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ABSTRACT 

This paper describes the Common Lisp system that BBN is 
developing for its ButterflyTM multiprocessor. The BBN 
ButterflyTM is a shared memory multiprocessor which may 
contain up to 256 processor nodes. The system provides a 
shared heap, parallel garbage collector, and window based 
I/O system. The future construct is used to specify 
parallelism. 

THE BUTTERFLYTM LISP SYSTEM 

For several decades, driven by industrial, military and 
experimental demands, numeric algorithms have required 
increasing quantities of computational power. Symbolic 
algorithms were laboratory curiosities; widespread demand 
for symbolic computing power lagged until recently. The 
demand for Lisp machines is an indication of the growth of 
the symbolic constituency. These machines possess 
architectural innovations that provide some performance 
increases, but they are still fundamentally sequential 
systems. Serial computing technology is reaching the point 
of diminishing returns, and thus both the numeric and 
symbolic computing communities are turning to parallelism 
as the most promising means for obtaining significant 
increases in computational power. 

BBN has been working in the field of parallel computers 
since the early 1970’s, having first developed the Pluribus 
multiprocessor and more recently, the Butterfly, the machine 
whose programming environment we concern ourselves 
with in this paper. The Butterfly multiprocessor consists of a 
set of up to 256 nodes, each containing both a processor and 
memory, connected by a Butterfly switch (a type of Omega 
network) (see figure 1). Each node has from 1 to 4 
megabytes of memory, a Motorola 68000 series processor 
and a special purpose Processor Node Controller (PNC). 
The PNC is microprogrammed to handle inward and 
outward Butterfly switch transactions, and to provide 
multiprocessing extensions to the 68000 instruction set, 
particularly in cases where atomicity is required.1 

To date, Butterfly programs have been written exclusively in 
C, with most numeric applications using the Uniform 
System package. The Uniform System provides and 
manages a large shared address space and has subroutines 
which can be used to distribute subtasks to all of the active 
processors. It has been used to speed up algorithms for 
matrix multiplication, image processing, determining 
elements of the Mandelbrot set, and solving differential 
equations and systems of linear equations.2 3 

Butterflym is a trademark of Bolt, Beranek and Newman. 

Under DARPA sponsorship, BBN is developing a parallel 
symbolic programming environment for the Butterfly, based 
on an extended version of the Common Lisp language. The 
implementation of Butterfly Lisp is derived from C Scheme, 
written at MIT by members of the Scheme Team.4 The 
simplicity and power of Scheme make it particularly suitable 
as a testbed for exploring the issues of parallel execution, as 
well as a good implementation language for Common Lisp. 

The MIT Multilisp work of Professor Robert Halstead and 
students has had a significant influence on our approach. For 
example, the future construct, Butterfly Lisp’s primary 
mechanism for obtaining concurrency, was devised and first 
implemented by the Multilisp group. Our experience porting 
MultiLisp to the Butterfly illuminated many of the problems 
of developing a Lisp system that runs efficiently on both 
small and large Butterfly configurations.5 6 

In the first section, this paper describes future-based 
multitasking in Butterfly Lisp and how it interacts with more 
familiar Lisp constructs. The second section describes how 
Butterfly Lisp deals with the problems of task distribution 
and memory allocation. It contrasts our approach and the 
Uniform System approach. The third section describes the 
Butterfly Lisp parallel garbage collector and the fourth 
section describes the user interface. 

Figure 1: 16x16 Butterfly Switch 
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BUTTERFLY LISP 

Experiments in producing parallel programs that effectively 
use the available processing power suggest that the 
fundamental task unit must execute on the order of no more 
than lOO- 1000 instructions 7 8 9. If the task unit is larger, 
there will be insufficient parallelism in the program. This 
task size is only slightly larger than the size of the typical 
subroutine. This similarity in scale implies that the tasking 
overhead must be within an order of magnitude of the 
subroutine overhead. To encourage the programmer to use 
subtasks instead of calls, the tasking syntax should be 
similar to the calling syntax. 

mapcar does not return until all of the subtasks have been 
spawned. We can create the futures more aggressively, 
as in the following example: 

(defun aggressive-mapcar (function list) 
(if (null list) 

nil 
(cons (future (function (car list))) 

(future (aggressive-mapcar 
function 
(cdr list)))))) 

A call to aggressive-mapcar would quickly start two 
subtasks and immediately return a cons containing the two 

Butterfly Lisp uses the future mechanism as its basic task 
creating construct. The expression: 

futures. This makes it possible to start using the result of 
the subroutine well before the computation has been 
completed.Ifapairof aggressive-mapcars is 
cascaded: 

(future <s-expression>) 

causes the system to note that a request has been made for 
the evaluation of <s-expression>, which can be any 
Lisp expression. Having noted the request (and perhaps 
begun its computation, if resources are available), control 
returns immediately to the caller of future, returning a 
new type of Lisp object called an “undetermined future” or 
simply,a future. The future object serves as a 
placeholder for the ultimate value of <s-expression> 
and may be manipulated as if it were an ordinary Lisp object. 
It may be stored as the value of a symbol, consed into a list, 
passed as an argument to a function, etc. If, however, it is 
subjected to an operation that requires the value of <s- 
expression> prior to its arrival, that operation will 
automatically be suspended until the value becomes 
available. 
future provides an elegant abstraction for the 
synchronization required between the producer and 
consumer of a value. This permits results of parallel 
evaluations to be manipulated without explicit 
synchronization. Thus, Butterfly Lisp programs tend to be 
quite similar to their sequential counterparts. 

(aggressive-mapcar f 
(aggressive-mapcar g x-list)) 

subtasks spawned by the outer aggressive-mapcar 
may have to wait for the results of those spawned by the 
inner call. 

As might be expected, the introduction of parallelism 
introduces problems in a number of conventional constructs. 
For example, the exact semantics of Common Lisp do are 
extremely important as in the following loop: 

(do ((element the-list (cdr element))) 
((null element)) 
(future (progn (process-first (caar element)) 

(process-second 
(cadar element))))) 

In a serial system it doesn’t matter if do is implemented tail 
recursively or not. In a parallel system, if the loop is 
implemented tail recursively the semantics are pretty clear: 

(defun stepper (element) 
(cond ( (null element) nil) 

This similarity is illustrated by the following example. To 
convert a simplified serial version of mapcar : 

(defun simple-mapcar (function list) 
(if (null list) 

nil 
(cons (function (car list)) 

(simple-mapcar function 
(cdr list))))) 

into a parallel version requires the addition of a single 
futureform: 

(defun parallel-simple-mapcar (function list) 
(if (null list) 

(t (future 
(progn 

(process-first 
(caar element)) 

(process-second 
(cadar element)))) 

(stepper (cdr element))))) 

There will be a new environment and so a new binding of 
e lement for each step through the loop. It is easy to 
determine which value of e lement will be used in the body 
of the future. This is not the case if the do loop is 
implemented using a prog, side-effecting the iteration 
variable: 

nil (prog (element) 
(cons (future (function (car list))) loop (if (null element) 

(parallel-simple-mapcar (return)) 
function (future (progn 
(cdr list))))) (process-first (caar element)) 

In this version of mapcar, the primary task steps down the 
original list, spinning off subtasks which apply function 
to each element. The function, parallel-simple- 

(process-second 
(cadar element)))) 

(setq element (cdr element)) 
(go loop)) 
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Since all iterations share a single binding of element, we 
have a race condition. 

IMPLEMENTATION 

In some ways, Butterfly Lisp is similar to the Uniform 
System. Both systems provide a large address space which 
is shared by all of the processors. Processors are 
symmetric, each able to perform any task. In both systems 
programs are written in a familiar language which, for the 
most part, executes in a familiar fashion. Since the Uniform 
System has been well tuned for the Butterfly we can use it to 
study the effectiveness of our implementation. 

The Uniform System was designed for numeric computing, 
taking advantage of the regularity of structure of most 
numeric problems. At any given time all of the processors 
are repeatedly executing the same code. This consists of a 
call to a generator to determine which data to operate on 
followed by a call to the action routine which does the 
computation. Loops in typical numeric algorithms can be 
broken into two parts: the iteration step and the iteration 
body. On a multiprocessor the iteration step must be 
serialized, but the iteration bodies may be executed in 
parallel. To use all processors effectively, the following 
condition should be met: 

Tbody >= Tstep * Nprocessors 

The Uniform System produces its best performance when 
the iteration step is completely independent of the iteration 
body, as is the case in many numeric programs. 

While symbolic tasks are usually expressed recursively 
rather than iteratively, this shouldn’t be a problem. 
Recursion can be broken into a recursion step and a 
recursion body. Stepping through a list or tracing the fringe 
of a tree is not significantly more expensive than 
incrementing a set of counters. If we are scanning a large 
static data structure, then our recursion step and recursion 
body will be independent and we can obtain performance 
improvements similar to those produced by the Uniform 
system. 

Unfortunately, this condition cannot always be met, Many 
symbolic programs repeatedly transform a data structure 
from one form to another until it has reached some desired 
state. The Boyer-Moore theorem prover applies a series of 
rewrite rules to the original theorem and converts it into a 
truth table-based canonical form. Macsyma repeatedly 
modifies algebraic expressions as it applies various 
transformations. In these cases, the recursion step often 
must wait until some other recursion body has finished 
before the next recursion body can begin; the future 
mechanism is better suited to dealing with this 
interdependency. 

It was because of these differences between the numeric and 
symbolic worlds that we implemented the future 
mechanism, which can be used to write programs in a 
number of styles.. The basic units of work are either 
procedures or continuations, both of which are first class 
Scheme objects. When a task is first created by the 
execution of the future special form, a procedure is 
created and placed on the work queue. Whenever a 
processor is idle it takes the next task off this queue and 

executes it. When a task must wait for another task to finish 
evaluating a future, its continuation is stored in that 
future. Continuations are copies of the control stack 
createdby thecall-with-current-continuation 
primitive. When a future is determined, any continuations 
waiting for its value are placed on the work queue so they 
may resume their computations. 

The Butterfly Lisp memory allocation strategy is different 
from that of the Uniform System. While the Butterfly 
switch places only a small premium on references to memory 
located on other nodes, contention for the nodes themselves 
can be a major problem. If several processors attempt to 
reference a location on a particular target node, only one will 
succeed on the first try; the others will have to retry. With a 
large number of processors, this can be crippling. To 
minimize contention, the Uniform System assists the 
programmer in scattering data structures across the nodes. In 
addition, it encourages the programmer to make local copies 
of data, providing a number of highly optimized copying 
routines that depend on the contiguous nature of numeric 
data structures. 

The complicated, non-contiguous data structures used in 
symbolic computation make the copying operation far more 
expensive, and thus worthwhile in fewer cases. Copying 
also introduces a number of consistency and integrity 
problems. Lisp makes a fundamental distinction between the 
identity primitive (eq) and the equality primitives (eql, 
equal, =). While other languages draw this distinction, it 
is frequently fundamental to the working of many symbolic 
algorithms. 

To diffuse data structures throughout the machine, the Lisp 
heap is a striated composite of memory from all of the 
processors. The garbage collector, which is described in the 
next section, is designed to maintain this diffusion. Each 
processor is allotted a share of the heap in which it may 
create new objects. This allows memory allocation 
operations to be inexpensive, as they need not be 
interlocked. 

GARBAGE COLLECTION 

Butterfly LISP has a parallel stop and copy garbage collector 
which is triggered whenever any processor runs out of heap 
space. (This strategy runs the risk that garbage collections 
might occur too frequently, since one processor might use 
memory much more quickly than the others. Experiments 
indicate that there is rarely more than a 10% difference in 
heap utilization among the processors), 10 

When a processor realizes that it must garbage collect, it 
generates a local garbage collection interrupt. The handler 
for this local interrupt uses a global interrupt to notify every 
processor that systemwide activity is needed. A global 
interrupt works by sending a handler procedure to each of 
the other processors, which they will execute as soon as they 
are able. 

Global interrupts do not guarantee synchrony. Since all 
processors must start garbage collecting at once and must not 
return from the interrupt handler until garbage collection is 
completed, the processors must synchronize before and after 
garbage collecting. This is accomplished by use of the 
await-synchrony operation, which uses a special 
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synchronizer object. Each processor awaits synchrony until 
all processors are waiting for the same synchronizer, at 
which time they may all continue. Internally, a synchronizer 
contains a waiting processor count that is atomically 
decremented as each processor starts waiting for it. When 
this count goes to zero, all of the processors may proceed. 

The garbage collection interrupt handler uses global 
interrupts and synchronizers something like this: 

(defun handle-local-gc-interrupt () 
(let ((start-synch (make-synchronizer)) 

(end-synch (make-synchronizer))) 
(global-interrupt 
(lambda () ; The Handler 

(await-synchrony start-synch) 
(garbage-collect-as-slave) 
(await-synchrony end-synch))) 

(await-synchrony start-synch) 
(garbage-collect-as-master) 
(await-synchrony end-synch))) 

On a serial machine, a copying garbage collector starts by 
scanning the small set of objects called the root, which can 
be used to find all accessible data. Scanning consists of 
checking each pointer to see if it points into old space. Old 
space objects are copied into new space and the original old 
space pointer is replaced by a pointer to the copied object in 
new space. A marker is left in old space so that subsequent 
checks do not copy the object again. Once an object has 
been copied into new space it must be scanned as well, since 
it may still contain pointers into old space. The scanning and 
copying continues until everything in new space has been 
scanned, at which time there are no more pointers into old 
space and garbage collection is complete. 
The Butterfly Lisp garbage collector works by breaking new 
space into partitions. These are the basic units of memory 
which are scanned or copied into. Each processor waits for a 
partition to appear on the work queue and begins to scan it, 
copying objects from old space into new space. When it 
needs memory to copy into, a processor grabs a fresh 
partition from new space. When it fills a partition, it puts it 
on the queue to be scanned. The garbage collection starts 
with one processor scanning the root, but all of the 
processors are quickly engaged in scanning and copying (see 
figure 2). Garbage collection continues until all the 
processors are idle and the queue is empty. lo 

USER INTERFACE 

The Butterfly Lisp User Interface is implemented on a 
Symbolics 3600-series Lisp Machine, communicating with 
the Butterfly using Internet protocols. This system provides 
a means for controlling and communicating with tasks 
running on the Butterfly, as well as providing a continuously 
updated display of the overall system status and 
performance. Special Butterfly Lisp interaction windows are 
provided, associated with tasks running on the Butterfly. 
These windows may be selected, moved, resized, or folded 
up into task icons. 

There is also a Butterfly Lisp mode provided for the ZMACS 
editor, which connects the various evaluation commands 
(e.g. evaluate region) to an evaluation service task running 
in the Butterfly Lisp system. A version of the Lisp machine- 
based data Structure Inspector is also being adapted for 
examining task and data structures on the Butterfly. 

Processor 1 Processor 2 

Old New 

2 4 q  
2 4 EB 

2 6 PI 

2 6 La 

3 8 I3 

3 8 

ScanQueue 

3 q  
3 q  
5Ez2z!6m 
5Ea 6B 0 0 0 

Figure 2: Parallel Garbage Collection - Copy and Scan 

Each task is created with the potential to create an interaction 
window on the Lisp machine. The first time an operation is 
performed on one of the standard input or output streams a 
message is sent to the Lisp machine and the associated 
window is created. Output is directed to this window and 
any input typed while the window is selected may be read 
by the task. This multiple window approach makes it 
possible to use standard system utilities like the trace 
package and the debugger. 

A pane at the top of the screen is used as a “face panel” to 
display the system state. This is information collected by a 
separate process, which spies on the Butterfly Lisp system. 
The major feature of this pane is a horizontal rectangle 
broken vertically into slices. Each slice shows the state of a 
particular processor. If the top half of the slice is black then 
the processor is running, if gray, it is garbage collecting, and 
if white, it is idle. The bottom half of each slice is a bar 
graph that shows how much of each processor’s portion of 
the heap is in use (see figure 3). 

This status pane also shows the number of tasks awaiting 
execution, the effective processor utilization, the rate of 
memory consumption, and an estimate of Butterfly switch 
contention. The graphical display makes such performance 
problems as task starvation easy to recognize. 

FUTURE DIRECTIONS 

Butterfly Lisp is currently interpreted. While this has been 
adequate during the development of various aspects of the 
system, such as the user interface and metering facilities, 
compilation is essential to the realization of the performance 
potential of the Butterfly. We are currently working on 
integrating a simple compiler, which will be used to explore 
the behavior of compiled code in our parallel environment. 
Later, we will substitute a more sophisticated compiler 
currently under development at MIT. 
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The User Interface will continue to be developed, aided by 
the experiences of a user community that is just beginning to 
form. We expect more facilities for both logical and 
performance debugging, with emphasis on graphical 
representations. 

We will continue work already underway to provide 
compatibility with the Common Lisp standard. 

We expect that Butterfly Lisp will become a testbed for 
exploring data structures and procedural abstractions 
designed specifically for parallel symbolic computing. 
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