
CIS:
,4 MASSIVELY CONCURRENT RULE-BASED SYSTEM

Guy E. Blelloch
AI Lab, Massachusetts Institute of Technology

Rm. 739. 545 Technology Square
Cambridge, MA 02139

Net Mail: guyb@mit-ai

Abstract

Recently researchers have suggested several computational
models in which, one programs by specifying large networks of
simple devices. Such models are interesting because they go to
the roots of concurrency - the circuit level. A problem with the
models is that it is unclear how to program large systems and
expensive to implement many features that are taken for granted
m symbolic programming languages.

This paper describes the Concurrent Inference System (CIS),
and its implementation on a massively concurrent network model
of computation. It shows how much of the functionality of cur-
rent rule-based systems can be implemented in a straightforward
manner within such models.

Unlike conventional implementations of rule-based systems
in which the inference engine and rule sets are clearly divided at
run time, CIS compiles the rules into a large static concurrent
network of very simple devices. In this network the rules and
inference engine are no longer distinct. The Thinking Machines
Corporation, Connection Machine - a 65,536 processor SIMD
computer - is then used to run the network. On the current
implementation, real time user system interaction is possible with
up to 100,000 rules.

1 Introduction

The Concurrent Inference System (CIS) is a interactive rule-
based system similar to Mycin ;Davis77]. It asks the user ques-
tions and makes inferences according to the answers. The cur-
rent version is capable of forward and backward chaining, which
run concurrently; using meta-rules of the sort described by Davis
j1980]; and reasoning with uncertainty, using a variation of Zadeh’s
[1965] rules. With 100,000 rules on the current implementation
of CIS, a global inference step takes less than two seconds. A
global inference step is the time needed for a single change to
percolate through all the rules.

CIS was implemented to show that much of the function-
ality of a rule-based system can be implemented with a simple
and implementationally cheap concurrent model of computation,
and furthermore that programming the system in the model is
relatively straightforward. The model used is the activity flow
network (AFN) model [Blelloch86]. Activity flow networks are
similar to the connectionist networks of Hinton [1981], Feldman
119821 and Rumelhart 119861.

CIS does much of its work at compile time, leaving at run
time a static network of computational devices not significantly
more complex than logic gates. It is easy and efficient to run
such networks on massively concurrent SIMD computers such as
the Connection Machine.

Because the networks are completely static and use very sim-
ple devices, it is hard and expensive to implement the general
power of logic programming languages such as Prolog. For ex-
ample, with CIS it is expensive to use high-precision numbers,
hard to dynamically bind arbitrary values to a parameter, and
not possible to execute general-purpose unification or create an
arbitrary number of instances of an object. This paper argues
that many practical rule sets do not require these features. For
example, the rule sets of Mycin [Davis 771, Rl [McDermott 801
and Prospector [Gaschnig 821 can be implemented cleanly with-
out them.

Section 2 discusses the AFN model. Section 3 gives a brief
outline of AFL-l, the language CIS is programmed with. Sec-
tions 4 and 5 discuss CIS. Section 6 discusses the implementation
of AFNs on the Connection Machine. Section 7 discusses some
issues of concurrency.

2 Activity Flow Networks

In the past decade, researchers have proposed many models of
concurrent processing many of which may be described as net-
works of nodes and links. As Fahlman 119821 noted, a useful way
to categorize these models is by the cbmplkxity and content of
the messages sent among the nodes. Figure 1 shows a taxonomy
of models categorized in this way.

Network Models of
Concurrent Computation

T 7
Static Networks Dvnamic Networks

/- \
Unbounded Message Node Limited Non-Consing
State Networks Message State Networks

Finite Message
State Networks

Value Passing Lbgic Token’ Passing
Networks Simulators Networks

f---l \
With’Global Witho;lt Global
Communication Communication

f-- I
THlifLE BOLTZMANN

MACHINES

NkL

Activity Flow
Networks

Figure 1: Hierarchy of Network Models of Concurrent Compu-

AI LANGUAGES AND ARCHITECTURES / 735

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The taxonomy divides network models of concurrent compu-
tation into two sub-classes: static and dynamic networks. In a

static network each node communicates with a fixed set of other
nodes, while in a dynamic network each node can dynamically
choose which other nodes it wants to talk to. Static networks

are further categorized by the complexity of their messages. Fi-
nite message state (FMS) networks are static networks that only

send messages containing one of a fixed finite set of states. Be-
cause the messages of an FMS are typically short and simple,
F.MS networks usually consist of a large number of simple nodes.
FMS networks are categorized by the content of their messages.
Value passing networks (VPKs) are FMS networks that only send
messages containing a finite approximation of the real numbers.

VPNs are categorized by whether they allow global commu-
nications. Any path that allows a central controller to inspect

the nodes and make a decision according to the results is con-
sidered global communications. In Thistle, a V’PN suggested by
Fahlman ‘19831, global communications are used heavily. For
example: the host might put a value on all the human nodes
and then have those nodes send the value over their hair-color
links. The system might then take a global OR of the brown
nodes to see if the network knows of any brown-haired humans.
In contrast. activity flow networks (AFNs) do not include any
global communications. The only global control in AFNs is a

clock signal that allows the network to take a step. This clock
does not provide a path from the nodes back to the controller

Some connectionist models are AFNs. Many fall in other
categories either because they use global control, such as those
discussed by Ackley ‘19851 or Touretzky ‘19851. or because not
all their messages are finite representations of real numbers, such
as in the model of Feldman [1982’.

In summary, an AFN is a static network of simple nodes and
links, that:

l only passes finite approximations of real numbers over its
links;

l is controlled by a global clock;

l can only communicate with the external world through a
set of nodes designated as its inputs and outputs.

The particular AFN model used by AFL-l consists of five
types of nodes - input, output, max, min and sum; and two
types of links - inhibitory and excitatory. Nodes can have
an arbitrary number of inputs and outputs. Each node has four
parameters - a threshold, a slope, a rise and a saturation -
which are set at compile time. A node combines its inputs using
maximum: minimum or sum (according to the nodes type) and
applies the function shown in Figure 2 to compute its output. In
AFL-l. in contrast to the distributed view used by Hinton 1981:
and Touretzky :1985:, the nodes are each assigned a single name.

A link makes a directional connection between two nodes.
Each link has a weight. As an activity is sent through a link it
gets multiplied by this weight. The clock is used to synchronize
all the nodes after each node sends its activity through its output

and receives a new activity.

OUTPUT

- Saturntion

Slope

:

Rise

(EXCITATORYINPUT - INHIBITORYINPUT)

Figure 2: The Output Fuiictinn of an AFL-I &ode.

3 AFL-l

AFL-l is an extension of the Symbolics 3600 programming envi-
ronment. The purpose of the language is to translate high level
description of tasks into AFNs which can then be simulated. The
language consists of functions that add nodes and links to the
network and the defgroup form which allows the user to hierar-
chically define structures (node groups) out of nodes and links.
To add nodes and links to the AFN, one instantiates a NG by
appending “make-” to the group name and passing the instance
name and any arguments. This structure defining mechanism is
similar to the mechanisms found in constraint languages [Steele
80, Sussman 801 and circuit design languages [Batali 801.

4 CIS

This section introduces the Concurrent Inference System. In this
section we will use parameter-value pairs to represent proposi-
tions. The next section describes how to assign parameters to
specific objects so as to use object-parameter-value triplets to
represent propositions.

The specification of a rule set in CIS consists of a list of
parameter definitions followed by a list of rule definitions.
Each parameter definition contains a parameter name and a
set of possible values. Each rule contains a list of if-parts,
each a parameter-value pair, and a list of then-parts, each a
parameter-value pair with a certainty factor.

The following set of parameter and rule definitions will be
used as an example throughout the de$cription of CIS.

(make-parameter ‘covering ’ (feathers hair))
(make-parameter 'animal-class

'(mammal bird reptile))
(make-parameter 'eating-class

'(ungulate carnivore))
(make-parameter 'ped-type '(claws hoofs))

(make-rule 'animal-rule-l
'(if (covering hair))
'(then (animal-class mammal .95)))

(make-rule 'animal-rule-2
'(if (animal-class mammal) (ped-type hoofs))
'(then (eating-class ungulate .Q)))

736 / ENGINEERING

Figure 3: Part of the Network Created by the Animal Example.

In the above example, rule and parameter are both names
of node groups (NGs) defined by CIS using the defgroup form.
Each of the make-rule or make-parameter statements creates
an instance of one of these NGs. The reader should keep in mind
that each top level call in AFL-l adds nodes and links to the AFN
at compile time. At run time, the only computation that occurs
is the flow of activity values along the precompiled network.

Figure 3 shows part of the network that results from compil-
ing the above definitions. In this figure, the nodes of the AFK are
shown as circles and the links as small squares. Within a node,
the type of node is specified below the node instance name. The
weight of each link is shown inside the link’s square. &ode group
instances are circumscribed by rectangles. The node group name
is given in the lower left corner and the instance name is given
in the upper left corner.

4.1 Forward Chaining

At run time, the activity value of an asserted node gives the
certainty that a parameter-value proposition is true. Inferences
in CIS are made by forward flow of this activity through the
active nodes of the rule NG instances.

The active node of each rule SG instance takes the AND
of that rule’s if-parts. Since the if parts are activity values:
not binary, they are combined with MIN and thresholded. This
method for taking the AND of uncertain propositions is the same
as the methods used by Mycin’s rules and Prospector’s logical
relations. The asserted node of the value SG instances takes
the OR of its inputs. Maximum is used for the OR of uncertain
propositions.

The rule implementer. using the weight in each then-part
of a rule, sets the weights on the link‘s between the active and
asserted nodes.

4.2 Backward Chaining

A backward chaining inference systems (also called goal directed
or consequent reasoning systems) looks for parameters that can
satisfy a goal parameter. By backward chaining, a rule-based sys-
tem will only ask the user questions relevant to what the system
is looking for. CIS backward chains by using the want-to-know
nodes. The “want-to-know” activity flows in the opposite direc-
tion than the “truth” activity ~ i.e. from the then-parts to the
if-parts.

The backward chaining done by CIS has two advantages over
many current rule-based systems. Firstly, since the “want-to-
know” and “true” activity flow across different links, the an-
tecedent and consequent reasoning happen concurrently. Con-
sider a medical diagnosis program which is searching for disease
X, and meanwhile stumbles across all the symptoms for a per-
haps much more serious disease Y. Most current systems would
ignore this, and perhaps not come to disease Y for a long time.
CIS would find Y as it searched for X.

Secondly, unlike Prolog and Mycin, the inferences are not
restricted by recursion to follow the same path as the control.
The backward chaining done by CIS is therefore easier to extend.
Three examples of such extension are:

l Backward chaining links can easily be excluded from some
rules; this allows a mixing of antecedent and consequent
rules.

l With few changes, meta-rules of the sort discussed by Davis
[1980] can be implemented; such rules are discussed in sec-
tion 4.5.

l It is easy to make “fuzzy” backward chaining links and use
these links as one of many heuristics that guide the search
rather than force it.

A potential problem with concurrent backward chaining is
that the questions the system asks the user might be unfocused.

This problem can be solved in CIS by making the want-to-
know and ask nodes have analog values and using heuristic rules
to judge the current “interest” of a parameter and activate the
want-to-know nodes accordingly. These rules are implemented
using more network structure. The host will pick the param-
eter with the highest value on its ask node when it selects a
question to ask the user. The heuristic rules for activating the
want-to-know nodes might include: a) asking related questions
together (the rule set implementor can specify which questions
are related), b) ask about the if-parts of almost active rules,
and c) ask about parameters that lead to more goals. Methods
for implementing these heuristics are discussed in (Blelloch 861.

AI LANGUAGES AND ARCHITECTURES / 737

h,Whair?(yCS ml):

El
[ml

User

hctlviltcs
Input Nodes z
Accord I ng to

hllswcrs

I-

Ihu Structures

Host Computer Activity Flow Network

Input
Node

output
Nodes 0

Illtcrthrl
Nodes

Figure 4: The Interface Between the User and the AFN of CIS

4.3 Input and Output

The only way an AFN can communicate with the outside world
is through the input and output nodes. At run time, the CIS
system uses a serial host computer to communicate with these
nodes. Figure 4 pictures how the communications work. For
sensor based rule-based systems such as PDS [Fox 831 it is pos-
sible to have the l/O nodes connected directly to sensors and
activators. Such direct connections will not be discussed in this
paper.

4.4 Values

Each parameter can have several values, each of which creates an
instance of the value NG (see Figure 3). The a-value-asserted
node of a parameter is used to recognize if any of its values are
asserted above some threshold. A mutually-exclusive group is
placed around the asserted nodes of the values so that only one
of the values (the one with the highest input) is asserted at a
time. The mutually-exclusive group can be left out if desired.

Because there is a separate NG for each value, there can only
be a moderate number of values specified at compile time. Most
rule sets do not require many values and in many current rule-
based systems including Mycin, KEE and Prospector, one defines
the possible values of each parameter at compile time. This helps
prevent errors.

The need for a NG instance for each value also precludes the
use of high-precision integers and floating point numbers. Al-
though most other rule-based systems allow such values, many
applications don’t need them. For example Mycin uses integer
values only for age, body temperature and dates of last exam-
ination or immunization. For these parameters, 32 bit integers
are not needed; 100 or so values will suffice. The rule sets of
Prospector and Rl also require no high-precision numbers.

4.5 Meta Rules

In practice, it is important to have task specific rules that control
the invocation of other rules [Davis 80, Gaschnig 821. An example
of such a rule is: “if the patient has stepped on a rusty nail, then
ask questions about tetanus (activate the tetanus rules).” Davis
[19801 names such rules, “meta-rules”, and Prospector jGaschnig
821 names them “contextual relations”.

mcta-rule group ’ pnrdmctcr group L - -_ - - - -

Figure 5: The Network Created by the Tetanus hleta-Rule.
In the diagram the dashed groups signify that not all the nodes
in those groups are shown.

It is easy to add this type of rule to CIS. Figure 5 shows
the network required for the tetanus rule. This network causes
the system to ask all the questions relevant to tetanus when the
parameter “stepped on rusted nail” is asserted.

5 Objects

When a rule set includes several instances of an object that all
obey the same rules, it is convenient to create a single set of rules
which are valid for all instances. To allow for this, systems such
as Mycin, OPS5 and KEE have generic objects (often part of the
object, attribute: value triplet) which are used in the rules. As
well as allowing multiple instances, objects allow a clean way to
separate sets of rules into modules.

The same sort of object abstraction can be used in CIS by
creating a separate network for each instance of an object. This
is done by defining a Node Group for an object and instantiating
it, at compile time, for each instance. i2t run time, the host
computer assigns names of new instances to the precompiled in-
stance sub-networks. For example, if we wanted CIS to reason
about two animals we could use the following definition.

(defgroup animal (>
(make-parameter 'covering '(feathers hair))

(make-rule 'animal-rule-l
'(if (covering hair))
'(then (animal-class mammal .95)))

. 1

(make-animal 'first-animal)
(make-animal 'second-animal)

To create the needed network at compile time, CIS must know
the maximum number of instances that might be needed. In
most applications this is not a problem since this number does
not vary greatly from one use of a system to the next: it is easy
enough to put an upper bound on the number. For example, in

738 / ENGINEERING

Mycin we know there will only be one patient and the patient
will usually have at most three cultures taken, each with possibly
three organisms.

The above method of creating multiple instances of an object
does not address the problem of creating rules that cross between
different instances. Such rules might include:

IF (and (father x y> (zebra x))
THEIi (zebra y))

IF (= (number-of zebras) 3)
THEIJ (herd-of zebras)

There are relatively simple ways to include such rules in CIS;
see [Blelloch86].

6 Implementation

The network-processor is used to run a compiled activity flow
network. A single cycle of the network processor is called an
afl-step. It consists of all the nodes sending their activities,
receiving new ones and computing the node function.

The Thinking Machines Corporation Connection Machine is
currently used as the network-processor. At compile time,
each node is placed on a separate processor. All the output
links of a node are placed in processors immediately following
the node processor. Processors are also used for each input of a
node and are placed immediately preceding the node processor.
This means that for 1 links and n nodes, 21 + n processors are

required (by overlapping input and output links, E+ n processors
can be used).

At run time, a copy-prefix operation is used [Kruskal85] to
distribute the output value of a node to all the output links.
After the copy-prefix, each link multiplies its input value by its
weight and sends the result, using the router, to the other end
of the link - a processor preceding a node processor. Max, min
and sum prefixes are used to compute the max, min and sum
of the inputs for each node. The node processors then compute
the node function. Because of the prefix operations, the time
taken by this method is independent of the largest fan-in or fan-
out. The routing cycle is the most expensive step taken by this
method.

To include more links than processors, each physical proces-
sor can simulate several virtual processors (VPs). Such simu-
lation causes a slightly greater than linear slow-down with the
number of virtual processors. Figure 6 shows the time required
by an afl-step as a function of the number of links when imple-
mented on a 64K-processor Connection Machine.

By making some assumptions about the rules and parame-
ters and imposing a limit on the time the user is willing to wait
between questions, an upper bound on the number of rules that
CIS may have can be given. With the following assumptions, it
is possible to include 100,000 rules in CIS.

l The maximum time a user is willing to wait is 2 seconds.

l The maximum depth of inferences in the system is 20 rules,

l The average rule has three antecedent and two consequent
parts.

l The average parameter has five values.

15

AFL-STEP

TIME

(In msccs) 10

0

5-
0

0
0

I I I I I

1 2 4 8 16

VP RATIO (x 64.000 to get max numb of links)

Figure 6: The Time Taken by an Afl-step as a Function of
the Number of Links in the Activity Flow Network (On 64K

Processor CM).

l There are five times as many rules as parameters

For 100,000 rules, the above assumptions require a network

of 2 million links. With 2 million links an afl-step requires

.05 seconds which allows 40 of them to be executed between

questions. This is enough time for the answer to propagate the

whole depth of the inferences.

7 Concurrency

Researchers have argued that one can achieve at best a con-
stant speedup by implementing a rule-based system on a parallel
rather than serial machine [Forgy 84, Oflazer 841. They make
these arguments based on rule-based systems developed for sin-
gle processor machines and only consider a limited interpretation
of a rule-based system. In particular, they consider a model that
forces the selection of rules through a single channel so only one
rule can fire at a time (the “conflict resolution” stage). This type
of concurrency is pictured in Figure 7a.

Concurrent Matching

a)Typc discussed by [Ofker841 and [Fwgy84].

Concurrent I<tdc

Concurrent Matching

b) Type used by CIS.

Figure 7: Two Types of Forward Chaining Concurrency.

AI LANGUAGES AND ARCHITECTURES / 739

The selection of a limited set of rules is necessary for some
applications, in particular problem-solving systems, but even for
these applications the restriction to a single rule is unnecessary.
Usually only certain sets of rules must be prevented from firing
simultaneously. In CIS, one can prevent rules from firing simul-
taneously by placing a mutually exclusive group around the rules
of concern.

Because much of the work is done at compile time, and be-
cause of the concurrency of AFNs, CIS can take advantage of
several sources of concurrency at run time. Among these are:

l Subrule and subparameter concurrency: Within the rules
and parameters all the parts act concurrently. For example,
at the same time that a value activates the rules it is con-
nected to; it deactivates all the other values of its parame-
ter, activates the parameter-known node: and activates
its output node.

a Concurrent matching: All the antecedent parts of a rule are
matched concurrently. In fact it only takes a single afl-step
to match every rule in the system. This is possible because
the variable references are compiled out so the variable slots
do not become bottlenecks.

l Concurrent forward propagation: All the rules can propa-
gate their inferences concurrently. There can potentially be
a large fan-out so that a single change could propagate to
make thousands of changes in just a few afl-steps. Note
that this offers much more concurrency than the model
considered by Forgy 119841; Figure 7 shows the difference
between the two types.

l Concurrent backward propagation: A completely concur-
rent AND/OR search is executed from the ‘(goal” parame-
ter to the parameters which can affect it. Unlike the con-
current implementations of logical inference systems dis-
cussed by Douglass [1985] and Murakami ;1984]: concurrent
“AND” searching is does not present problems. Again, this
is because the variables are compiled out.

l Forward and Backward propagation
mentioned in section 4.2.

happen together: As

l Concurrent question selection: With the addition of the
question focusing mechanism: the system can do a concur-
rent search of a single question to ask the user.

Although CIS allows all these sorts of concurrency, how well
the system takes advantage of them depends on the rule set being
used. Since no large rule sets have been implemented in CIS, no
data is available.

8 Conclusions

The initial study of CIS suggests that it is possible to implement
practical systems using activity flow networks, and more gener-
ally, with connectionist or other circuit level models. The AFL-l
code needed to implement CIS is quite simple, no more complex
than the code used in other rule-based systems, and the running
time of CIS is very good. With expected advances in massively
concurrent hardware, the times will greatly improve.

As mentioned in the paper, the AFN rn.c?el imposec sc,rre
restrictions on CIS. Some of these limitations can be . ,oided by
expanding the model slightly. For example, to manipulate high-
precision numbers, one could use a model that intermixes data
flow and activity flow networks. To dynamically create instances
of an object. one could use a system that creates extra network
structure as it is nceded.

Acknowledgements

I thank Phil Agre and David W7altz for their helpful comments
on various parts of this work.

This research was supported by the Defense Advanced Re-
search Projects Agency {DOD), ARPA Contract &0014-85-K-
0124.

References

Ackley, D.H., Hinton, G.E., Sejnowski, T.J., “A Learning Algo-
rithm for Boltzmann Machines”, Cognitive Science, 1985, 9.
147-169.

Batali, J., Hartheimer, A., “The Design Procedure Language
Manual” , Memo 598, MIT AI Laboratory, September 1980.

Blelloch, G.E., “AFL-l: A Programming Language for Massively
Concurrent Computers”, MS Thesis, Dept. of Electrical En-
gineering and Computer Science, MIT, June 1986.

Davis, R., Buchanan, B., Shortliffe, E., “Production Rules as a
Representation for Knowledge-Based Consultation Program”,
Artificial Intelligence, 1977, 8, 15-45.

Davis, R., “Meta-Rules: Reasoning about Control”, Artificial
Intelligence, 1980, 15, 179-222.

Douglass, R.J., “A Qualitative Assessment of Parallelism in Ex-
pert Systems”, IEEE Software, May 1985, 70-81.

Fahlman, S.E., ‘(Three Flavors of Parallelism”, Proc. National
Conference of the Canadian Society for Computational Stud-
ies of Intelligence, May 1982, Saskatoon, Saskatchewan, 230-
235.

Fahlman, S.E., Hinton G.E., Sejnowski, T.J., “Massively Parallel
Architectures for AI: Neti, Thistle and Boltzmann Machines”:
Proc. AAAI, August 1983, Washington D.C, 109-113.

Feldman, J.A., Ballard, D-H., “Connectionist Models and Their
Properties”, Cognitive Science, 1982, 6, 205-254.

Forgy, C.L., “The OPS5 User’s Manual”, TR, Carnegie-Mellon
University, Department of Computer Science, 1981.

Forgy, C., A. Gupta, A. Newell, R. Wedig, “Initial Assessment of
Architectures for Production Systems”, Proc. AAAI, August
1984, Austin, TX., 116-120.

Fox, M.S., Lowenfeld, S., Kleinosky, P., “Techniques for Sensor-
Based Diagnostics” Proc. IJCAI, August 1983, Karlsruhe W.
Germany, 1 S8-163.

Gaschnig, J., “Prospector: An Expert System for Mineral Ex-
ploration”, in Michie (Ed.), Introdzlctory Readings in Ezpert
Systems, New York, Gordon and Breach, 1982.

740 / ENGINEERING

Hinton, G.E., “Implementing Semantic IVetworks in Parallel”,
in G.E. Hinton and J.A. Anderson (Ed.), Parallel Models of
Associative Memory, Hillsdale, XJ: Erlbaum, 1981.

Kruskal: C.P., Rudolph, L., Snir. M., “The Power of Parallel Pre-
fix”: Proc. Int’l. Conference on Parallel Processing, iZugust

1985, 180-185.

McDermott, J., “RI: an Expert in the Computer Systems Do-
main”, Proc. AAAI, August 1980, Stanford University, 269-
271.

Murakami, K., Kakuta, T.; Onai: R.: “Architectures and Hard-
ware Systems: Parallel Inference Machine and Knowledge
Base Machine”, Proc. Int’l Conf. Fifth Generation Computer
Systems; 1984, Tokyo, 18-36.

Oflazer: K.. “Partitioning in Parallel Processing of Production
Systems” : Proc. Int’l Conf. Parallel Processing. August 1984,
92-100.

Rumelhart, D.E., McClelland, J.L., Parallel Distributed Process-
ing: Erplorations in the Microstructure of Cognition, Volume
I: Foundations, MIT Press: Cambridge Mass., 1986.

Steele, G.L. Jr., “The Definition and Implementation of a Com-
puter Programming Language Based on Constraints”, AI-TR
595: MIT AI Laboratory, August 1980.

Sussman, G.J., Steele, G.L. Jr., “Constraints - A Language for
Expressing Almost-Hierarchical Descriptions”, Artificial In-
telligence, 1980, 14: l-39.

Touretzky, D.S., “Symbols Among the h’eurons: Details of a
Connectionist Inference Architecture”, Proc. IJCAI, August
1985, Los Angeles, 238-243.

Zadeh, L.A., “Fuzzy Sets”, Information and Control, 1965, 8,
338-353.

AI LANGUAGES AND ARCHITECTURES / 74 I

