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ABSTRACT 

Mathematical results are presented that strongly constrain the 
prototypification of complex shape. Such shape requires local 
prototypification in two senses: (1) prototypification occurs in 
parallel at different parts of the figure, and (2) prototypification 
varies diferentially (smoothly) across an individual part. With 
respect to (l), we present a theorem that states that every 
Hoffman-Richards codon has a unique Brady Smooth Local Sym- 
metry. The theorem solves the issue of defining units for parallel 
decomposition, for it implies that a codon is the minimal unit 
with respect to the existence of prototypification via symmetry, 
and is mazimal with respect to prototypification via non- 
ambiguous symmetry. Concerning issue (2) above, a further 
theorem is offered that severely limits the possible shapes that 
result from the sequential application of prototypifying opera- 
tions to smoothly varying deformation. This second result 
explains why considerably fewer prototype classes exist than one 
would otherwise expect. 

I. INTRODUCTION 

It has usually been assumed that, in human cognition, the 
prototypification of an object (e.g. a shape) occurs in a single 
step (e.g. Rosch, 1978). However, in a number of papers (Leyton, 
1984, 1985, 1986a, 1986b, 1986c, 1986d), I have argued that 
prototypification is decomposed into a sequence of well-defined 
psychologically-manageable stages; that is, an object is assigned a 
backward history of successively greater stages of 
prototypification. 

In the present paper, theorems are offered that allow us to 
extend this decompositional analysis to the prototypification of 
complex shape. The prototypification of such shape requires 
stages that are local, in two senses: (1) prototypification occurs 
in parallel, at different regions of the figure; and (2) 
prototypification removes deformation that differentially 
(smoothly) varies over an individual region. Our theorems con- 
strain local prototypification in these two senses; that is: (1) they 
help to establish an optimal decomposition with respect to paral- 
lel prototypification, and (2) they strongly constrain the possible 
results of the sequential decomposition of differential 
prototypification. 

Let us, however, first give an example of sequential 
prototypification for simple shape, in order to identify more 
clearly what needs to be extended to handle complex shape. In a 
converging set of experiments (e.g. Leyton, 1984, 1985, 1986a, 
198613, 1986c, 1986d) I found that, when subjects are presented 
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with a rotat#ed parallelogram, Fig la, they reference it to a non- 
rotated one, Fig lb, which they then reference to a rectangle, Fig 
lc, which they then reference to a square, Fig Id. 

We can characterize these results in the following way. Let 
us assume that the relationship between the ultimate prototype, 
the square, and the first figure, the rotated parallelogram, is 
given by a linear transformation, T. 
transformation (without reflection) can be represented as a 
duct of three more primitive linear transformations, thus: 

Any non-singular linear 
Pro- 
T= 

Stretch x Shear x Rotation. This decomnosition of a linear 
transformation will be called its Iwasawa decomposition. The 
three transformations, comprising the decomposition, characterize 
the three stages in Fig 1. That is, working from right to left, Fig 
Id + Fig lc is a stretch, Fig lc + Fig lb is a shear, and Fig lb 
+ Fig la is a rotation. Therefore, the experimental results indi- 
cate that this decomposition is psychologically salient and follows 
in a specific order. 

For later usage, in this paper, it is 
representation of the decomposition, thus: 

Stretch x Shear x Rotation = 

having a 

Observe that (1) in the first 
the amounts of stretch along 

matrix, the eigenvalues Xi represent 
the directions of the eigenvectors of 

that matrix; (2) in the middle matrix, /J is the amount of move- 
ment in the r-direction of the y-basis vector; and (3) in the last 
matrix, 0 is the extent of rotation. This decomposition is remin- 
iscent of the Gram-Schmidt orthoponalization (Hoffman & J 

Kunze, 1961), where a set of linearly independent vkctors (i.e. a 
non-singular matrix) is transformed into an orthonormal set (i.e. 
a rotation matrix) by first shearing the set and then stretching it. 
Although the order is different in the Gram-Schmidt process, this 
does not ultimately matter, because the subgroup of stretches 
group-theoretically normalizes the subgroup of shears (Lang, 
1975), and therefore an equivalent representation can be found 
with the required ordering. 

The purpose of the present paper is to extend the above 
simple use of the Iwasawa decomposition to analyze the 
prototypification of complex shape. The two main problems for 

a b d 

Figure 1. One of the successive 
ton (1984,1985,1986a). 

reference phenomena discovered 
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such an investigation is that (1) the decomposition, as used so 
far, has been applied globally, and (2) the decomposition is that 
of linear fransformafions. For example, consider the seal shown 
in Fig 2 (third row, second column). To prototypify this shape, 
one would want to apply different operations to different regions 
of the figure (the head, the back, etc.). Again, given an indivi- 
dual region, the simple use of a linear transformation would not 
usually have the desired effect; e.g. a linear transformation would 
not straighten the arched back. Thus, the problem is that, with 
complex shape, one requires local prototypification in two senses: 
prototypification (1) applies to the subparts and (2) varies 
differentially. The purpose of this paper is to present a set of 
mathematical results that yield solutions to these two problems. 

II. HOW TRANSFORMATIONS 
ACT ON PROTOTYPE STRUCTURE 

It can be assumed that the prototypicality ranking of a 
shape corresponds to the latter’s degree of symmetry. However, 
although this introduces into consideration the crucial factor of 
the symmetries of the shape, a much tighter relationship between 
the shape symmetries and the deforming transformations has 
been proposed in Leyton (1984), and has been corroborated using 
a considerable number of empirical studies in several areas of 
perceptual organization (Leyton, 1984, 1985, 1986a, 1986b, 
1986c, 1986d). The relationship is summarized in: 

INTERACTION LAW (Leyton, 1984): The symmetry 
azes of the prototype are interpreted as eigenspaces of the most 
allowable transformations. 

An eigenspace is a linear subspace (e.g. a line through the origin) 
that maps to it,self under a linear transformation. Visually, an 
eigenspace-line or eigenvector is interpreted as a direction of 
flexibility. As an illustration of the Interaction Law, observe in 
Fig 1 that the salient symmetry axes of the square (i.e. the side- 
bisectors) become the eigenspace-lines in the transition of the 
square (Fig Id) to the rectangle (Fig lc). 

Now let us examine the validity of the Interaction Law 
with respect to complex shape. In order to investigate the local 
prototypification of complex shape, I gave human subjects, under 
experimentally controlled testing conditions, the twenty-two out- 
lines of complex natural and abstract shapes shown in Fig 2. 
The subjects were asked to give, at each of four points in each 
shape, the direction of perceived maximal flexibility of the region 
local to the point. The results were that the subjects chose a 
local symmetry axis at each point. Thus they converted local 
symmetry axes into local eigenspaces. (The statistical 
significance was considerable: n = 12, 88 choices per subject; 
expected mean = 44; actual mean = 77.58; p < 0.0005, one 
tailed). 

These results therefore lead us to the conclusion that the 
Interaction Law is valid in complex shape, and that, it applies 
locally. The usefulness of the conclusion is that it gives us an 
indication as to the nature of local prototypification - for one can 
assume that prototypification occurs along lines of maximal flexi- 
bility. 

However, the Interaction Law (i.e. symmetry axes are con- 
verted into eigenspaces) requires, as input, a symmetry analysis; 
and since we are using the Interaction Law locally, what we 
require is a local symmetry analysis. 

The symmetry analysis we shall use is the Smoothed Local 
Symmetry (SLS) of Brady (1983). It can be regarded as a 
natural means of describing the local structure of a contour, 
because it is yielded by the set of reflectional symmetries 
between tangent vectors. For example, the bold curved line, in 
Fig 3, shows a segment of contour. Points A and B are paired 
because their tangent vectors, tA and tg, are symmetric about 
some vector t. The dotted line, which is the locus of the mid- 
points P of the chords AB, is taken to be the symmetry axis. Let 
us now investigate the relationship between subparts and the 
SLS, as follows. 

III. THE SYMMETRYSTRUCTURE OF PARTS 

We begin by investigating the relationship between the 
Brady SLS and the part-analysis provided by Hoffman & 
Richards (1985) and Richards & Hoffman (1985). These latter 
researchers have put forward compelling evidence that contours 
are perceptually partitioned at points of negative curvature 
extrema; i.e. points of maximal “indentation”. For example, if 
one were to partition the contour of a face at such points, the 
resulting segments would be the chin, the lips and the nose. In 

Flgure 4. The twenty-two complex natural and abstract shapes in which 

human subJects converted local symmetry axes lnto local elgen- 

vectors. Figure 3. The Brady SLS 
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fact, Hoffman’s and Richards’ basic primitive is a segment whose 
endpoints are curvature minima - and they call such a segment, a 
codon. Thus, they define a codon representation of a contour to 
be the sequence of codons obtained by traversing the contour. 
Codon representations have two important advantages: (1) Any 
contour has a unique representation as a codon string; and (2) 
there are only five types of non-trivial codon, where a type 
corresponds to a unique sequence of singularities. Fig 4 shows 
the five types. The dots along the codon represent the curvature 
singularities (minima, maxima, and zeros) that define the particu- 
lar codon-type. 

The question we now ask is whether codons are related to 
the Interaction Law and therefore to the problem of local 
prototypification. A theorem, which I proposed and proved in 
Leyton (1986e), is crucial in answering this question. 

SYMMETRY-CURVATURE DUALITY THEOREM 
(Leyton, 1986e): Any segment 01 smooth planar curve, bounded 
by two consecutive curvature eztrema of the dame type (either 
both mazima or both minima), has u unique SLS symmetry azis, 
and the azi8 terminate8 at the curvature eztremum o/the opposite 
type (respectively, minimum or maximum). 

COROLLARY: The SLS of a codon is unique, and ter- 
minates at the point of maximal curvature on the codon. 

It should be observed that the above theorem relates two 
previously unrelated branches of perceptual research: (1) Sym- 
metry research, starting with the Gestalt movement and going up 
to modern AI symmetry extraction programs; and (2) Curvature 
research, starting with Attneave’s (1954) work on information 
maximization at extrema and going up to, for example, a recent 
formalization of Attneave’s results by Resnikoff (1987). 

It is also worth observing that the theorem defines what is 
a minimal local region to consider with respect to symmetry, in 
the following sense: 

Observe that any codon is itself built from a number of 
examples of only one primitive subpart. Each subpart is a spiral. 
(A spiral is a curve with monotonically changing curvature of the 
same sign.) In Fig 4, any curve-segment, bounded by two adja- 
cent dots (singularities) is a spiral. Thus, each codon is a 
sequence of two, three or four spirals. Any smooth curve can 
therefore be represented as a string of spirals. We shall call this 
representation the s-code of the curve. 

The importance of basing one’s representation on spirals 
arises from a theorem I proved in Leyton (1986e), which states 
that an SLS cannot be constructed on a spiral. (We are assum- 
ing that the curve’s normals cannot change sides). That is, an 
SLS cannot be constructed on a single unit of the s-code. Furth- 
ermore, it is easy to show that an SLS cannot be constructed on 
any adjacent pair of units in the s-code where the pair both have 
increasing or both have decreasing curvature. Thus, to allow a 
symmetry axis to appear, the s-code needs to contain two con- 
secutive spirals where one spiral has increasing and the other has 
decreasing curvature. But, any such pair is either a codon, or 
part of a codon that must exist in the curve at that point. Thus, 
the appearance of symmetry requires that, minimally, the curve 
must contain a codon. 

Ffgure 4. The five non-trlvlal codons. 

The second thing to observe is that the codons are mazi- 
ma/ local regions with respect to symmetry uniqueness. That is, 
as soon as one continues a curve past either end-point minimum 
of a codon, an extra symmetry axis must appear terminating at 
that minimum. 

The uniqueness of the symmetry axis within the codon fol- 
lows from the fact that, at any pair of SLS points A and B, as in 
Fig 3, a unique circle can be drawn that is tangential to the 
curve at A and B. It is shown in Leyton (1986e) that: (1) given 
any point A on a codon, there is at most one circle that is 
tangential to A and some other point, B on the codon, and (2) 
this circle is not tangential to a third point on the codon. This 
result proves the uniqueness of the symmetry-point associated 
with A, and hence the uniqueness of the symmetry axis within 
the codon. 

The above considerations therefore reveal that there are a 
set. of properties (uniqueness, maximality, minimality, etc) that 
make the relationship between smooth local symmetries and 
codons significant. 

IV. DIFFERENTIAL PROTOTYPIFIOAT~ON 

lot al 
Having seen how the symmetry analysis interacts with the 
structure, where local means subpart, we shall now look at 

how the symmetry analysis interacts with the local structure, 
where local means diflerential. We require a differential charac- 
terization of the SLS such that prototypification via the Iwasawa 
decomposition (Stretch X Shear x Rotation) becomes both possi- 
ble and meaningful. It turns out that the latter requirements 
strongly constrain the type of characterization that is allowable, 
as follows: 

It is clear that, at any point P along the SLS-axis, two vec- 
h 

tors characterize the SLS structure: (1) ;u where u is the unit 
I 

h 
cross-section vector based at P (as shown in Fig 3) and - is the 

2 
scalar measuring half the cross-section, (2) tp which is the unit 
tangent to the SLS axis. This pair of local vectors defines a local 
frame, F, which varies as F moves along the curved axis. What 
we need to do is to characterize F as the consequence of 
transformations, T, on some other frame, E, such that when T is 
factorized (that is F becomes E), the resultant shapes are 
regarded as psychologically more prototypical. Thus we have to 
decide how to choose E. 

Two candidates for E seem obvious: (1) El, which has, as 
basis vectors, the tangent tp to the symmetry line and the nor- 
mal np to that line; and (2) E, which has, as basis vectors, the 
unit vector t (about which t, and t, are symmetrical) and the 
unit vector u which is normal to t and lies along the cross- 
section. The linear transformations E,+F and E2+F each 
comprise stretch and shear. Furthermore, when F propagates 
along the axis, it undergoes rotation. Observe that, if El is used, 
rotation is conveniently described as rotation of the axis-tangent 
t,, whereas if Ez is used then rotation is conveniently described 
as rotation of the cross-section. 

In order to see how important the choice of basis E, or E, 
is, let us consider what happens when the frames Ei undergo no 

Figure 5. A local frame that does not accord wlth the Interaction Law 

can lead to psychologlcally meaningless results when the frame Is 
prototypifled. 
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rotation. For example, consider again the contour shown in Fig 
3. It has a curved symmetry axis. Thus, when the basis E, is 
propagated along the axis, it undergoes rotation. Now let us pro- 
totypify by removing rotation. The resultant shape is shown in 
Fig 5. However, observe that, even though the axis is straight, 
the shape itself (e.g. as given by the contour) does not seem 
significantly more prototypical. 

It seems therefore that E, is an inappropriate basis. Thus 
let us reject it, as a basis, and investigate what happens when Es 
is the chosen basis. 

However, before we do this, it is important to observe that 
there is a good reason why we could have suspected, in advance, 
that E, would be a bad choice, and why we might believe that 
Es will be more successful. Recall the Interaction Law. It states 
that, perceptually, symmetry axes provide an appr0priat.e basis of 
eigenvectors for actions on shape. Observe also that the sym- 
metry axes here are t and u (t is such in the plane of the page, 
and u is such in the plane of the cross-section of the implied 
three-dimensional shape; see Leyton, 1985, 1986c, 1986f, for 
details). Now, returning to the definition of EI-tF and E,+F, 
one finds that it is only in the latter case that the initial basis 
(i.e. E,) is a basis of eigenvectors (for example, the cross-section 
vector, u, is an eigenvector of stretch). 

Let us now compute the full linear transformation associ- 
ated with the basis, Es = (t, u). Let 4 be the angle between t 
and tp, and B be the angle between basis Es = (t, u) and 
corresponding fixed basis (tl, ul) at the beginning of the SLS- 
axis; i.e. at the beginning of the protrusion. Then the matrix 

second level 
torizations. 

of prototypification. The tree shows all possible fac- 

Observe now that when the transformations are used glo- 
bally, each node of the figure represents a mathematically realiz- 
able shape. For example, starting with a rotated parallelogram 
at the top node, the middle level yields, from left to right, a 
rotated rhombus, a rotated rectangle, a parallelogram; and the 
bottom level yields a rhombus, a rotated square and a rectangle. 

The question which concerns us is what shapes are 
obtained at the nodes when one uses the transformations locally. 
A theorem which I proposed and proved in Leyton (1986f) is cru- 
cial in answering this question: 

THEOREM (Leyton, 1986f): Let a ehape be locally 
characterized by the Iwasawa decomposition defined by the coor- 
dinate eyirtem of eigenuectora that are the symmetry uectots oj the 
SLS (i.e. in accord with the Interaction Law). Then the removal 
of one of the factor subgroups necessarily involve8 the removal of 
one of the other factor subgroups. 

That is, the theorem states that one level of 
prototypification is mathematically impossible; i.e. a shape with 
only rotation and shear is impossible, a shape with only shear 
and stretch is impossible, and a shape with only rotation and 
stretch is impossible. 

able 
Having established that there are mathematically no realiz- 

shapes at the middle level of the tree in Fig 6, let us move 
h 

describing the linear transformation (tl, ul) --* (yu, tp), is given 

by: 

bp ~cos~cose - bp Icos&in8 

I 
ttp ~in&osB+-$sin0 -bp bin&infl+$cos6 

Furthermore, crucially, we can now compute the Iwasawa decom- 
position. It is 

on to the bottom level. It is easy to show that no shapes are 
mathematically possible at the bottom left node. This leaves 
shapes at only the Rotation and Stretch nodes, on that row. The 
shapes corresponding to these nodes are, respectively, (1) the 
flexed symmetries such as the worm in Fig 7, and (2) the global 
symmetries such as the goblet in Fig 7. Thus the conclusion is 
that although the Iwasawa decomposition, using basis E2 = (t, 
u), disallows one level of prototypification, the prototypes that it 
does produce are, psychologically, highly salient as prototypes. 
This contrasts with the use of basis E,, which allows shapes at 
other nodes of the hierarchy (e.g. Fig 5 is at node 
StretchxShear), but where the shapes are not significantly proto- 
typical. Thus again we have here a corroboration of the Interac- 
tion Law, because the basis E2 accords with that law, whereas 
the basis E, does not. 

v. PROTOTYF’IFICATION CONSTRAINTS 
Now let us investigate whether the factorization of these 

transformations, from the shape, results in psychologically salient 
prototypes. 

Consider Fig 6. The top node represents an arbitrary shape 
characterized by the Iwasawa decomposition. Prototypification 
occurs by removing the factors; i.e. by progressing downward in 
the tree. The middle row of nodes of the tree represents the first 
level of prototypification and the bottom row represents the 

metry structure, and deformed prototypes as shapes that have a 
local symmetry structure that is the image of the former global 
structure under deformation, then the minimalitv condition 
implies that prototypification cannot take place if one does not 
have codons. 

Stretch x Shear x Rotatzon 

Shear x R&ton Stretch x Rotatzon Stretch x Shear 

l&l-Ti 
Shear Rotation Stretch 

Flgure 0. All possible prototyplflcatlons via factorlzations 

Iwasawa decomposition of a llnear transformation. 
Flgure 7. .4 flexed 

goblet). 

symmetry (the worm) and a global symmetry (the 
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Recall also that the Duality Theorem can be regarded as 
yielding the following maximality constraint: a codon is the maxi- 
mal possible region possessing a unique symmetry axis. This con- 
straint provides two natural means by which prototypification 
can be decomposed: (1) Th e codon, being the maximal unit for a 
unique axis, corresponds to a prototypification stage, in the sense 
that the removal of the codon (e.g. a protrusion), by shrinking, 
removes the curvature extremum and the axis at the same time 
(by the Duality Theorem). Thus the contour is made more uni- 
form by a factor of one exactly extremum and exactly one axis. 
It is important to observe that if the Duality Theorem did not 
constrain the symmetry axis of a codon to terminate at the 
extremum, the removal of the axis by shrinking would not neces- 
sarily remove the extremum and thus yield a more prototypical 
contour. (2) The codon, being the maximal contour unit for a 
unique axis, corresponds to a unit that can be manipulated in 
parallel with other such units. Thus, the Duality Theorem 
implies a prototypification-decomposition that is both serial and 
parallel. (We should note that Pizer, Oliver & Bloomberg (1986) 
have implemented an algorithm that hierarchically orders protru- 
sions in an SAT-based analysis, and obtains psychologically 
natural results.) 

Finally, the theorem of the last section strongly constrains 
the further decomposition of the prototypification units just 
defined. It states that, when this decomposition is characterized 
by the Iwasawa decomposition, prototypification with respect to 
one of the Iwasawa factors necessarily involves prototypification 
with respect to one of the others. Thus the theorem tells us why 
there are only a few shape prototypes; i.e. those that are global 
symmetries or flexed symmetries. 
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