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Abstract 

Recently researchers have suggested several computational 
models in which, one programs by specifying large networks of 
simple devices. Such models are interesting because they go to 
the roots of concurrency - the circuit level. A problem with the 
models is that it is unclear how to program large systems and 
expensive to implement many features that are taken for granted 
m symbolic programming languages. 

This paper describes the Concurrent Inference System (CIS), 
and its implementation on a massively concurrent network model 
of computation. It shows how much of the functionality of cur- 
rent rule-based systems can be implemented in a straightforward 
manner within such models. 

Unlike conventional implementations of rule-based systems 
in which the inference engine and rule sets are clearly divided at 
run time, CIS compiles the rules into a large static concurrent 
network of very simple devices. In this network the rules and 
inference engine are no longer distinct. The Thinking Machines 
Corporation, Connection Machine - a 65,536 processor SIMD 
computer - is then used to run the network. On the current 
implementation, real time user system interaction is possible with 
up to 100,000 rules. 

1 Introduction 

The Concurrent Inference System (CIS) is a interactive rule- 
based system similar to Mycin ;Davis77]. It asks the user ques- 
tions and makes inferences according to the answers. The cur- 
rent version is capable of forward and backward chaining, which 
run concurrently; using meta-rules of the sort described by Davis 
j1980]; and reasoning with uncertainty, using a variation of Zadeh’s 
[1965] rules. With 100,000 rules on the current implementation 
of CIS, a global inference step takes less than two seconds. A 
global inference step is the time needed for a single change to 
percolate through all the rules. 

CIS was implemented to show that much of the function- 
ality of a rule-based system can be implemented with a simple 
and implementationally cheap concurrent model of computation, 
and furthermore that programming the system in the model is 
relatively straightforward. The model used is the activity flow 
network (AFN) model [Blelloch86]. Activity flow networks are 
similar to the connectionist networks of Hinton [1981], Feldman 
119821 and Rumelhart 119861. 

CIS does much of its work at compile time, leaving at run 
time a static network of computational devices not significantly 
more complex than logic gates. It is easy and efficient to run 
such networks on massively concurrent SIMD computers such as 
the Connection Machine. 

Because the networks are completely static and use very sim- 
ple devices, it is hard and expensive to implement the general 
power of logic programming languages such as Prolog. For ex- 
ample, with CIS it is expensive to use high-precision numbers, 
hard to dynamically bind arbitrary values to a parameter, and 
not possible to execute general-purpose unification or create an 
arbitrary number of instances of an object. This paper argues 
that many practical rule sets do not require these features. For 
example, the rule sets of Mycin [Davis 771, Rl [McDermott 801 
and Prospector [Gaschnig 821 can be implemented cleanly with- 
out them. 

Section 2 discusses the AFN model. Section 3 gives a brief 
outline of AFL-l, the language CIS is programmed with. Sec- 
tions 4 and 5 discuss CIS. Section 6 discusses the implementation 
of AFNs on the Connection Machine. Section 7 discusses some 
issues of concurrency. 

2 Activity Flow Networks 

In the past decade, researchers have proposed many models of 
concurrent processing many of which may be described as net- 
works of nodes and links. As Fahlman 119821 noted, a useful way 
to categorize these models is by the cbmplkxity and content of 
the messages sent among the nodes. Figure 1 shows a taxonomy 
of models categorized in this way. 
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Figure 1: Hierarchy of Network Models of Concurrent Compu- 
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The taxonomy divides network models of concurrent compu- 
tation into two sub-classes: static and dynamic networks. In a 

static network each node communicates with a fixed set of other 
nodes, while in a dynamic network each node can dynamically 
choose which other nodes it wants to talk to. Static networks 

are further categorized by the complexity of their messages. Fi- 
nite message state (FMS) networks are static networks that only 

send messages containing one of a fixed finite set of states. Be- 
cause the messages of an FMS are typically short and simple, 
F.MS networks usually consist of a large number of simple nodes. 
FMS networks are categorized by the content of their messages. 
Value passing networks (VPKs) are FMS networks that only send 
messages containing a finite approximation of the real numbers. 

VPNs are categorized by whether they allow global commu- 
nications. Any path that allows a central controller to inspect 

the nodes and make a decision according to the results is con- 
sidered global communications. In Thistle, a V’PN suggested by 
Fahlman ‘19831, global communications are used heavily. For 
example: the host might put a value on all the human nodes 
and then have those nodes send the value over their hair-color 
links. The system might then take a global OR of the brown 
nodes to see if the network knows of any brown-haired humans. 
In contrast. activity flow networks (AFNs) do not include any 
global communications. The only global control in AFNs is a 

clock signal that allows the network to take a step. This clock 
does not provide a path from the nodes back to the controller 

Some connectionist models are AFNs. Many fall in other 
categories either because they use global control, such as those 
discussed by Ackley ‘19851 or Touretzky ‘19851. or because not 
all their messages are finite representations of real numbers, such 
as in the model of Feldman [1982’. 

In summary, an AFN is a static network of simple nodes and 
links, that: 

l only passes finite approximations of real numbers over its 
links; 

l is controlled by a global clock; 

l can only communicate with the external world through a 
set of nodes designated as its inputs and outputs. 

The particular AFN model used by AFL-l consists of five 
types of nodes - input, output, max, min and sum; and two 
types of links - inhibitory and excitatory. Nodes can have 
an arbitrary number of inputs and outputs. Each node has four 
parameters - a threshold, a slope, a rise and a saturation - 
which are set at compile time. A node combines its inputs using 
maximum: minimum or sum (according to the nodes type) and 
applies the function shown in Figure 2 to compute its output. In 
AFL-l. in contrast to the distributed view used by Hinton 1981: 
and Touretzky :1985:, the nodes are each assigned a single name. 

A link makes a directional connection between two nodes. 
Each link has a weight. As an activity is sent through a link it 
gets multiplied by this weight. The clock is used to synchronize 
all the nodes after each node sends its activity through its output 

and receives a new activity. 
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Figure 2: The Output Fuiictinn of an AFL-I &ode. 

3 AFL-l 

AFL-l is an extension of the Symbolics 3600 programming envi- 
ronment. The purpose of the language is to translate high level 
description of tasks into AFNs which can then be simulated. The 
language consists of functions that add nodes and links to the 
network and the defgroup form which allows the user to hierar- 
chically define structures (node groups) out of nodes and links. 
To add nodes and links to the AFN, one instantiates a NG by 
appending “make-” to the group name and passing the instance 
name and any arguments. This structure defining mechanism is 
similar to the mechanisms found in constraint languages [Steele 
80, Sussman 801 and circuit design languages [Batali 801. 

4 CIS 

This section introduces the Concurrent Inference System. In this 
section we will use parameter-value pairs to represent proposi- 
tions. The next section describes how to assign parameters to 
specific objects so as to use object-parameter-value triplets to 
represent propositions. 

The specification of a rule set in CIS consists of a list of 
parameter definitions followed by a list of rule definitions. 
Each parameter definition contains a parameter name and a 
set of possible values. Each rule contains a list of if-parts, 
each a parameter-value pair, and a list of then-parts, each a 
parameter-value pair with a certainty factor. 

The following set of parameter and rule definitions will be 
used as an example throughout the de$cription of CIS. 

(make-parameter ‘covering ’ (feathers hair)) 
(make-parameter 'animal-class 

'(mammal bird reptile)) 
(make-parameter 'eating-class 

'(ungulate carnivore)) 
(make-parameter 'ped-type '(claws hoofs)) 

(make-rule 'animal-rule-l 
'(if (covering hair)) 
'(then (animal-class mammal .95))) 

(make-rule 'animal-rule-2 
'(if (animal-class mammal) (ped-type hoofs)) 
'(then (eating-class ungulate .Q))) 

736 / ENGINEERING 



Figure 3: Part of the Network Created by the Animal Example. 

In the above example, rule and parameter are both names 
of node groups (NGs) defined by CIS using the defgroup form. 
Each of the make-rule or make-parameter statements creates 
an instance of one of these NGs. The reader should keep in mind 
that each top level call in AFL-l adds nodes and links to the AFN 
at compile time. At run time, the only computation that occurs 
is the flow of activity values along the precompiled network. 

Figure 3 shows part of the network that results from compil- 
ing the above definitions. In this figure, the nodes of the AFK are 
shown as circles and the links as small squares. Within a node, 
the type of node is specified below the node instance name. The 
weight of each link is shown inside the link’s square. &ode group 
instances are circumscribed by rectangles. The node group name 
is given in the lower left corner and the instance name is given 
in the upper left corner. 

4.1 Forward Chaining 

At run time, the activity value of an asserted node gives the 
certainty that a parameter-value proposition is true. Inferences 
in CIS are made by forward flow of this activity through the 
active nodes of the rule NG instances. 

The active node of each rule SG instance takes the AND 
of that rule’s if-parts. Since the if parts are activity values: 
not binary, they are combined with MIN and thresholded. This 
method for taking the AND of uncertain propositions is the same 
as the methods used by Mycin’s rules and Prospector’s logical 
relations. The asserted node of the value SG instances takes 
the OR of its inputs. Maximum is used for the OR of uncertain 
propositions. 

The rule implementer. using the weight in each then-part 
of a rule, sets the weights on the link‘s between the active and 
asserted nodes. 

4.2 Backward Chaining 

A backward chaining inference systems (also called goal directed 
or consequent reasoning systems) looks for parameters that can 
satisfy a goal parameter. By backward chaining, a rule-based sys- 
tem will only ask the user questions relevant to what the system 
is looking for. CIS backward chains by using the want-to-know 
nodes. The “want-to-know” activity flows in the opposite direc- 
tion than the “truth” activity ~ i.e. from the then-parts to the 
if-parts. 

The backward chaining done by CIS has two advantages over 
many current rule-based systems. Firstly, since the “want-to- 
know” and “true” activity flow across different links, the an- 
tecedent and consequent reasoning happen concurrently. Con- 
sider a medical diagnosis program which is searching for disease 
X, and meanwhile stumbles across all the symptoms for a per- 
haps much more serious disease Y. Most current systems would 
ignore this, and perhaps not come to disease Y for a long time. 
CIS would find Y as it searched for X. 

Secondly, unlike Prolog and Mycin, the inferences are not 
restricted by recursion to follow the same path as the control. 
The backward chaining done by CIS is therefore easier to extend. 
Three examples of such extension are: 

l Backward chaining links can easily be excluded from some 
rules; this allows a mixing of antecedent and consequent 
rules. 

l With few changes, meta-rules of the sort discussed by Davis 
[1980] can be implemented; such rules are discussed in sec- 
tion 4.5. 

l It is easy to make “fuzzy” backward chaining links and use 
these links as one of many heuristics that guide the search 
rather than force it. 

A potential problem with concurrent backward chaining is 
that the questions the system asks the user might be unfocused. 

This problem can be solved in CIS by making the want-to- 
know and ask nodes have analog values and using heuristic rules 
to judge the current “interest” of a parameter and activate the 
want-to-know nodes accordingly. These rules are implemented 
using more network structure. The host will pick the param- 
eter with the highest value on its ask node when it selects a 
question to ask the user. The heuristic rules for activating the 
want-to-know nodes might include: a) asking related questions 
together (the rule set implementor can specify which questions 
are related), b) ask about the if-parts of almost active rules, 
and c) ask about parameters that lead to more goals. Methods 
for implementing these heuristics are discussed in (Blelloch 861. 
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Figure 4: The Interface Between the User and the AFN of CIS 

4.3 Input and Output 

The only way an AFN can communicate with the outside world 
is through the input and output nodes. At run time, the CIS 
system uses a serial host computer to communicate with these 
nodes. Figure 4 pictures how the communications work. For 
sensor based rule-based systems such as PDS [Fox 831 it is pos- 
sible to have the l/O nodes connected directly to sensors and 
activators. Such direct connections will not be discussed in this 
paper. 

4.4 Values 

Each parameter can have several values, each of which creates an 
instance of the value NG ( see Figure 3). The a-value-asserted 
node of a parameter is used to recognize if any of its values are 
asserted above some threshold. A mutually-exclusive group is 
placed around the asserted nodes of the values so that only one 
of the values (the one with the highest input) is asserted at a 
time. The mutually-exclusive group can be left out if desired. 

Because there is a separate NG for each value, there can only 
be a moderate number of values specified at compile time. Most 
rule sets do not require many values and in many current rule- 
based systems including Mycin, KEE and Prospector, one defines 
the possible values of each parameter at compile time. This helps 
prevent errors. 

The need for a NG instance for each value also precludes the 
use of high-precision integers and floating point numbers. Al- 
though most other rule-based systems allow such values, many 
applications don’t need them. For example Mycin uses integer 
values only for age, body temperature and dates of last exam- 
ination or immunization. For these parameters, 32 bit integers 
are not needed; 100 or so values will suffice. The rule sets of 
Prospector and Rl also require no high-precision numbers. 

4.5 Meta Rules 

In practice, it is important to have task specific rules that control 
the invocation of other rules [Davis 80, Gaschnig 821. An example 
of such a rule is: “if the patient has stepped on a rusty nail, then 
ask questions about tetanus (activate the tetanus rules).” Davis 
[ 19801 names such rules, “meta-rules”, and Prospector jGaschnig 
821 names them “contextual relations”. 

mcta-rule group ’ pnrdmctcr group L - -_ - - - - 

Figure 5: The Network Created by the Tetanus hleta-Rule. 
In the diagram the dashed groups signify that not all the nodes 
in those groups are shown. 

It is easy to add this type of rule to CIS. Figure 5 shows 
the network required for the tetanus rule. This network causes 
the system to ask all the questions relevant to tetanus when the 
parameter “stepped on rusted nail” is asserted. 

5 Objects 

When a rule set includes several instances of an object that all 
obey the same rules, it is convenient to create a single set of rules 
which are valid for all instances. To allow for this, systems such 
as Mycin, OPS5 and KEE have generic objects (often part of the 
object, attribute: value triplet) which are used in the rules. As 
well as allowing multiple instances, objects allow a clean way to 
separate sets of rules into modules. 

The same sort of object abstraction can be used in CIS by 
creating a separate network for each instance of an object. This 
is done by defining a Node Group for an object and instantiating 
it, at compile time, for each instance. i2t run time, the host 
computer assigns names of new instances to the precompiled in- 
stance sub-networks. For example, if we wanted CIS to reason 
about two animals we could use the following definition. 

(defgroup animal (> 
(make-parameter 'covering '(feathers hair)) 

(make-rule 'animal-rule-l 
'(if (covering hair)) 
'(then (animal-class mammal .95))) 

. 1 

(make-animal 'first-animal) 
(make-animal 'second-animal) 

To create the needed network at compile time, CIS must know 
the maximum number of instances that might be needed. In 
most applications this is not a problem since this number does 
not vary greatly from one use of a system to the next: it is easy 
enough to put an upper bound on the number. For example, in 

738 / ENGINEERING 



Mycin we know there will only be one patient and the patient 
will usually have at most three cultures taken, each with possibly 
three organisms. 

The above method of creating multiple instances of an object 
does not address the problem of creating rules that cross between 
different instances. Such rules might include: 

IF (and (father x y> (zebra x)) 
THEIi (zebra y)) 

IF (= (number-of zebras) 3) 
THEIJ (herd-of zebras) 

There are relatively simple ways to include such rules in CIS; 
see [Blelloch86]. 

6 Implementation 

The network-processor is used to run a compiled activity flow 
network. A single cycle of the network processor is called an 
afl-step. It consists of all the nodes sending their activities, 
receiving new ones and computing the node function. 

The Thinking Machines Corporation Connection Machine is 
currently used as the network-processor. At compile time, 
each node is placed on a separate processor. All the output 
links of a node are placed in processors immediately following 
the node processor. Processors are also used for each input of a 
node and are placed immediately preceding the node processor. 
This means that for 1 links and n nodes, 21 + n processors are 

required (by overlapping input and output links, E+ n processors 
can be used). 

At run time, a copy-prefix operation is used [Kruskal85] to 
distribute the output value of a node to all the output links. 
After the copy-prefix, each link multiplies its input value by its 
weight and sends the result, using the router, to the other end 
of the link - a processor preceding a node processor. Max, min 
and sum prefixes are used to compute the max, min and sum 
of the inputs for each node. The node processors then compute 
the node function. Because of the prefix operations, the time 
taken by this method is independent of the largest fan-in or fan- 
out. The routing cycle is the most expensive step taken by this 
method. 

To include more links than processors, each physical proces- 
sor can simulate several virtual processors (VPs). Such simu- 
lation causes a slightly greater than linear slow-down with the 
number of virtual processors. Figure 6 shows the time required 
by an afl-step as a function of the number of links when imple- 
mented on a 64K-processor Connection Machine. 

By making some assumptions about the rules and parame- 
ters and imposing a limit on the time the user is willing to wait 
between questions, an upper bound on the number of rules that 
CIS may have can be given. With the following assumptions, it 
is possible to include 100,000 rules in CIS. 

l The maximum time a user is willing to wait is 2 seconds. 

l The maximum depth of inferences in the system is 20 rules, 

l The average rule has three antecedent and two consequent 
parts. 

l The average parameter has five values. 
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Figure 6: The Time Taken by an Afl-step as a Function of 
the Number of Links in the Activity Flow Network (On 64K 

Processor CM). 

l There are five times as many rules as parameters 

For 100,000 rules, the above assumptions require a network 

of 2 million links. With 2 million links an afl-step requires 

.05 seconds which allows 40 of them to be executed between 

questions. This is enough time for the answer to propagate the 

whole depth of the inferences. 

7 Concurrency 

Researchers have argued that one can achieve at best a con- 
stant speedup by implementing a rule-based system on a parallel 
rather than serial machine [Forgy 84, Oflazer 841. They make 
these arguments based on rule-based systems developed for sin- 
gle processor machines and only consider a limited interpretation 
of a rule-based system. In particular, they consider a model that 
forces the selection of rules through a single channel so only one 
rule can fire at a time (the “conflict resolution” stage). This type 
of concurrency is pictured in Figure 7a. 

Concurrent Matching 

a)Typc discussed by [Ofker841 and [Fwgy84]. 

Concurrent I<tdc 

Concurrent Matching 

b) Type used by CIS. 

Figure 7: Two Types of Forward Chaining Concurrency. 
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The selection of a limited set of rules is necessary for some 
applications, in particular problem-solving systems, but even for 
these applications the restriction to a single rule is unnecessary. 
Usually only certain sets of rules must be prevented from firing 
simultaneously. In CIS, one can prevent rules from firing simul- 
taneously by placing a mutually exclusive group around the rules 
of concern. 

Because much of the work is done at compile time, and be- 
cause of the concurrency of AFNs, CIS can take advantage of 
several sources of concurrency at run time. Among these are: 

l Subrule and subparameter concurrency: Within the rules 
and parameters all the parts act concurrently. For example, 
at the same time that a value activates the rules it is con- 
nected to; it deactivates all the other values of its parame- 
ter, activates the parameter-known node: and activates 
its output node. 

a Concurrent matching: All the antecedent parts of a rule are 
matched concurrently. In fact it only takes a single afl-step 
to match every rule in the system. This is possible because 
the variable references are compiled out so the variable slots 
do not become bottlenecks. 

l Concurrent forward propagation: All the rules can propa- 
gate their inferences concurrently. There can potentially be 
a large fan-out so that a single change could propagate to 
make thousands of changes in just a few afl-steps. Note 
that this offers much more concurrency than the model 
considered by Forgy 119841; Figure 7 shows the difference 
between the two types. 

l Concurrent backward propagation: A completely concur- 
rent AND/OR search is executed from the ‘(goal” parame- 
ter to the parameters which can affect it. Unlike the con- 
current implementations of logical inference systems dis- 
cussed by Douglass [1985] and Murakami ;1984]: concurrent 
“AND” searching is does not present problems. Again, this 
is because the variables are compiled out. 

l Forward and Backward propagation 
mentioned in section 4.2. 

happen together: As 

l Concurrent question selection: With the addition of the 
question focusing mechanism: the system can do a concur- 
rent search of a single question to ask the user. 

Although CIS allows all these sorts of concurrency, how well 
the system takes advantage of them depends on the rule set being 
used. Since no large rule sets have been implemented in CIS, no 
data is available. 

8 Conclusions 

The initial study of CIS suggests that it is possible to implement 
practical systems using activity flow networks, and more gener- 
ally, with connectionist or other circuit level models. The AFL-l 
code needed to implement CIS is quite simple, no more complex 
than the code used in other rule-based systems, and the running 
time of CIS is very good. With expected advances in massively 
concurrent hardware, the times will greatly improve. 

As mentioned in the paper, the AFN rn.c?el imposec sc,rre 
restrictions on CIS. Some of these limitations can be . ,oided by 
expanding the model slightly. For example, to manipulate high- 
precision numbers, one could use a model that intermixes data 
flow and activity flow networks. To dynamically create instances 
of an object. one could use a system that creates extra network 
structure as it is nceded. 
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