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Abstract 

This paper describes and reports on the use of an environment, 
called Agora, that supports the construction of large, computationally 
expensive and loosely-structured systems, e.g. knowledge-based 
systems for speech and vision understanding. Agora can be 
customized to support the programming model that is more suitable 
for a given application. Agora has been designed explicitly to 
support multiple languages and highly parallel computations. 
Systems built with Agora can be executed on a number of general 
purpose and custom multiprocessor architectures. 

1. Introduction 

Our long-term goal is to develop a software environment that meets 
the need of application specialists to build and evaluate certain kinds 
of heterogeneous Al applications quickly and efficiently. To this 
effect we are developing a set of tools, methodologies and 
architectures called Agora (marketplace) that can be used to 
implement custom programming environments. 

The kinds of 
characteristics: 

systems for which Agora is useful have these 

-they are heterogeneous - no single programming model, language 
or machine architecture can be used; 

-they are in rapid evolution - the algorithms change often while part 
of the system remains constant, e.g. research systems; 

-they are computational/y expensive - no single processor is 
enough to obtain the desired performance. 

Speech and vision systems are typical of this kind of Al applications. 
In these systems, know/edge-intensive and conventional 
programming techniques must be integrated while observing real 
time constraints and preserving ease of programming. 

State-of-the-art Al environments solve some but not all of the 
problems raised by the systems we are interested in. For example, 
these environments provide multiple programming models but fall 
short of supporting “non-Al” languages and multiprocessing. Some of 
these environments are also based on Lisp and are therefore more 
suitable (although not necessarily limited) to shared memory 
architectures. 

For example, some programming environments provide abstractions 
tailored to the incremental design and implementation of large 
systems (e.g. LOOPS [14], STROBE [16]) but have little support for 
parallelism. Other environments support general purpose parallel 
processing (e.g. QLAMBDA [ll], Multilisp [13], LINDA [7]) but do not 
tackle incremental design (Linda) or non-shared memory computer 
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architectures @LAMBDA, Multilisp). ABE [lo] and AF [12] are the 
only environments we are aware of that have goals similar to 
Agora’s goals. ABE has, in fact, broader goals than Agora since it 
also supports know/edge engineering. 

Agora supports heterogeneous systems by providing a virtual 
machine that is independent of any language, allows a number of 
different programming models and can be efficiently mapped into a 
number of different computer architectures. Rapid evolution is 
supported by providing similar incremental programming capabilities 
as Lisp environments. Programs that run on the parallel virtual 
machine can be added to the environment and share the same data 
with programs that were designed independently. This makes it 
possible to provide an unlimited set of custom environments that are 
tailored to the needs of a user, including environments in which 
parallel processing has been hidden from the end user. Finally, 
parallelism is strongly encouraged since systems are always 
specified as parallel computations even if they will be run on a single 
processor. 

Agora is not an “environment in search of an application” but is 
“driven” by the requirement coming from the design and 
implementation of the CMU distributed speech recognition 
system [5]. During the past year, we designed and implemented an 
initial version of Agora and successfully used it to build two 
prototype speech-recognition systems. Our experience with this 
initial version of Agora convinced us that, when building parallel 
systems, the effort invested in obtaining a quality software 
environment pays off manyfold in productivity. Agora has reduced 
the time to assemble a complex parallel system and run it on a 
multiprocessor from more than a six man-months to about one man- 
month. The main reason for this lies in the fact that the details of 
communication and control have been taken care of by Agora. 
Application research, however, calls for still greater improvement. 
Significant progress in evaluating parallel task decompositions, in 
CMU’s continuous speech project, for example, will ultimately require 
that a single person assemble and run a complete system within one 
day. 

This paper is an introduction to some of the ideas underlying Agora 
and a description of the result of using Agora to build a large speech 
recognition system. The current structure of Agora is the outcome of 
the experience acquired with two designs and implementations 
carried out during 1985. One of these implementations is currently 
used for a prototype speech recognition system that runs on a 
netivork of Perqs and MICROVAXES. This implementation will be 
extended to support a shared memory multiprocessor, Sun’s and 
IBM RT-PC’s by the end of the second quarter of 1986. 

2. Agora’s Structure 

Agora’s structure can be explained by using a “layered” model, see 
Figure 2-l starting from the bottom. 

2Unix is a Trademark of AT&T 
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Figure 2-1: Layered Model of Agom and its Interfaces 

-The first layer is a network of heterogeneous processors: single 
processors, shared memory multiprocessors, loosely-connected 
multiprocessors and custom hardware accelerators. The Mach 
operating system provides the basic software to execute 
computations on all these machines and Agora provides tools to 
map Mach abstractions into real machines. Mach is a 
Unix-compatible2 operating system that runs on multiprocessors, 
see [2]. 

-The Mach layer provides three major abstractions: message 
passing, shared memory and threads. Message passing is the 
main communication mechanism: all Agora implementations can 
run on machines that provide message passing as the only 
communication mechanism. Shared memory (when available in 
the underlying computer system) is used to improve performance. 
Threads (processes that share the address space with other 
processes) are used to support the fast creation of new 
computations (a useful but not always vital characteristic). 

-The parallel virtual machine layer represents the “assembly 
language level” of Agora. Computations are expressed as 
independent procedures that exchange data by using Agora’s 
primitives and are activated by means of a pattern matching 
mechanism. Computations can be programmed in either C or 
Common Lisp. It is in this layer that the most suitable Mach 
primitives are selected, the code is compiled and linked, tasks 
assigned to machines, etc. Computations expressed at this level 
are machine independent. Although systems can be fully 
described at this level, the virtual machine level is best used to 
describe frameworks rather than program user computations. 
-The framework layer is the level at which most of the application 
researchers program. A framework is like a specialized 
environment built to interact with the user in familiar terms. The 
description, assembly, debugging and production run of an 
application system are all performed through its associated 
framework(s). Frameworks, as used in Agora, are very similar to 
ABE’s frameworks, see [lo]. 
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First, application engineers program one or more “frameworks” that 
implement the programming environments that an application 
requires. A framework provides all the tools to generate and 
maintain a given kind of program. For example, a framework could 
contain virtual machine code to implement data-flow and remote- 
procedurecall communication mechanisms and a tool to merge 
user-supplied code with the existing virtual machine code. Such a 
framework could also contain a structured graphical editor that 
allows the user to deal with programs in terms of data-flow graphs. 

Researchers can then use frameworks to create framework 
instantiations, i.e. frameworks that contain user provided code and 
data. Components of a framework instantiation can themselves be 
instantiations of some other framework. A framework instantiation 
can then be integrated with other framework instantiations to 
generate more complex frameworks. In the speech system, for 
example, the word hypothesizer is described by using a framework 
that embodies the asynchronous control necessary to run the word 
hypothesizer in parallel and code to display the data processed: a 
user need only be familiar with the algorithms and the language in 
which they are written in order to be able to experiment with different 
word hypothesization algorithms. A word hypothesizer generated in 
this way can be merged with an acoustic-phonetic framework 
instantiation by using, for example, a data-flow framework. Tools 
from all the original frameworks are made available in the combined 
framework. 

We cannot describe frameworks in detail in this paper. Currently, we 
have implemented a “Unix-like” framework which lets users build 
parallel programs that communicate by using streams. We are 
implementing a data-flow framework that will let a user program 
through a graphic editor and a number of very specialized 
frameworks like the word hypothesizer framework described later. 
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3. The Agora Virtual Machine 

The Agora virtual machine has been designed with two goals in 
mind: first, to be able to efficiently execute different programming 
models. Second, to avoid restricting the possible implementations to 
certain computer architectures. Agora is centered around 
representing data as sets of elements of the same type (elements 
can be regarded as variable-size records). Elements are stored in 
global structures called c/ioues. Each clique has a name that 
completely identifies if and a type (from a set of globally-defined 
types). Agora forces the user to split a computation into separate 
components, called Knowledge Sources (KS), that execute 
concurrently. Knowledge Sources exchange data through cliques 
and are activated when certain patterns of elements are generated. 
Any KS that knows the name of a clique can perform operations on it 
since Agora “registers” the name of each clique when it is created. 
Since “names” are global, the only requirement for sharing a clique 
between KSs is that a clique be first “created” by a KS and then 
declared “shared” by another KS. In a speech recognition system, 
for example, an element could be a phoneme, word, sentence or 
some other meaningful intermediate representation of speech; a 
clique could contain all the phonemes generated by a KS and a KS 
could be the function that scores phonetic hypotheses. 

Element types are described within the KS code by using the syntax 
of the language that is used to program the KSs, with some 
additional information. The additional information is stripped from the 
source code by Agora before the code is handed to the compiler or 
interpreter. This means that users need not learn a different 
language. This is in contrast with other language-independent data 
transport mechanisms, like the mechanism described in [4], that use 
a separate language to define the data. The type declarations can 
contain extra information for scheduling and debugging purposes, 
e.g. the expected number of accesses per second, the legal values 
that elements can assume, display procedures, etc. 

KSs can refer to sets of elements by using capabilities. Capabilities 
are manipulated by Agora functions and can be used to “copy” from 
a clique into the address space of a KS and viceversa (often no real 
copy will be necessary). There are two “modes” of access: 
React-only and Add-element. Elements cannot be modified or 
deleted after they are written but Knowledge Sources can signal that 
they are not interested anymore in a given Element Clique. 

Each KSs contains one or more user functions. KS functions are 
completely independent of the system they are used in and must 
only be able to deal with the types of element they use. KSs are 
created by calling an Agora primitive, each call to this function can 
generate multiple instances of the same KS. When a KS instance is 
created, a pattern can be specified: once the pattern is satisfied the 
KS function is activated. The pattern is expressed in terms of “arrival 
events” (the fact that an element has entered a clique) and in terms 
of the values of the data stored in the elements. For example, one 
can specify a pattern that is matched every time a new element 
enters the clique or that only matches if a field in the element has a 
specific value. More than one clique can be mentioned in the same 
pattern but no variables are permitted in the pattern (i.e. there is no 
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binding). It is also possible to specify if an event must be considered 
“consumed” by a successful match or if it can be used by other 
patterns (this can be very useful to “demultiplex” the contents of a 
clique into different KSs or to guarantee mutual exclusion when 
needed). 

A KS can contain any statement of the language that is being used 
and any of the Agora primitives, expressed in a way that is 
compatible with the language used. The Agora primitives are similar 
to the typical functions that an operating system would provide to 
start new processes (create new KS’s in Agora), manipulate files 
(create, share and copy cliques) and schedule processes (i.e. 
change the amount of computation allocated to a KS). 

KS’s are mapped into Mach [2] primitives. In this mapping a KS can 
be clustered with other KS’s that can benefit from sharing computer 
resources. For examole. a cluster could contain KSs that-access the 
same clique or KSs that should be scheduled (i.e. executed) 
together. Although clusters could also be implemented as Mach 
tasks, sharing the address space between “random” tasks can be 
very dangerous. Clusters can be implemented (in decreasing order 
of efficiency) as multiple processes that share memory or as multiple 
processes communicating by messages. Multiple instances of the 
same KS have a very effective and simple implementation on the 
Mach operating system [2] as a single process (task, in Mach 
terminology) in which multiple “threads” of computation implement 
the KSs. 

Currently, the composition of clusters must be fully specified by the 
user. but Aaora maintains information on which KSs are runnable 
and on how-much of the cluster computation power each KS should 
be-receiving. The computation power associated with a KS can be 
controlled by any KS in a cluster-by using Agora primitives. 

In conclusion, the Agora virtual machine provides mechanisms to 
statically and dynamically control multiprocessing: KSs can be 
clustered in different ways and executed on different processor 
configurations. Clusters can be used to dynamically control the 
allocation of processors. Therefore, Agora provides all the 
comoonents necessarv to implement focus-of-attention policies 
within a system, but *the responsibility of designing the ‘control 
proceduresremains with the user. 

4. Example of a System Built with Agora 

We 
the 

will illustrate how Agora can be used by describing the design of 
CMU speech recognition system, ANGEL [5]. ANGEL uses more 

computation than a single processor could provide (more than 1,000 
MIPS), is programmed in two languages (currently, the system 
comprises more than 100,000 lines of C and CommonLisp code), 
uses many different styles of computation, and is in continuous 
evolution since more than 15 researchers are working on it. Figure 
4-l shows the top level organization of the system. Arrows indicate 
transfer of both data and control. At the top level most of the 
components communicate using a data-flow paradigm, with the 
exception of a few modules that use a remote-procedure-call) 
paradigm. Eventually, a blackboard model will be used at the top 
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level. In Figure 4-1, two components contain a sketch of the structure 
of their subcomponents. For example, the acoustic phonetic 
component uses both data-flow and blackboard paradigms. It is 
important to note that Figure 4-1 shows the current structure and that 
part of the work being done on the system concerns expanding the 
number of modules and evaluating new ways of interconnecting 
them. 

Frameworks are used to provide each component with the 
environment that is best suited to its development. At the top level 
there is a framework that provides a graphic editor to program data- 
flow and remote-procedure-call computations. Each subcomponent 
of the top level framework is developed using a different framework. 
We will use the word hypothesizer subcomponent as an example. 
The word hypothesizer generates word hypotheses by applying a 
beam search algorithm at selected times in the utterance. The inputs 
of the search are the phonetic hypotheses and the vocabulary. The 
times are indicated by a marker, called anchor that is computed 
elsewhere. The word hypothesizer must be able to receive anchors 
and phonemes in any order and perform a search around each 
anchor after having checked that all the acoustic-phonetic 
hypotheses within delta time units from the anchor are available. 
Phonetic hypotheses arrive at unpredictable times and in any order. 

The word hypothesizer requires two functions: the matching function 
(match()) that hypothesizes words from phonemes and the condition 
function (enough-phonemes()) that checks if there are enough 
phonemes within a time interval from the anchor. The “editor” of the 
word-hypothesizer framework lets a researcher specify these two 
functions and binds them with the virtual machine level description. 
This description, that has been programmed by an application 
engineer, provides the parallel implementation. The framework also 
contains a display function that can be altered by a user. 

The stylized code in Figure 4-2 describes the virtual machine level 
description used within the word hypothesizer framework. A speech 
researcher does not ne,ed to be aware of this description but only of 
the external specification of the two functions match0 and 
enough-phonemeso. This description could be written in any 
language supported by Agora (currently C and Common Lisp). 

KS5 

Type declaration8 for cliques 

KS setup 
Initialization: Create word and phoneme lattice clique 

Instantiate a few copies of KS word-hypothesize 
to be activated at the arrival of each new anchor 

KS word-hypothesize 
Initialization: Declare the word, phoneme lattice and 

anchor cliquea as shared 
Entry point: if enoughghonemes() then execute 

match0 else instantiate KS wait to be 
activated at each new phoneme 

KS wait 
Initialization: Declare the word, phoneme lattice and 

anchor cliques as shared 
Entry point: if there are enough phonemes then match0 

Figure 4-2: The Virtual Machine Level Implementation of 
the Word Hypothesizer 

There are three Knowledge Sources: KS setup creates instantiations 
of KS word-hypothesize that are activated when “anchors” arrive. 
When any of these KSs receives an “anchor”, it checks if there are 
enough phonetic hypotheses and, if so, executes match(). If not 
enough hypotheses are available, it creates an instantiation of KS 
wait that waits for all the necessary phonemes before executing 
match(). 

The KS word-hypothesize can be compiled into a task if the target 
machine does not have shared memory. A parameter of the KS 
creation procedure indicates to Agora how many copies of the KS 
the framework designer believes can be efficiently used. If the 
machine has shared memory, then threads can be used and the 
parameter becomes irrelevant since new threads can be generated 
without incurring in too much cost. Agora can also be instructed to 
generate the wait KSs as threads of the same task. This is possible 
if KS wait and the functions it calls do not use any global data. 

5. Custom Hardware for the Agora Virtual Machine 

In a parallel system, the duration of an atomic computation 
(granularity) must be substantially bigger than the overhead required 
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to start and terminate it. This overhead can be very large when 
using (conventional) general purpose architectures. Agora shares 
this characteristic with many other languages and environments. For 
example, Multilisp [13] cannot be used to efficiently implement 
computations at a very small granularity level unless some special 
hardware is provided to speed-up the implementation of futures. The 
effect of the overhead can be seen in the performance curves for the 
quicksort program presented in [13], Figure 5: the parallel version of 
the algorithm requires three times more processing power than the 
sequential version in order to run as fast (although it can run faster if 
more processing power is available). Therefore, hardware support 
tailored to the sty/e of parallelism provided 6y a language or an 
environment is necessary. A proposal for an architecture that 
supports small granularity in concurrent Smalltalk can be found in [9]. 

The Agora virtual machine efficiently supports computations with a 
granularity larger than 500 ms when implemented on general 
purpose machines connected by a local area network. In the case of 
shared memory architectures, the limiting factor is the operating 
system overhead. Most of the current parallel environments, such as 
the Cosmic Cube [15] and Butterfly [3] environments, provide only 
minimal operating system functionality: typically, only the basic 
functions required to use the hardware. In these systems, 
granularity could be as small as a few hundred microseconds. 
Agora supports systems that are too large and complex to be 
implemented without a full operating system environment and must 
pay the price of operating system overhead. Therefore, the 
minimum granularity of an Agora’s KS on shared memory systems 
and Mach is about 1Oms. 

There is no single set of hardware which can lower the KS 
granularity independently of the computation being performed since 
each different style of computation poses different requirements on 
the virtual machine primitives. Therefore, our strategy is to develop 
architectures tailored to specific computations. So far, we have 
designed an architecture that supports computations that can be 
pipelined but are data-dependent and cannot be easily vectorized. 
For example, pipelines can be generated every time an algorithm 
executes a large number of iterations of the same loop. The 
architecture exploits the fact that data-flow control can be 
implemented very efficiently by direct connections between 
processors and the fact that a hardware semaphore associated with 
each element of a clique can speed-up concurrent access to 
elements. The architecture is custom because a set of KS’s has to 
be explicitly decomposed and the architecture configured for that 
particular decomposition. This process is convenient when an 
algorithm is reasonably stable. 

Figure 5-l shows the structure of the architecture and how it 
interfaces with the rest of the system. Each KS is executed in a 
separate processor. Processors communicate through shared 
memory as well as through dedicated links. Dedicated links take 
care of data-flow while shared memories serve two functions: 
input/output and synchronized access to shared data to resolve data- 
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dependencies. 

Each processor contains: a simple hardwired control unit that 
executes a fixed program, functional units as reauired bv the KS 
function, and register storage. An instruction can specify which data 
to read from local storage, what operations to perform on them, and 
where to store the result. A typical instruction can perform an 
addition or multiplication or access the shared memory. The 
architecture can be implemented as a fully-dedicated VLSI device or 
device set that communicates with the rest of the system through 
shared memory. Therefore, each processor can have different 
functional units and be wired directly to the processor(s) that follow it. 
A more expensive implementation with off-the-shelf components is 
also possible. 

We evaluated the architecture by decomposing the match procedure 
used in the word hypothesizer described in the previous section. 
The match function uses a “best match, beam search” algorithm 
though other, more sophisticated search algorithms are already 
being planned. The current algorithm requires about 20 to 40 million 
instructions per second of speech with a 200-word vocabulary when 
executed in C on a VAX-111780, depending on how much knowledge 
can be applied to constrain the search. A 5000-word vocabulary will 
require 500 to 1000 million instructions per second of speech. 

We have simulated the custom architecture instruction-by-instruction 
while it executes the beam search algorithm with real data. The 
simulation assumed performance figures typical of a CMOS VLSI 
design that has not been heavily optimized (and therefore might be 
generated semiautomatically using standard cell design techniques). 
See [l] for details. The presence of 1, 2, 4, or 7 physical memory 
blocks was simulated to evaluate memory access bottlenecks. 
Figure 5-2 shows our simulation results as speedup relative to the 
performance of a VAX-limo. 

With five KS’s and one physical memory we see a speedup of 170. 
This configuration could be implemented on a single custom chip by 
using a conservative fabrication technology (memories would still be 
implemented with off-the-shelf RAM’S). With 28 KS’s and seven 
memories, we can obtain speedups of three orders of magnitude, 
enough to cope with a 5,000 word vocabulary in real time. 
Moreover, each of the 28 processors is much smaller (in terms of 
hardware) than the original single processor and all 28 processors 
could share the same VLSI device by using the best available 
fabrication technology. This fact is illustrated graphically in Figure 
5-3 which plots the speed-up against the transistor count of the 
design. I 7e transistor count was obtained by adding the number of 
transistors in actual layouts of the various functional units and 
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registers, and is a crude estimate of the amount of silicon area 
required in a VLSI design. 

6. Conclusions 

Agora has a number of characteristics that make it particularly 
suitable for the development of complex systems in a multiprocessor 
environment. These include: 

-the complexity of parallel processing can be hidden by building 
“reusable” custom environments that guide a user in describing, 
debugging and running an application without getting involved in 
parallel programming; 

-computations can be expressed in different languages; 
-the structure of a system can be modified while the system is 
running; 

-KSs are activated by patterns computed on the data generated by 
other KS’s; 

-KSs are described in a way that allows Agora to match the 
available architecture and its resources with the requirements of 
the computation; 

-custom architectures can easily be integrated with components 
running on general purpose systems. 
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