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ABSTRACT 

Given a collection of similar signals that have been de- 
formed with respect to each other, the general signal 
matching problem is to recover the deformation. We for- 
mulate the problem as the minimieation of an energy mea- 
sure that combines a smoothness term and a similarity 
term. The minimieation reduces to a dynamic system 
governed by a set of coupled, first-order differential equa- 
tions. The dynamic system finds an optimal solution at 
a coarse scale and then tracks it continuouslv to a fine 
scale. Among the major themes in recent work on vi- 
sual signal matching have been the notions of matching 
as constrained optimization, of variational surface recon- 
struction, and of coarse-to-fine matching. Our solution 
captures these in a precise, succinct, and unified form. 
Results are presented for one-dimensional signals, a mo- 
tion sequence, and a stereo pair. 

I Introduction 

Given a collection of siinilar signals that have been deformed 
with respect to each other, the general signal matching problem 
is to recover the deformation. Important matching problems in- 
clude stereo vision, motion analysis, and a variety of registration 
problems such as template matching for speech and vision. 

We cast the problem as the minimization of an energy func- 
tional E(V) h w ere V is the deformation. The energy functional 
is the sum of two terms, one based on the correlation of the 
deformed signals, and the other based on the smoothness of the 
deformation. 

In general, the energy functional E(V) can be highly non- 
convex, so that ordinary optimization methods become trapped 
in local minima. Optimization by simulated annealing can be 
attempted, but at severe computational expense. Instead, we 
rely on continuation methods to solve the problem. By introduc- 
ing a scale parameter o, the minimization problem is embedded 
within a larger space. A suitable minimum can be achieved 
relatively easily for large u because the signals and hence the 
energy landscape are very smooth. The solution of the original 
minimization problem is then obtained by continuously tracking 
the minimum as u tends to zero. This is analogous to a coarse- 
to-fine tracking of extrema through scale-space in the sense of 
(Witkin, 19833. 

The entire procedure consists of solving the first-order dy- 
namic system 

0 = -kr exp(-kz]VE(V,o)]), ir = -VE(V,a), 

where the dot denotes a time derivative, B is the scale parameter 
and kl and kz are constants. Given an initial crude estimate for 
V at a coarse-scale ~0, the system minimizes E at ~0 and follows 
a trajectory of minima through finer scales, thereby increasing 
the resolution of V. Any of a number of well known numerical 

techniques can be used to solve for the trajectory. Through 
a series of incremental deformations, correlations of deformed 
signals are optimized and balanced against the smoothness of 
the deformations while moving from coarse to fine scale. Thus, 
the first-order system compactly unifies a number of important 
yet seemingly disparate signal-matching notions. 

In the remainder of this section, the relation of our technique 
to previous work on matching is discussed. Then in section 2, 
a framework for the minimization problem is introduced. In 
section 3, the solution of the problem by continuation methods 
and the resulting single differential equation are also developed. 
Section 4 describes the specific similarity term employed and, 
in section 5, the details of the smoothness term are discussed. 
Finally, section 6 presents several examples of matching results 
for one- and two-dimensional signals. 

A. Background 

An enormous amount of work has been done on signal match- 
ing, giving precedent for several components of our approach. 

Optimization of constained deformations guided by correla- 
tion or L2 metrics can be found in prior work. In speech recog- 
nition, the problem of time warping speech segments to match 
input utterances with stored prototypes has been addressed in 
this context. Dynamic programming has been used to com- 
pute constrained warping functions (see (Rabiuer and Schafer, 
19781 and [Sankoff and Kruskal, 19831 Part II). This particular 
optimization technique is readily applicable in matching situa- 
tions involving sequentially ordered signals, such as speech, and 
unilateral continuity constraints. However, its stringent require- 
ments on the energy functional appear incompatible with the 
unordered multi-dimensional signals and isotropic smoothness 
constraints which are of primary concern to us. 

Smoothness constraints have been popular in computational 
vision. Consider the important problem of stereo matching. In 
the past, dense disparity maps have been computed through a 
two step process of local matching followed by smooth [Grimson, 
19831, multiresolution (Terzopoulos, 19831, or piecewise contin- 
uous [Terzopoulos, 19861 surface reconstruction from the sparse 
disparities. The approach in the present paper unifies match- 
ing and piecewise smooth reconstruction into a single iterative 
optimization process. 

Broit’s [1981] work in registering a deformed image to a model 
image resembles ours, in that matching is explicitly formulated 
as a minimization problem involving a cost functional that com- 
bines both a deformation constraint and a similarity measure. 
His deformation model, which involves the strain energy of a 
globally smooth elastic body, is more elaborate than the defor- 
mation constraints inherent in the spring loaded subtemplate 
matching technique of Fischler and Elschlager [1973] or the iter- 
ative Gaussian smoothed deformation models proposed by Burr 
[1981]. Our controlled-continuity deformation model provides us 
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with the additional capability to regulate the order of smooth- 
ness and to preserve discontinuities in the deformation. 

Coarse- to-fine matching schemes have previously been treated 
as a multistage process in which a matching operation is per- 
formed at each successive level [Mori, et al., 1973; Hannah, 1974; 
Moravec, 1977; Marr and Poggio, 1979; Gennery, 19801. We have 
extended this idea into a matching process which evolves con- 
tinuously towards finer spatial scale. The idea of progressing 
continuously through scale space derives from Witkin (19831. 

As our matching process computes the deformation itera- 
tively, it is best to perform the similarity measurements by de- 
forming the signals according to the current approximation of 
the deformation. This concern has also been addressed by the 
matching algorithms described in [Mori, et al., 1973; Burr, 1981; 
Broit, 1981; Quam, 1984). 

II Framework 

Consider a vet tor of n similar signals f (x) = [G (x), . . . , fi (x)] 
defined in d dimensional space x = 121,. . . , zd] E @, and 
a deformation mapping V : !I? I+ !Rnd, such that V(x) = 
[Vi(X), . . * ,Vn(X)I, where each of the n disparity functions vi : 
!@ H ti is a Vector valued fUnCtiOn Vi(X) = [q(X), . . . , Vd(X)IT. 
Given a set of deformed signals f such that f’ (x) = f(V* (x)), 
the matching problem is to recover the deformation V*(x). 

Suppose that the similarity between the signals f for a given 
deformation V is measured by a functional Q(V) : Pd H !R 
bounded from above by a value achieved by the best possible 
match. A reasonable objective is to find the deformation U 
which maximizes the quality of the match; i.e., to minimize 
-Q(V) over possible deformations V. Thus, U represents an 
optimal approximation to V’. 

This minimization problem is clearly ill-posed in the absense 
of constraints on admissible deformations, since, e.g., degenerate 
or chaotic deformations can always be contrived that achieve the 
minimum value. Such constraints may be encoded by a second 
functional S(V) : Und t) !I?, where Nnd c !Rnd is the subset of 
admissible deformations. 

Useful instances of similarity and constraint functionals will 
be formulated shortly. Their combination, however, leads to the 
following minimization problem: Find the deformation U E Und 
such that E(U) = infVENRd E(V), where the energy functional 
is given by 

E = -(l- X)Q - XS (1) 

and where X E (0,l) is a weighting parameter. 

Stabilization offers a general approach to a numerical solution 
through the construction of a discrete dynamic system whose 
fixed points include a discrete solution of the above optimization 
problem [Bakhvalov, 19773. A simple dynamic system with this 
property is characterized by the differential equations 

++VE=O, (2) 

where the dot denotes differentiation with respect to time t and 
VE denotes the gradient of E with respect to the free variables 
of the discrete deformation. Optimization occurs by dissipation 
of energy; energy cannot increase along the system’s trajectory 
V(x,t) in lPd, which follows the direction of the gradient of 
E. Although the trajectory terminates at a local minimum of 
E, there is no guarantee that the global minimum U will be 
attained by solving this initial value problem starting from an 
arbitrary initial condition V(x, 0). 

III Continuation over Scale 

The key remaining difficulty is that for obvious choices of Q, 
such as linear correlation, E is likely to have many local minima, 
making the minimization problem highly non-convex and there- 
fore extremely difficult to solve. There are two options: solving 
this hard problem directly (for example by simulated annealing) 
or simplifying the problem by choosing Q to be convex or nearly 
so. We pursue the second option because annealing is expensive. 

A. Continuation Methods 

Q may be smoothed by subjecting f to a smoothing filter of 
characteristic width Q. We observe empirically that the best so- 
lution for v as (T increases tends to be an increasingly smoothed 
version of the correct solution. These means that slightly deblur- 
ring v by reducing D produces a slightly better solution close to 
the one just obtained. To the extent this is so, we can solve 
the problem using equation 2 by means of continuation methods 
(Dahlquist and BjGrck, 19741. 

Continuation methods embed the problem to be solved, 

g(v) = 0, 

in a family of problems 

dv, 8) = 0, 

parameterized by 6. Let si+l = 6; + Aa, g(v, 6,) be the problem 
we wish to solve, presumably difficult, and g(v,sr) a readily 
solvable member of the family, and let 

u(8) = Hk, 8, vo) 

be the solution for g at 
u(s,) is obtained from 

condition. 8 given vc as an initial 
~(61) by the iteration 

Then 

u(ei+l) = H(g, 6i+l, ui); i= l,...,n-- 1 

that is, each solution is used as an initial condition to obtain the 
next one. 

For the current problem, the continuation parameter is u, 
with Au < 0. We continue from an initial coarse scale (rl and 
an initial guess VI by 

vi+l = H(q + VE, ui+l, Vi), 

to a fine scale 0, and a final answer V,. To visualize this 
method, imagine thd energy landscape at each value of cr as a 
contoured surface in 3-space. The surfaces are stacked one above 
the other, so that the topmost surface is very smooth, while the 
lower ones become increasingly bumpy. Imaging a hole drilled 
at each local minimum on each surface. A ball bearing dropped 
onto the topmost surface will roll down to the bottom of the 
hill. At this point, it falls through to the next level, rolls down 
again, falls through again, and so on to the bottom. 

B. A Scale Space Equation 

This iteration solves a separate initial value problem at each 
step. A more attractive alternative is to collapse the contiu- 
uation over 0 into a single differential equation. Ideally, the 
solution should follow a curve V(o) satisfying 

]VE(V(b))( = 0; 

i.e., a continuous curve of 
equation for this curve is 

solutions over scale. A differential 

V, = -(VE),(VVE)-‘. (3) 
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The solution to this equation tracks a given coarse-scale solution measure of similarity over position. If Ki,j(X) is a local mea- 
continuously to fine scale, in precise analogy with the coarse-to- sure of the similarity of fi(Vi(x)) and fj(vj(x)) around X, then 
fine tracking through scale space of [Witkin, 1983). Unfortu- Qi,j = I Ki,j( )d x x is a global measure of similarity for fi and 
nately, it is impractical to solve this equation for arbitrary 5’ fj. By simply adding up pairwise similarities, a global measure 
and Q, since VVE is high dimensional. of similarity can be constructed for n signals: Q = Cifi Qi,j. 

To construct an approximate equation, we introduce the 
quantity 

N = -kle-WEI, (4 

so that N = -kl at a solution to equation 2, diminishing with 
distance from the solution at a rate determined by the space 
constant kz. The equation 

b = N, ir= -VE (5) 

approximates the desired behavior. Far from a solution, where 
N is small, equation 5 approaches equation 2, changing V but 
not u. Approaching a solution, u begins to decrease. At a 
solution, Q = 0 and C+ = -kl. From an initial V(to),a(to), the 
solution V(t), a(t) moves through V at nearly constant scale 
until a minimum in E is approached, then it begins descending 
in scale staying close to a solution. 1 

A number of possibilities exist for the local similarity mea- 
sure Ki,j(x). Normalized cross-correlation produces good re- 
sults for several matching problems that we have examined. If 
W,(x) is a window function where 7 denotes the width param- 
eter, pi(x) = J fi(vi(Y - ~))W,(Y)~Y, and ui(x) = J[,‘i(vi(x - 
Y)) - Pitx - y)12w (Y) dy, th en the normalized cross-correlation 
can be written 

Ki,j(x) = [vi(x)vj(x)1-1’2 /{ [fi(vi(x - Y)) - Pi(X - Y)l 

x [fjtvjtx - Y)) - Pjtx - Y)lw(Y)} dY* 

The resulting functional Q(V) generally has many local min- 
ima. In order to apply the continuation method, we compute Q 
for signals f which have been smoothed by Gaussians of stan- 
dard deviation CJ. The resulting functional Q6(V) can then be 
made as smooth as is desired. 

Equation 5 finds a solution at the initial scale, then tracks 
it continuously to finer scales. To use equation 5, we choose a 
coarse scale u(tO)> a crude initial guess V(t,), and a terminal 
fine scale 0~. We then run the equation until o(t) = UT, taking 
V(t) as the solution. 

C. Ambiguous Solutions 

From time to time, we expect to encounter instabilities in 
the solutions of equation 5, in the sense that a small perturba- 
tion of the data induces a large change in the solution curve’s 
trajectory through scale space. These instabilities correspond 
to bifurcations of the solution curve, analogous to bifurcations 
that can be observed in Gaussian scale space. We have consid- 
ered two approaches to dealing with them. First, by adding a 
suitable noise term to E, equation 5 becomes a hybrid of scale 
space continution and simulated annealing. We believe that lo- 
cal ambiguities can be favorably resolved using low-amplitude 
noise, hence with little additional computational cost. A second 
approach is to regard these instabilities as genuine ambiguities 
whose resolution falls outside the scope of the method. In that 
case, a set of alternative solutions can be explored by the ad- 
dition of externally controlled bias terms to E. These terms 
can reflect outside constraints of any kind, for example, those 
imposed by the operation of attentional proceseses. 

In the following sections, we turn to specific choices for S and 
Q. 

IV Similarity Functional 

In general the similarity measure Q should capture what is 
known about the specific matching problem. In many cases, the 
undeformed signals are sufficiently similar that a simple corre- 
lation measure suffices. In this section we formulate a generic 
choice for this class of problems. Note that, by assumption, it 
is the undeformed signals f(x) which are similar, so the quality 
of a potential solution V should be measured by the similarity 
of the signals f(V(x)). 

Consider the case of two signals fi and fj. A general fam- 
ily of similarity measures is obtained by integrating a local 

‘The solution to equation 5 oscillatea around the exact solution (equation 
3,) with frequency and amplitude controlled by kl and kz. This oscillation 
can be damped by the addition of second order terms in t, but we have 
not found it necessary to do so in practice. 

The correlation window size W, should be large enough to 
provide an accurate local estimate of the mean and variance 
of the signals, but small enough that non-stationarities in the 
signals do not become a problem. A convenient way to set 7 to 
a reasonable value is to make it a fixed multiple of the average 
autocorrelation widths of the smoothed sign,&. Then 7 can be 
regarded as a function of 1~. 

Note that Q,(V) must be recomputed at each iteration, with 
the signals resampled to reflect the current choice of V. If the 
deformation is very small, the distortion induced by failing to 
resample can be ignored, but the value of such resampling in 
stereo matching, for example, is well established [Mori, et al., 
1973; Quam, 19841. The Gaussian signal smoothing should also 
take place on the resampled functions j(v(x)). 

V Smoothness Functionals 

The functional S(V) places certain restricitions on admissible 
deformations in order to render the minimization problem better 
behaved. Perhaps the simplest possible restriction, and one that 
has been used often in the past, is to limit possible disparities 
between signals to prespecified ranges. A deformation can then 
be assigned within disparity bounds on a point by point basis 
according to maximal similarity criteria. Although simple, such 
limited searches are unfortunately error prone, since they are 
based on purely local information. 

This problem can be resolved by imposing global constraints 
on the deformation that are more restrictive yet remain generic. 
Such constraints may be based on a priori expectations about 
deformations; for example, that they are coherent in some sense. 
In particular, admissible deformations may be characterized ac- 
cording to the controlled-continuity constraints defined in (Ter- 
zopoulos, 19861. Th ese constraints, which are based on general- 
ized splines, restrict the admissible space of deformations to a 
class of piecewise continuous functions. Not only is the defor- 
mation’s order of continuity controllable, but discontinuities of 
various orders (e.g., jump, slope, and curvature discontinuities) 
are permitted to form, subject to an energy penalty. 

A general controlled-continuity constraint is imposed on the 
deformation by the functional 
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Figure 2 shows a more challenging example in which 4 signals 
are matched simultaneously. The signals are intensity profiles 
from a complex natural image. On the left the four signals are 
shown superimposed at several points in the matching process. 
As before, the original signals appear at the top and the fi- 
nal result is at the bottom. Note that coarse-scale features are 
aligned first in the matching process while fine scale features are 
matched later. The four corresponding deformation functions 
vi(z) are shown to the right. 

C. Motion Sequence 

Figure 3 shows two frames from a motion sequence showing M. 
Kass moving against a stationary background. The frames are 
separated in time by about 1.5 seconds. Results of the match- 
ing process are shown as follows: the original image has been 
mapped onto a surface that encodes estimated speed as eleva- 
tion. The raised area shows the region in which the algorithm 
detects motion. 

D. Stereo Matching 

Figure 4 contains a stereogram showing a potato partly oc- 
cluding a pear. The matching results are rendered as two shaded 
surfaces with depth computed from the disparity. An image co- 
ordinate grid is mapped onto the first surface and the left image 
is mapped onto the second. The reconstructed surfaces are ren- 
dered from an oblique viewpoint showing the computed surface 
discontinuities. Only those portions of the scene visible in the 
original stereogram are shown. 

VII Conclusion 

The main contribution of this paper is two-fold. First, we 
introduced the notion of tracking the solution to the matching 
problem continuously over scale. Second, we developed a single 
system of first-order differential equations which characterize 
this process. The system is governed by an energy functional 
which balances similarity of the signals against smoothness of 
the deformation. The effectiveness of this approach has been 
demonstrated for both one- and two-dimensional signals. 
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Figure 1: Matching two one-dimensional signals. The signals 
are measurements of the resistivity of a geological structure as 
a function of depth at two different locations. From top to bot- 
tom, the signals first appear in their original form, then partially 
deformed at intermediate stages of the matching process, finally 
showing the end result. Above the signals are shown the defor- 
mation function V and the correlation gradient VQ, 
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maximum order of continuity (0-l) of the admissible defor- 
mations. The nonnegative continuity control functions W(X) = 
[we(x), * *. > wp(x)] determine the placement of discontinuities. 
A discontinuity of order q < p is permitted to occur at x0 by 
forcing wi(xo) = 0 for i > q (see [Terzopoulos, 19861 for details). 

Thep= 2 order controlled-continuity constraint is employed 
in our implementations to date. If, for convenience, a “rigid- 
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the functional reduces to 
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Figure 2: Simultaneous matching of four signals. The signals 
are intensity profiles from a complex natural image. On the left 
the four signals are shown superimposed at several points in the 
matching process. As before, the original signals appear at the 
top and the final result is at the bottom. Note that coarse-scale 
features are aligned first in the matching process while fine scale 
features are matched at the end. The four corresponding defor- 
mation functions vi(x) are shown to the right. 

where z1 = z and 22 = y. 

VI Results 

A. Implement at ion Notes 

Discretization of the continuous variational form of the match- 
ing problem can be carried out using standard methods. Al- 
though finite element methods offer the greatest flexibility, for 
simplicity we employ standard multidimensional finite difference 
formulas for uniform meshes to approximate the spatial deriva- 
tives in S(V). Th ese approximations yield local computations 
analogous to those in [Terzopoulos, 19831. 

Equation 5 is a standard first-order initial value problem, 
for which solution methods abound. We have employed nu- 
merical methods of varying sophistication, each giving satis- 
factory results. In order of sophistication, these include Eu- 
ler’s method, a fourth-order Runge-Kutta method, and Adams- 
Moulton predictor-corrector methods. The latter offer the ad- 
vantage that the step size can be automatically adapted, making 
them particularly robust [Dahlquist and Bjijrck, 19741. 

B. One-dimensional Signals 

The method is applicable to matching n signals, each of which 
is d-dimensional. Figure 1 shows the simplest case, that of 
matching two one-dimensional signals. The signals are measure- 
ments of the resistivity of a geological structure as a function of 
depth at two different locations. From top to bottom, the sig- 
nals first appear in their original form, then partially deformed 
at intermediate stages of the matching process, finally showing 
the end result. The deformation function V and the correlation 
gradient VQ are shown above the signals. 
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Figure 4: A stereogram showing a potato partly occluding a pear (the images are reversed for free fusing). The matching results - 
are rendered as two shaded surfaces with depth computed from thd disparity. An image coordinate grid is mapped onto the first 
surface and the left image is mapped onto the second. The reconstructed surfaces are rendered from an oblique viewpoint showing 
the computed surface discontinuities. Only those portions of the scene visible in the original stereogram are shown. 
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