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ABSTRACT 

Most proposed algorithms for solving the stereo corre- 
spondence problem have used matching based in some 
way on linear image features. Here the geometric effect 
of a change in viewing position on the output of a linear 
filter is modeled. A simple local computation is shown to 
provide confidence intervals for the difference between fil- 
ter outputs at corresponding points. Examples of the use 
of the confidence interval are provided. For some widely 
used filters, the confidence intervals are tightest at iso- 
lated vertical step edges, lending support to the idea of 
using edge-like features in stereopsis. However, the same 
conclusion does not apply to image regions with more 
complicated variation on the scale of the filter support. 

I Introduction 

Most proposed algorithms for solving the stereo correspon- 
dence problem have used matching based in some way on linear 
image filters. The algorithms are usually based on the assump- 
tion that the filter outputs will be very similar at corresponding 
points in the two images. Differences in viewing geometry be- 
tween the two views, can however, introduce fairly large distor- 
tions. For any given filter, there are some local image patterns 
for which even small changes in the viewing geometry will cause 
large changes in the filter output. Here, a simple computation 
will be developed to identify such points by placing confidence 
intervals on the difference between filter outputs at correspond- 
ing points. For some widely used filters, the confidence intervals 
are tightest at isolated vertical step edges, lending support to 
the idea of using edge-like features in stereopsis. However, the 
same conclusion does not apply to image regions with more com- 
plicated variation on the scale of the filter support. In general, 
the confidence interval is constructed from two linear filters, one 
measuring sensitivity of the filter output to horizontal compres- 
sion and the other measuring sensitivity of the filter output to 
vertical skew. 

The stereo correspondence problem is the problem of match- 
ing two images of the same scene from different viewing posi- 
tions. Let Ii(z, y) and lz(z, y) be the light intensity functions 
for two images whose correspondence is to be computed and let 
2’ : !R2 H lR2 be the mapping from points in the first image to 
corresponding points in the scond image. Then for any point p 
in the domain C of T, Ii(p) and 12(T(p)) are projections of the 
same physical point. The problem is to recover T from 11 and 

12. 

All solutions to the stereo correspondence problem are based 
on finding some type of similarity between the local image in- 
tensities surrounding corresponding points. Understanding in 
detail how image intensities change under a change of viewpoint 
is critical in constructing good measures of similarity for com- 
puting correspondence. 

A large number of stereo algorithms use measures of similarity 
based in some way on the outputs of linear image filters. Multi- 
resolution correlation-based algorithms [e.g Hannah, 1974; Gen- 
nery, 1977; Moravec, 1977; Barnard and Thompson, 19801 typi- 
cally use the outputs of linear low-pass filters for coarse match- 
ing. Edge-based algorithms [e.g Marr and Poggio, 1979; Grim- 
son, 1981a; Mayhew and Frisby, 1981; Baker and Binford, 1981; 
Medioni and Nevatia 1983; Ohta and Kanade 19831 typically use 
linear filters to identify the locations of edges. The combination 
of a large number of independent linear filters [Kass 19838; Kass 
1983b] has also been used effectively to compute correspondence. 

Even if there is no important change in photometry between 
views, the outputs of these filters at corresponding image points 
will in general be different because of difference in the projection 
geometry of the two views. Since typical similarity measures 
make use of linear filters with local support, it is the local change 
in geometry between views which is of concern. To keep the 
analysis manageable, we will assume that locally (on the scale 
of the filter support), the transformation T can be accurately 
represented by a first order approximation. If T : (z,y) H 
(z’, y’), the assumption is that 

T x (DT) . (z, y)’ (1) 

where 

is the Jacobian matrix of T and the lower case superscript t 
denotes matrix transposition. The operator D will be used 
throughout to represent the Jacobian of a vector field. Equation 
1 defines an affine tranSformation, which will be a good local ap- 
proximation as long as T is smooth and continuous. For planar 
surfaces under orthogonal projection, affine mappings correctly 
describe the stereo transformation. For curved surfaces under 
perspective projection, afhne mappings are the best linear ap- 
proximations to the transformation. The spatial extent of the 
affine approximation will be the region of support of the linear 
filter in question. 

Even when T is limited to locally affine transformations, ar- 
bitrarily large distortions are possible between 11 and 12. These 
distortions can change the output of linear filters by arbitrarily 
large amounts. Fortunately, large distortions by T occur rarely. 

In the next section, we will develop confidence limits on the 
components of DT. Then in section III, we will use these limits 
to construct a simple local computation which provides confi- 
dence limits on the difference between corresponding values of 
filtered images. The confidence intervals vary over the image, so 
some points can be identified as unusually good or bad points 
to try to match. Finally, In section IV, the relevance of these 
results to the Marr-Poggio-Grimson algorithm and to the Kass 
algorithm will be discussed. 
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Figure 1: Definition of disparity field: Shift between p and T(p) 
is the disparity of the midpoint (p + T(p))/2. 

II Disparity Gradient Limits 

An important observation about the transformation T was 
made by Arnold and Binford (19801. Assuming a uniform dis- 
tribution of surfaces on the Gaussian sphere, they were able to 
show that because of foreshortening, surfaces with steep depth 
gradients occupy only a small portion of most images. As a re- 
sult, local transformations which cause extreme geometric dis- 
tortion are rare. 

In order to apply the Arnold and Binford results the problem 
of geometric distortion of linear filters, it is convenient to intro- 
duce the notion of a disparity field to represent the shift between 
the positions of corresponding points in a pair of images. Using 
a generalized version of the Burt-Jules2 coordinate system, the 
disparity field x(z, y) can be defined by the relationship: 

X([P + T(P)1/2) = T(P) - P (2) 

where p is a vector quantity (2, y), In the interest of symmetry, 
the shift T(p) - p is defined to be the disparity of the point 
halfway between p and T(p) ( see figure 1). Other definitions of 
the disparity field have been used-the advantage of this coor- 
dinate system is that if 11 and 12 are exchanged, the disparity 
field merely changes its sign. 

One problem with this definition of disparity is that under 
pathological conditions it can become multivalued. The problem 
is not very serious because for affine T, x is uniquely defined by 
the above formula except on a set of transformations of measure 
zero [Kass, 19841. Th us the possible ambiguity in the definition 
of x is not a major difficulty. Moreover, for affine T, Dx is 
constant. 

Let H be the horizontal component of the disparity field and 
let V be its vertical component. Then if x(0,0) = (0,O) and T 
is afhne, the disparity field can be written 

X(z, y) = Dx(z, Y)’ = (;I ;;) (2, Y)‘. 

In general, the non-translational component of a two- 
dimensional a&e transformation can be decomposed into com- 
pression or expansion along two orthogonal axes, a rotation, and 
some skew. The compression and expansion components of T 
are determined by the diagonal elements of DX while the ro- 
tation and skew components are determined by its off-diagonal 
elements. A good discussion of the details of one possible de- 
composition as it relates to the disparity field can be found in 
Koenderink and Van Doorn (19761. 

Under ordinary stereo viewing conditions, V, and V, are quite 
small so the geometric distortion is due primarily to HZ and Hy. 
As a consequence, the range of likely distortions is restricted to 

horizontal compression and vertical skew. Suppose V, = V, = 
Hv = 0 and Hz # 0. Then the two images are related by 
pure horizontal compression. Let (zz,yz) = T((zl, yr)). Since 
x(z, y) = (H,z,O), we know y2 = yl and 

22 - ccl = H&a + 42. (4 

Hence 22 = cl(2 + H,)/(2 - Hz). If we define 6 = (2 + H,)/(2 - 
H,) then the transformation T can be described by the equation 
T((zl, yr)) = (8x1, yr) which describes horizontal compression 
by a factor of 8-l 

If Hz = 0 and Hv # 0 then the two images are related 
by vertical skew. Consider a point (zr, yr) in the first image. 
Its corresponding point in the second image is (~1 + Hvyl, yl). 
Hence the line az = by in the first image will map to the line 
az = (b + aH,,)y in the second. Horizontal lines (a = 0) will be 
unchanged by the transformation, but all other lines are rotated 
by an angle that reaches a maximum of tanwl(Hv) for vertical 
lines. 

When neither Hz nor H,, is zero, compression and skew occur 
simultaneously. If the points (~1, y) in the first image and (22, y) 
in the second image correspond, then since H(z, y) = H,z+ Hvy, 
we have 

22 - 21 = H&l + 22)/Z + H,y (5) 

22 = 218 + y&,/(1 - K/2). (6) 

Thus the horizontal compression is unaffected by the presence 
of skew, but the skew is adjusted by the factor l/(1 - Hz/2). 

Likely values of Hz and H,, are heavily constrained by fore- 
shortening effects. Based on the Arnold-Binford assumption 
that surface orientations are uniformly distributed on the Gaus- 
sian sphere, complete distributions for Hz and Hv can be calcu- 
lated. These distributions allow confidence limits on H, and Hv 
to be established, so that the range of image compressions and 
skews to be considered can be suitably restricted. 

Let a be the ratio between the inter-ocular distance and the 
viewing distance. Arnold and Binford calculate the cumulative 
distribution function of 8, the ratio of horizontal lengths in the 
two images, to be that of a Cauchy random variablr The cu- 
mulative distribution function can be written as follows 

IJr[s < z] = ; + ; tan-’ 2(” - 1) 

u(z f 1)’ 

Since H, = 2(8 - 1)/(~3 + l), th e cumulative distribution of H, 
can be written 

Pr[H, < z] = i + t tan-‘(z/a). (8) 

Negative values of 6 are due to occlusion. Substituting z = 0 
into equation 7, we see that occlusion occurs on the Gaussian 
sphere with probability 

1 -- t tan-‘(2/a). 
2 7r 

The upper quartile of the distribution of Hz begins where 
(l/a) tan -‘(z/a) = l/4. M It 1 u ip ying through by ?r and taking 
the tangent of both sides shows that the equation is satisfied 
when z = a. Hence 

Pt[-a < Hz < a] = t. (10) 
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III Geometric Distortion Estimate 

I9 

!sl- i 

e 

Figure 2: Line orientations for calculating the distribution of H, 

Differentiating the cumulative distribution function yields a 
Cauchy density for Hz 

d 
dzPr[H, < z] = ---if- pm. 

7r(a + z”) (11) 

Thus the standard deviation of H, is infinite. At z = a, 
the density falls to half its height at the origin, so in addition 
to marking the upper quartile, a is also the half-width at half- 
maximum (HWHM) for Hz. 

The exact distribution of H, is considerably more difficult to 
calculate. Suppose lines rotated counterclockwise horn the y- 
axis by an angle 0 in the first image correspond to lines rotated 
clockwise by 0 in the second (see figure 2). Then Hv = 2 tan 6. 
Arnold and Binford have calculated the joint distributions of 
line angles in stereo images assuming a uniform distribution of 
surface orientations on the Gaussian sphere. For a = .07 which 
is typical of human vision at a range of about one meter, Arnold 
and Binford find the HWHM of the angular difference between 
the two views (28) to be about 9 degrees. For a = .7 which 
is typical of wide angle aerial photography, the HWHM is 30 
degrees. These values correspond to HWHM values for Hv of 
.16 and .54. 

The following table summarizes probability of occlusion and 
HWHM values for H, and Hv assuming values of u correspond- 
ing to human vision at a distance of about one meter and cor- 
responding to typical wide angle aerial photography. 

On the basis of psychophysical experiments with stereograms 
consisting of pairs of dots, Burt and Julesz [1980a, 1980b] have 
discovered that the human visual system seems unable to achieve 
fusion unless ]VH] < 1. The Burt-Jules2 experiments are some- 
what controversial (see Krol and van de Grind [1982] and the 
response by Burt and Julesz [1982]), but they are consistent 
with earlier work on sine wave gratings done by Tyler [1973, 
19771 suggesting a disparity gradient limit for human stereopsis. 

Based on the probability distributions calculated by Arnold 
and Binford, a visual system able to tolerate disparity gradients 
near the Burt-Julesz limit should have little difficulty with geo- 
metric distortion for conditions typical of human vision. Aerial 
photographs of mountainous regions could be expected to cause 
some problems, but for most other aerial photographs, a dispar- 
ity gradient tolerance near one would probably be sufficient. 

Given bounds on H, and H,, we can investigate limits on 
how much the outputs of linear filters can be distorted by the 
geometric differences between stereo images. Let NT(P) be the 
difference betwen the outputs of the filter f at corresponding 
points in the two images. Then 

NT(P) = [f * ~2lcw) - [f * Ill(P) (12) 

In general, the behavior of NT is quite complex because it 
depends on both the transformation T(p) and the image I(p). 
At some image points, large distortions between images caused 
by T(p) will have only a small effect on the filter output. At 
these points, the filter outputs will be reliably preserved between 
views. At other image points, however, even a small amount of 
compression or skew induced by T(p) will have a large effect on 
the filter output. At these points, [f * Lr](p) is a poor predictor 

of If * L2lWPN. 
The disparity gradient limits developed in section II provide 

a method of computing confidence limits on the transformation 
T(p). These confidence limits will be used here to develop con- 
fidence limits on NT(P). Since NT(~) depends on the local be- 
havior of I(p), th e confidence limits will vary over the image. 

By a simple change of variables, NT(~) can be rewritten as the 
convolution of I(p) with a point-spread function that depends 
on the transformation T. This will make it easier to discuss the 
dependence of NT(P) on I(p). 

Convolving the deformed image lo T-’ with the point spread 
function f is the same as convolving the original image I with 
the mask f o T and multiplying by the Jacobian determinant of 
T. This follows easily from a change of variables. At the origin, 
we have 

(I o T-‘) * f = / / I o T-‘(z’,y’)f(-z’, -y’)dz’dy’. (13) 

Transforming into the (z, y) coordinate system, we obtain 

(I o T-l) * f = / / I(z,y)f o T(-z, -y)lDTldzdy 

= I * (f o T)IDTI 

where 

(15) 

is the Jacobian matrix of T and IDTl is its determinant. Thus 
the geometric distortion noise Np can be expressed as a single 
filter fnrT applied to the first image: 

NB = 1 l [(f o T)IDTI - f] = I* fNT. (16) 

Unfortunately, the filter fNT is not known exactly until the 
correspondence problem is solved. However, away from depth 
discontinuities, it is restricted by the surface orientation con- 
straint on T. In order to apply the constraint, we need to rep- 
resent fNT in terms of Dx, the Jacobian of the disparity field. 
To do so, we first compute the Jacobian determinant IDTI. 
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A. Jacobian Determinant 

Let H be the horizontal component and V be the vertical 
component of the disparity field x. If the origins of the two 
image coordinate systems correspond and T is affine then x = 
(Dx) - (z, y)T where 

Dx = ($ ;;) (17) 

is the Jacobian matrix of the disparity field. The diagonal el- 
ements of DX are responsible for horizontal and vertical com- 
pression and expansion, while the off-diagonal elements cause 
rotation and skew. 

Using a Burt-Julesz type coordinate system, (2, y) in the first 
image corresponds to (z’, y’) in the second if H((z + 2’)/2, (y + 

YW) = z’ - z and V((z + 2’)/2, (y + y’)/P) = y’ - y. Since x = 
(H,z + Hyy, V,z + V,y), the transformation T can be described 
by the equations 

Fl(z,y,z’,y’) = H,(z+z’)/2+Hy(y+y’)/2-z’+z = 0 (18) 

F2 (% YJ 6 Y’) = Vz(z + q/2 + V,(y + y’)/2 - y’ + y = 0. (19) 

The Jacobian DT and its determinant can be computed by 
means of the implicit function theorem from the equations Fl = 
0 and F2 = 0 that define T: 

Substituting in the partial derivatives, we obtain 

fi,12 Hl//2 
vu/2 - 1 VJ2 + 1 

) . 

(21) 
Since the determinant of a product is the product of the deter- 
minants, we have 

B. First-Order Approximation 

Equation 16 gives the total geometric distortion NB as the 
convolution of the intensity I(p) with the filter fret = [f - (f o 
T)IDTI]. We already h ave an expression for IDTj in terms of 
the components of Dx. To express the entire geometric distor- 
tion noise in terms of Dx and I(p), we will make a first-order 
approximation to N,. 

Let S = (2, y, Hz, H,,V,,V,) and So = (O,O, O,O,O,O). The 
surface orientation constraint assures us that H,, Hy , V,, and 
V, are usually quite small and since Np = I * fh’~, we can 
approximate Ns at the origin as 

Ng = Nge = I * s * VfNTI&=O (23) 

where the gradient is in the variables z, y, H,, Hy, V,, and V,. 
In order to compute VfNT, we can use equation 16 directly. 

Hence 

(VfNT)IDX=O = v ((f o T)IDTI - f)l&=o * (24 

It is convenient here to extend T such that it maps vec- 

tors (~,Y,H,,H,X&) t o vectors (z’, y’, HL, HL, V,‘, V.) with 

Hz = Hk, H,, = H: etc. Note that the Jacobian determinant 
IDTl is unaffected by the change. With this extension of T, the 
multidimensional product rule can be applied to the gradient in 
equation 24 to yield 

(VfdDX=O = ((f o T)viDTI)IDx=~(25) 

+ (IDTID(f o T))ID,,o - vf II&o. 

where f and IDTl are regarded as functions of the six vari- 
ables z,y, Hz, Hy,Vz, and V,. When Dx = 0, the function T 
becomes the identity so f 07 = f and IDTl = 1. Hence equation 
25 can be re-written as 

P~NT)ID~=~ = f (VIDTI)IDx,o + D(f o T)ID~=~ - Vfl~~=~. 
(26) 

The Jacobian D ( f o T) according to the chain rule is V f -DT. 
Substituting into equation 26 leaves 

(vfNdIDX=O = f (VIDTI)ID*,,o (27) 

+ (vf) * (DT)IDx,o - vf I&=0. 

The last term on the right in equation 27 is simply the vector 

(-fz2, -fwO,O,O,O). St raightforward calculation of the deriva- 
tives from equation 22 shows that the first term is (0, 0, f, 0, 0, f). 
Thus we have 

(V~~VT)ID~=~ = (-f=,-fy,f,O,Olf)+(vf).(DT)IDx=D. (28) 

The extended Jacobian DT 
fore by adding the equations 

can be calculated exactly as be- 

F+, y, z’, y’) = H, - HA = 0 (29) 

F,(z, y, z’, y’) = Hy - H; = 0 (30) 

F5(z,y,z’,y’) = V, - V; = 0 (31) 
F&y, z’, y’) = Vu - V; = 0. (32) 

The implicit function theorem states that DT is the product 
of two matrices. When Dx = 0, the first matrix becomes the 
identity and we have z = z’, y = y’. Thus DT is simply 

lOzyO0 
OlOOzy 

DTIDx,o = 
001000 i 1 000100 (33) 

000010 
000001 

Multiplying out (Vf) 0 (DT)IDx,s and substituting in the 

eXpreSSiOn for v frJTIDXCo leaves 

VfNTIDX=O = (O,O, f + Zfz, Yfi,zfv, f + yfv). (34 

Hence the estimated geometric distortion noise is 

Nge = I*S .(O,O,f+ 2fz,Yf+fv,f +Yfx,) 

= I * (Hz(f + Zfz) + Hvyfz + Vzzfv + V,(f + yfv)). 
(35) 

Under ordinary stereo viewing conditions, VV < c VH so the 
estimate of N,, can be simplified to 

% = I * (Hz(f + zfz) + Hvyfz). (36) 
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the filter used is that of the Marr-Hildreth edge-detector [Marr 
and Hildreth, 19801. Then we have: 

Sigma /Mph:’ 

Figure 3: Correlation between f * I and fH * I as a function of 
o/i based on first-order Mark& image model 

Figure 4: The ratio between the standard deviations of fv * I 
and f * I as a function of a/a based on the first-order Markov 
image model 

C. Application of Orientation Constraint 

Since Hz and Hv are unknown, equation 36 does not provide 
a method of calculating No, directly from an image. It does, 
however, give a method of translating constraints on Hz and Hy 
into constraints on NBe. Using the Arnold-Binford analysis, for 
any ratio a between the inter-ocular distance and the viewing 
distance, confidence limits on Hz and Hv can be computed. If 
the limits are such that with probability q, lHzl < Hz, and 
] HvI < Hvm then with probability at least q, we have 

INoel < II* &mf~l + II* &mfvI. (37) 
For the Burt-Julesz psychophysical constraint that ]VH] < 1, 
the situation is much the same. Clearly [Hz1 < 1 and lHvl < 1 
so ]Noe] is bounded by the equation 

INgel < II* fHI + II* fvl. (38) 
In both cases, ] Nse ] is bounded by the sum of the absolute values 
of the outputs of two linear filters. The first filter measures the 
sensitivity of I* f to small horizontal compression and the second 
measures the sensitivity of I * f to small vertical skew. The 
computation is simple enough to be performed at every image 
point without excessive cost. 

IV Applications of Distortion Estimate 

A. Marr-Hildreth Special Case 

An interesting special case of the estimate NBe occurs when 

fH = & I$ + ey -2 
( 1 

e-r=/2~~ (40) 

where r2 = x2 + y2. 

The Marr-Poggio theory argues that zeros of 11 * f reliably 
correspond to zeros of 12 * f because they will both be caused by 
physical edges or surface markings. At a vertical step edge, this 
view is easily confirmed by the preceeding analysis of geometric 
distortion. Let Ir(z, y) b e a step edge defined as follows: 

U%Y) = { 
1 if Z<O 
0 otherwise 

Direct calculation shows that 

-2 
f*Il=-e -z=/202 

&G7s 

(42) 

(43) 

Since fv is odd along the y-direction, fv * 11 = 0 everywhere. 

The other component fH of Noe can be easily evaluated along 
the edge by noticing that fH = ilzf/ilz. Hence 

a 
I*fH=I*zZf="f (44 

Along the edge z = 0, so I * fH = 0. Since I * fv is also zero, 
the estimate NQe of the geometric distortion noise must vanish 
along the edge. Thus zero-crossings in I1 * V2G can be trusted 
to correspond to zero-crossings in I2 * V2G. The fact that NBe 
vanishes along the edge should not be particularly surprising. 
A step edge under an affine transformation simply changes its 
orientation. For a radially symmetric filter like V2G, the change 
in orientation does not introduce any geometric distortion noise. 

Thus, for images which consist entirely of sparse, straight, 
step-edges, geometric distortion is not a problem for Marr- 
Poggio based correspondence algorithms except perhaps near 
edge intersections. Nevertheless, for more general images, geo- 
metric distortion can pose severe problems. If the image spec- 
trum is symmetric and representable at least locally as a Gaus- 
sian process, tqen f * I, and fv * II are independent random 
variables. Thus points where f * I = 0 (edges in the Marr- 
Hildreth theory) are no less susceptible to geometric distortion 
due to skew than are other image points. With geometric dis- 
tortion due to compression, the situation is more favorable for 
the Marr-Poggio approach. Suppose for example that the image 
is a stationary first-order Gaussian Markov process with auto- 
correlation exp( - ]r/a]) [K ass 19841. Then f + I and fH * I are 
somewhat correlated, so points where f * I = 0 should on the 
average have somewhat less geometric distortion due to com- 
pression than randomly selected image points. Figure 3 shows 
the correlation between f * I and fH * I as a function of the ra- 
tio u/a between the space constants of the filter and the image. 
As a result of these correlations, the Marr-Poggio approach to 
stereopsis should be slightly more tolerant of horizontal disparity 
gradients than vertical ones. 

When complex scenes are viewed, fv * I and fH * I can take 
on reasonably large values with high probability even at zero- 
crossings of V2G * I. Attempting to match such points on the 
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Figure 5: University of British Columbia Acute Care Center 
from the air (right image) 

basis of the value of V2G * I seems imprudent. The ratio of the 
standard deviation of fv * I to the standard deviation of f * I is 
shown in figure 4 again as a function of a/a based on the first- 
order Markov model. Assuming a vertical disparity gradient at 
the Burt-Julesz limit of 1 and a large U/Q ratio, up to 48 percent 
of the zero-crossings will have geometric distortion in excess of 
a(V’G * I)/2 and up to 15 percent will have geometric distor- 
tion in excess of a(V2G * I). Under such conditions, geometric 
distortion is clearly a major problem. 

Equations 37 and 38 provide a simple method of modifying 
the Marr-Poggio approach to substantially improve its immunity 
to geometric distortion. At each zero-crossing in V2G * I, the 
bound on ] N,,] can be computed from fH * I and fv * I. If 
the bound on ] N,,] is too large, the zero-crossing should not be 
matched since any match would be very unreliable. Empirical 
investigations of this approach are planned. 

B. Gaussian Filter Special Case 

Another interesting special case for the geometric distortion 
analysis is when f is a Gaussian filter. Then 

f = A-e-(‘2+w”2 (45) 

fH=f+zf,= 1-g f=-f12fit 
( 1 

(46) 

fv = yfz = zfv = Tf = -r7’fzv. (47) 

Thus the estimate No, becomes 

Nge = H,o’I * fZz + Hvu21 * fiv. (48) 

Once again, there is a connection with the Marr-Hildreth the- 
ory of edge detection. Not all intensity edges are guaranteed 
to give rise to zero-crossings in I * V2G. However, Marr and 
Hildreth [1980] h s owed that under a condition known as linear 
variation edges of all orientations cause zero-crossings in I * V2G 
(for a detailed discussion, see Torre and Poggio [1986]). At edge 

Fig 
fro: 

points, the condition of linear variation states roughly that the 
image intensities are locally linear so the Hessian matrix van- 
ishes. At a zero-crossing in I * V2G where the condition of linear 
variation holds, both I * fiz and I * fiv are zero so the estimate 
NQe goes to zero. Hence, under the condition of linear variation, 
edges in the Marr-Hildreth theory are points where I * f is best 
preserved between views when the filter f is a Gaussian. Note 
that this does not imply anything about how well I * V2G is 
preserved between views. 

C. Application to Kaas stereo algorithm 

The Kass stereo algorithm [Kass 1983a,b 19841 computes 
correspondence based on combining indications from a set of 
nearly independent linear filters at each point. A decision about 
whether point p1 in the first image can match p2 in the second 
is made by comparing vectors of linear filters at the two points. 
If the output of any linear filter differs in the two images by 
more than the threshold for that operator, then the potential 
match is rejected. Using the geometric distortion estimate Npe, 
these thresholds can be adjusted dynamically across the image 
so that the relative weighting of the different filters depends on 
how invariant they are with respect to changes in geometry. 

Figures 5 and 6 show a stereo pair of the University of British 
Columbia Acute Care Center from the air. Using the Kass 
stereo algorithm and the geometric distortion estimate N,,, 
these stereo images were matched. Figure 7 shows the results 
plotted as contours of constant height above the ground. Note 
that the buildings are accurately separated from the ground. 
Matching without the geometric distortion estimate resulted in 
far noisier results. 

V Conclusions 

The geometric distortion estimate Nge is applicable to any 
stereo algorithm which uses a linear filtering step. In particular, 
this includes coarse-to-fine techniques which blurr the images 
prior to matching, as well as edge-based techniques which de- 
tect edges using linear filters. The estimate makes it possible 
to identify the points in an image where geometric distortion is 
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Figure 7: Contours of constant height above the ground for the 
stereo pair of figures 5 and 6 

likely to pose a large problem. The cost of doing so is very min- 
imal because the estimate NQe can be computed trivially from 
the outputs of two linear filters. Computational experiments 
with the Kass stereo algorithm have shown that the theoretical 
advantages of using the distortion estimate are easily attainable. 
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