol analysis in which we found [14] that when adult hu- 
man subjects are required to verbally describe imagery with 
completely novel content, their typical spontaneous strategy 
is to employ a descriptive system analogous to this one - 
i.e., form is described by modifying and combining prototypes. 
Moveover, the non-proper-noun terms used were limited and 
stereotyped: they resorted largely to terms indicating interpen- 
etration (boolean combination), squareness-roundness, bend- 
ing, tapering, and stretching. 

We have also investigated the psychological reality of this 
descript,ive framework using the psychophysical techniques de- 
veloped by Treisman [17]. Using this experimental paradigm 
and employing monocular imagery depicting shaded, perspec- 
tive views of three-dimensional forms, we have collected ex- 
perimental evidence indicating 1211 that convexity-concavity 
(equivalent to boolean combination), squareness-roundness, bend- 
ing, tapering and relative axis size (streching) may all be preat- 
tentively perceived, that is, there appear to be parallel =detec- 
tom” that search for the presence (but not absence) of these 
features within a 3-D scene. 

We have also attempted to verib this psychological evi- 
dence in a more practical manner. The fact that “natural” 
man-machine interaction requires that the machine uses a rep- 
resentation that closely mat,ches that of the human operator 
provides a practical test for our descriptive framework. That 
is, if an interface based on this representation appears %at- 
Ural” to users, then we can conclude that the representation 
must closely match at least one way that people think about 
3-D shapes. 

We have, therefore, constructed a 3-D modeling syst.em 
called “SuperSketch,” that employs the shape representation 
described here. This real-time, interactive * modeling system is 
implemented on the Symbolics 3600, and allows users to inter- 
actively create %mpsln change their squareness/roundness, 
stretch, bend, and taper them, and finally to combine them 
using Coolean operations. This system was used to make the 
images in this paper. 

We have found that interaction is surprisingly effortless: it 
took less than a half-hour to assemble the faces in Figure 1, and 
about four hours total to make the complete Figure 1. This 
is in rat,her stark contrast to more traditional 3-D modeling 
systems. It thus appears that the primitives, operations and 
combining rules used by the computer closely match the way 
that the human operat.ors think about 3-D shape. 

2.2 Biological forms 

In Figure 1 (as in all cases examined to date) when we try to 
model a particular 3-D form we find that we are able to describe 
- indeed, it is quite natural to describe - the shape in a 
manner that corresponds t.o the organization.our perceptual 
apparatus imposes upon the image. That is, the components 
of t.he 

*Because these forms have an underlying analytical form, we csn use 
fast, qualitative approximations to accomplish hidden surface removal, 
intersection and image intensity calculations in “real time,” e g , a ‘lump” 
can be moved, hidden surface removal accomplished, and ?rawn a~ a 200 
polygon line drawing approximation in l/Sth of a second. 
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description match one-to-one with our naive perceptual notion of 
the “parts” in the figure, e g., the face in Figure 1 is composed 
of primitives that correspond exactly to the cheeks, chin, nose, 
forehead, ears, and so forth. 

This correspondence indicates that we are on the right track; 
e g , that this representation will be useful in understanding com- 
monsense reasoning tasks. Similarly, the ability to make the right 
‘part” distinctions offers hope that we can form qualitative de- 
scriptions of specific objects (“Ted’s face”) or of classes of objects 
(=a long, thin face”) by specifying constraints on part parameters 
and on relations between parts, in the manner of Winston [15]. 

Finally, we note that the extreme brevity of these descriptions 
makes many otherwise difficult reasoning tasks relatively simple, 
c g , even NP-complete problems can be easily solved when the 
sizr of t,he problem is small enough. The human bodies shown 
in Iiignre 1, for instance, require combining only 45 primitives, 
or approximately 450 bytes of information (these informational 
requirements are not a function of body position). Similarly, 
the description for the face requires the combination of only 18 
primitives, or fewer than 200 bytes of information. 

2.3 Complex inanimate forma 

This method for representing the three-dimensional world, al- 
though excellent for biological and man-made forms, becomes 
awkward when applied to complex natural surfaces such as moun- 
tains or clouds The most pronounced difficulity is that, like pre- 
viously proposed representations, our superquadric lumps-of-clay 
representation becomes implausably complex when confronted 
with the problem of representing, e.g., a mountain, a crumpled 
newspaper, a bush or a field of graae. 

Why do such introspectively simple shapes turn out to be 
so hard to represent? Intuitively, the main source of difficulty is 
that there is too much information to deal with. Such objects are 
amazingly bumpy and detailed; there is simply too much detail, 
and it is too variable. 

People escape this overwhelming complexity by varying the 
level of descriptive abstraction - the amount of detail captured 
- depending on the task. In cases like the crumpled newspaper, 
or when recognizing classes of objects such M “a mountain’ or ‘a 
cloud,= the level of abstraction is very high. Almost no specific 
detail is required, only that the crumpleclness of the form comply 
with the general physical properties characteristic of that type of 
object. In recognizing a specific mountain, however, people will 
require that all of the major features be identical, although they 
typically ignore smaller details. Even though these details are 
‘+gnored,’ however, they must atill conform to the constraints 
characteristic of that type of object: we would never mistake 
a smooth cone for a rough-surfaced mountain even if it had a 
generally conical shape. 

Our previous work with fractal models of natural surfaces [lS] 
allows us to duplicate this sort of physically-meaningful abstrac- 
tion from the morass of details encountered in natural scenes. 
It lets us describe a crumpled newspaper by specifying certain 
structural regularities - its crumplednese, in effect - and leave 
the rest as variable detail. It lets us specify the qualitative shape 
- i.e , the surface’s roughness - without (necessarily) worrying 
about the details. 

We may construct fractal surfaces by using our superquadric 

Figure 3: (a) - (c) show the construction of a fractal shape by 
successive addition of smaller and smaller features with number 
of features and amplitudes described by the ratio l/r, (d) shows 
spherical shapes with surface crenulations ranging from smooth 
(r $s 0) to rough (r % 1). 

“lumps” to describe the surface’s features; specifically, we can 
use the recursive sum of smaller and smaller superquadric lumps 
to form a true fractal surface. This construction is illustrated in 
Figures 3(a) - (c). 

We start by specifying the surface’s qualitative appearance 
- it’s roughness - by picking a ratio r, 0 5 r 5 1, between the 
number of features of one size to the number of features that are 
twice as large. This ratio describes how the surface varies across 
different scales (resolutions, spatial frequency channels, etc.) and 
is related to the surface’s fractal dimension D by D = T+r, where 
7’ is the topological dimension of the surface. 

We then randomly place tt2 large bumps on a plane, giving 
the bumps a Gaussian distribution of altitude (with variance u*), 
as seen in Figure 3(a). We then add to that 41s’ bumps of half 
the size, and altitude variance u*r*, aa shown in Figure 3(b). We 
continue with 16n2 bumps of one quarter the size, and altitude 
02r4, then 64n* bumps one eighth size, and altitude u*re and so 
forth, as shown in Figure 3(c). The Anal result, shown in Figure 
3(c) is a true Brownian fractal shape. Different shaped lumps 
will produce different textures on the rerulting fraetal surface. 

When the larger components of thir cmm are matched to a 
particular object we obtain a description of that object that is 
exact to the level of detail encompassed by the speeifled com- 
ponents. This makes it possible to specify a global shape while 
retaining a qualitative, statistical deaerlption at smaller scales: 
to describe a complex natural form such as a cloud or mountain, 
we specify the “lumps” down to the derired level of detail by lix- 
ing the larger elements of this sum, and then we specify only the 
fractal statistics of the smaller lumpr thus Iking the qualitative 
appearance of the surface. Figure 3(d) illustrates an example 
of such description. The overall shape is that of a sphere; to 
this specified large-scale shape, smaller lumps were added ran- 
domly. The smaller lumps were added with six different choices 
of r (i.e., six different choices of fraetal statistics) resulting in 
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six qualitatively different surfaces - each with the same basic 
spherical shape. The ability to fix particular “lumps” within a 
given shape provides an elegant way to pass from a qualitative 
model of a surface to a quantitative one - or vice versa. 

3 Recognizing Our Modeling Primitives 

The major difficulty in recovering such descriptions is that image 
data is mostly a function of surface normals, and not directly a 
function of the surface shape. This is because image intensity, 
texture anisotropy, contour shape, and the like - the information 
we have about surface shape - is largely determined by the 
direction of the surface normal. To recover the shape of a general 
volumetric primitive, therefore, we must (typically) first compute 
a dense depth map from information about the surface normals. 
The computation of such a depth map has been the major focus 
of effort in vision research over the last decade and, although 
the final results are not in, the betting is that such depth maps 
are impossible to obtain in the general, unconstrained situation. 
Even given such a depth map, the recovery of a shape description 
has proven extremely difficult, because the parameterization of 
the surface given in the depth map is generally unrelated to that 
of the desired description. 

Because image information is largely a function of the surface 
normal, one of the most important properties of superquadrics is 
the simple “dual” relation between their surface normal and their 
surface shape. It appears that this dual relationship c8n ahow 
us to form an overconstrained estimate of the 3-D parameters of 
such a shape from noisy or partial image data, as outlined by the 
following equations. 

The surface position vector of a superquadric with length, 
width and breadth ai, 8s and as is (again writing costs = C,,, 
sin ,LI = Sti) 

arCilCiz 
R(~I, w) = asCilS:z 

( 1 ass;’ 

and t,he surface normal at that point is 

(I) 

(3) 

Therefore the surface vector 2 = (z,Y, z) is dual to the sur- 
face normal vector s = (z,,, y,, 2,). From (2), then we have 

( > 
Yy, rt2 = tanw (3) 
=%I 

We may also derive an alternative expression for tansw from (1): 

(4) 

Combining these expressions for tanw and letting r = yn/xn, 
k = (a* /ar)2/22 and L$ = 21~8 - 1 we find that 

r = k( qc (5) z 

(6) 

This gives us two equations relating the unknown shape param- 
eters to image measurable quantities, i.e., 

7 Y r --z _=_ 
dr ,$ z=- 
dy H < 

(7) 

Thus Equations (7) allow us to construct a linear regression 
to solve for center and orientation of the form, as well as the 
shape parameter er, given only that we can estimate the surface 
tilt direction r. 

When we generalize these equations to include unknown ori- 
entation and position parameters for the superquadric shape, we 
obtain a new set of nonlinear equations that can then be solved 
(in closed form) for the unknown shape parameters er and es, 
the center position, and the three angles giving the objects ori- 
entation. Once these unknowns are obtained the remaining un- 
knowns (al, as, and as, the three dimensions of the object) may 
be directly obtained. 

3.1 Overconstraint and reliability 

Perhaps the most important aspect of these equation8 is that we 
can form an overconstrained estimate of the 3-D parameters: thus 
we can check that our model applies to the situation 8t hand, and 
we can check that the parameters we estimate are correct. This 
property of overconstraint comes from using models: when we 
have used some points on a surface to estimate 3-D parameters, 
we can check if we are correct by examining additional points. 
The model predicts what these new points should look like; if 
they match the predictions then we can be sure that the model 
applies and that the parameters are correctly estimated. If the 
predictions do not match the new data points, then we know that 
something is wrong. The ability to check your answer is perhaps 
the most important property any vision system c8n have, because 
only when you can check your Bnewers can you build a reliable 
vision system. And it is only when you have a model that relates 
many different image points (such 8s a model of how rigid motion 
appears in an image sequence, or a CAD-CAM model, or this 3- 
D shape model) that you can have the overconstraint needed to 
check your answer. 

Another aspect of Equations (7) that deserves special note is 
that the only image measurement needed to recover 3-D shape is 
the surface tilt r, the component of shape that is unaffected by 
projrrt.ion and, thus, is the most reliably estimated parameter of 
sltirface shape It is, for instance, known exactly at smooth oc- 
rllrding cont.ours and both shape-from-shading and shape-from- 
tex(llrc r~~ell~ocls produce a more reliable estimate of r than of 
slit~lt , tllch oOn,r surface shape parameter. That we need only the 
(relatively) easily estimated tilt to estimate the 3-D shape pa- 
ranletc:rs makes robust recovery of 3-D shape much more likely. 

One Final note about Equations (7) is that they become sin- 
gular when superquadric becomes rectangular; i.e., when the 
sides of the superquadric have zero curvature. This, however, 
is the case of the blocks world. We may view this work with 
soperquadric shapes, therefore, M a natural extension of the 
blocks world to a domain that also encompasses smoothly curved 
shapes 

3.2 Recovering Part Deecriptions 
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Figure 4: Recovering the part structure of a scene: (a) the orig- 
inal scene, (b) ratio of r to dr/dy, (c) ratio of r to dr/dz, (d) 
recovered scene description. 

Figure 4 illustrates how we may use Equation (7) for image seg- 
mrsntation and shape recovery. In these examples we will not con- 
siclpr rotation in depth; the extension to three degrees of freedom 
is straightforeward, although from a numerical view considerably 
morf complex 

Figure 4 shows an actual example of recovering a part de- 
set iption from depth information. We started with the complex 
ssc*rnr shown in Figure 5(a), and generated a depth array with 
approximately eight bits of accuracy. We then computed the 
gradient direction (the tilt r) over the entire depth array (with 
about seven bits accuracy), and finally computed the z and y 
cletivatives of the tilt array. 

From this we calculated the ratios of r to dr/dy (shown in 
Figure 4(b)) and r t,o dr/dz (shown in Figure 4(c)). Equation 
(7) predicts that wit,hin each superquadric form: (1) that the 
value of these ratios should be a linear function of the image y 
(x) coordinate, (2) that the zero-crossing of this ratio should lie 
along the z (g) axis of the imaged form, and that (3) the slope 
of this ratio as a function of g (2) should be proportional to the 
squareness-roundness of the form along that axis. It can be seen 
that these relat,ions are in fact obtained, except for a vertical bar 
caused by the tilt fields’ singular transition point. 

We may use the image regulprity shown in Figures 4(b) and 
(c) to segment the image: as each imaged supequadtic produces 
a linearly sloping region with a particular orientation and axis di- 
rect,ion, we need only segment the ratio of (1) r to dr/dy, and (2) 
r to dr/dz into linearly varying domains in order to completely 
segment the image into its component parts. We can even use 
this regularity to “match up” the various portions of a partially 
occluded object. 

It can be seen, for instance, that there are two disjoint areas 
of the block-like shape. How tan we infet that these two visible 
portions in fact belong to a single whole? From Figures 4(b) and 
(c) we can observe that the z axes of both visible portions ate 
collinear, and that they have t,he same slope and zero-crossing 
when considered as a function of both z and y. This, then, gives 

F j 
Figure 5: Examples of recovering bent and tapered part descrip- 
tions. 

us enough information to combine these two separate segments 
into a single 3-D part: for it is extremely unlikely that two surface 
segments would be collinear, of the same size and shape, and even 
share the same cent&d, without both being portions of the same 
object. 

Finally, aft.er segmenting the figure into linearly varying do- 
mains,‘the po&ion of their z and y axes and the shape along 
these axes can be calculated using Equation (7), and then the 
extent along each axis determined. The resulting recovered de- 
scription is shown in Figure 4(d); the most pronounced error is 
that the squareness of the cylindrical shape was somewhat over- 
estimated. 

There are two important things to remember about this 
demonstration: One is that we are recovering a large-grain, pmt- 
by-part description, rather than simply a shrface description. 
That medns that we can predict how the form will look from 
ot,her views, and reason about the functional aspects of the com- 
plet,e shape. The second is that the estimation process is over- 
constrained, and thus it can be made reliable. 

3.2.1 Recovering deformed primitives 

SO l’tit H’P have not talked about recovering deformed part primi- 
t.ivps; clerormations, of course, are an important part of out shape 
retmsrnt ation theory. Figure 5, therefore, shows how we may ap- 
ply thrse same ideas to the problem of recovering deformed part 
primilives. 

Figure 5(a) shows a bent cylinder; Figure 5(b) and (c) show 
the rat,io of r to dr/dz. It can be seen that the lineat relation still 
holds over most of the form; thus allowing segmentation. Perhaps 
even more importantly, however, is that the axis of the figure is 
clearly defined in Figures 5(b) and (c). It appears, therefore, 
that, we may be able to locate the axis of the figure, and then 
estimat,e the amount of bending that has occured. Once we know 
the deformat,ion, we can then undeform the shape, and proceed 
as before. 

Figure 5(d) shows the case of a tapered cylinder. Figures S(e) 
and (f) show that a linear ratio of r to dr/dy is still obtained, 
allowing not only segmentat.ion but also estimation of the shape 
along the g direction. The amount of tapering can be determined 
from the tapering extent of the linearly varying region. 
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4 Summary 

We have d%cribed a shape representation that is able to accu- 
rately describe an wide variety of natural forms (e.g., people, 
mountains, clouds, trees), as well as man-made forms, in a suc- 
cinct and natural manner. The approach taken in this repre- 
sentational system is to describe scene structure at a scale that 
is more like our naive percept.uaI notion of (La part” than the 
point-wise descriptions typical of current image understanding 
research. 

W’e have been able to use this representation to make sev- 
eral interesting points, in particular: 

. We have demonstrated that this formative-history-oriented 
represent.ational system is able to accurately describe a 
wide range of natural and man-made forms in an ex- 
tremely simple, and therefore useful, manner. 

. We have shown that this approach to perception formu- 
lates the problem of recovering shape descript,ions as an 
overconstrained problem, thus potentially allowing reli- 
able shape recovery while still providing the flexibility to 
learn new object descriptions. 

l We have collected experimental evidence about the con- 
stituent elements of this representation, and have found 
that (1) evidence from the Triesman paradigm indicates 
that they are features detected during the early, preat- 
tentive stage of human vision, and (2) that evidence from 
protocol analysis indicates that people standardly make 
use of these same descriptive elements in generating ver- 
bal descriptions, given that there is no similar named 
object available. 

* And finally, we have presented evidence from our 3-D 
modcling work showing that descriptions framed in the 
representation give us the right Qontrol knobs” for dis- 
cussing and manipulating 3-D forms in a graphics envi- 
ronment. 

The representational framework presented here is not com- 
plete. It seems clear that additional process-oriented modeling 
primitives, such as branching structures or particle systems 
[22], will be required to accurately represent objects such as 
trees, hair, fire, or river rapids. Further, it seems clear that 
domain experts form descriptions differently than naive ob- 
servers, reflecting their deeper understanding of the domain- 
specific formative processes and their more specific, limited 
purposes. Thus, accounting for expert descriptions will require 
additional, more specialized models. Nonetheless, we believe 
this descriptive system makes an important contribution to 
current research by allowing us to describe a wide variety of 
forms in a surprisingly succinct and natural manner, using a 
descriptive vocabulary that offers hope for the reliable recovery 
of shape. 
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