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Abstract: This paper describes a parallel real-time 
stereomatching algorithm and its implementation on the 
Connection MachineTM 
computing system. 

computer, a new massively parallel 
The main features of the algorithm are 

1) real-time performance, 2) the full exploitation of the OP- 
dering constraint, 3) a representation that easily maps onto 
a parallel computer architecture, and 4) the ability to effi- 
ciently use a variety of matching primitives. Some results, 
including timings, are shown for both real and synthetic 
data. Also discussed are the use of color information and 
some subtle variations of the basic algorithm. 

I Introduction 

Research on stereomatching has been, until recently, a slow 
and painstaking process. Most stereo algorithms are com- 
putationally expensive, requiring many seconds, minutes, 
or even hours to run on conventional computers. Such a 
long feedback delay for changing the algorithm or the data 
makes it impractical to refine stereo algorithms by experi- 
mental methods. 

In this paper we will show how a fine-grained massively 
parallel computer has been used to solve the speed prob- 
lem and to develop a new stereomatching algorithm. The 
algorithm was outlined in a section of [2]. 

2 Description of the Connection 
Machine computer 

The Connection Machine computer is a fine-grained mas- 
sively parallel computing system designed and built by 
Thinking Machines Corporation for research in 
artificial intelligence. The prototype contains 65,536 l-bit 
serial processors which can communicate with each other 
by two distinct mechanisms. One of these mechanisms has 
the topology of a boolean 16-cube and is called the router 
network, or simply “the router.” The other mechanism con- 
sists of a four-connected x-y grid called the north-east-west- 
south connections, or “NEWS.” NEWS is used for opera- 
tions requiring local communication, such as convolutions 
and relaxation algorithms. The router is used for global 
operations such as permuting, sorting, merging, summing, 
histogramming, region-growing and image sampling. Each 
processor has 4K bits of memory. The machine is pro- 
grammed in a single instruction, multiple data fashion from 
a host computer such as a Lisp MachineTMor a VAXTM. The 
computations performed by a particular processor depend 
on the data contained in that processor’s memory. For ex- 
ample, the host machine may broadcast a request to each 
processor to add two numbers together, conditional upon 
whether the processor contains a particular piece of data. 
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Figure 1. Schematic representation of the Connection 
Machine computer from the viewpoint of image process- 
ing. The processors may be viewed as z and y dimen- 
sions; the memory forms a third dimension. An 8-bit 
image could be stored in the field (0, 8). 

In this way, any 
a computation. 

subset of the processors can “opt out” of 

2.1 Virtual Processors 

The Connection Machine computer can be space-shared by 
dividing it into small boolean n-cubes whose sizes depend 
on the number of users and the amount of processing power 
they need. For example, it was most convenient at the time 
of this writing to use a 16K-processor subnetwork of the 
standard 64K-processor configuration. 

Image processing applications are programmed on the 
Connection Machine computer by assigning one processor 
to each pixel. If the number of pixels is greater than the 
number of processors, then virtual processors are used. Vir- 
tual processors are a low-level software facility through 
which each physical processor simulates several processors 
in separate blocks of its memory. Virtual processors are 
invisible to the user; they simply make the machine “seem 
larger” (and proportionally slower). We used 64K virtual 
processors (4 per physical processor) to process the 64K- 
pixel images shown in this paper. 

See (41 for a more detailed description of the Connection 
Machine computer. 

2.2 Storing images in Connection Ma- 
chine memory 

A convenient way to visualize the Connection Machine com- 
puter for this implementation is shown in Figure 1. From 
the point of view of the NEWS communication mechanism, 
the processors act as “x” and “y” dimensions and each 
processor’s memory is a “memory dimension.” The term 
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field will be used to refer to a rectangular block of memory 
underlying the entire NEWS grid and occupying a contigu- 
ous segment of the memory dimension. A field is denoted 
(address, length). For example, an &bit video image might 
be contained in the field (0,s) which occupies memory loca- 
tions O-7 in every processor (see Figure 1). In this way, each 
processor represents a pixel. Since the amount of memory 
in each processor is large compared to the length of a typ- 
ical intensity value (usually 8 bits), the machine can hold 
many different superposed images. 

3 A simple Connection Machine 
stereomatching algorithm 

Compute primitives for matching. 

Compute potential matches between primitives. 

Determine 
match. 

the amount of local suport for each potential 

Choose correct matches on the basis of 
constraints on uniqueness and ordering. 

local support and 

3.1 Matching features 

This algorithm does not require a particular type of match- 
ing primitive. Many different types of primitives could be 
used; see [I] or [8] for examples. All results shown in this 
paper were obtained using zero crossings [5]. We have used 
other features; these will be discussed later. 

In our implementation we first convolved the image with 
a small gaussian filter, then detected zero crossings in the 
output of a discrete laplacian operator. 

3.1.1 Z-D convolution 
chine computer 

on the Connection Ma- 

Convolutions are performed by collecting intensity values 
from nearby processors via the NEWS mechanism, multi- 
plying the values by a broadcast constant, i.e., the appro- 
priate filter weight, and accumulating the product. These 
steps occur in parallel for all pixels. Some timings for gaus- 
sian convolutions are given in Table 1. 

The time complexity of convolutions computed in this 
way is independent of the size of the image and proportional 
to the size of the filter. 

TOTAL DIAMETER CENTRAL CONVOLUTION TIME 
OF WIDTH ON THE 

GAUSSIAN MASK "SIGMA" CONNECTION MACHINE 
(PIXELS) (PIXELS) (SECONDS) 

1.2 0.022 
13 2.2 0.042 
31 5.2 0.107 
49 8.2 0.180 

Table 1, Actual timings for gaussian convolution on the 
Connection Machine computer. It should be noted that 
these figures are for a true gaussian convolution computed 
using a sampled gaussian kernel, not for the commonly- 
used approximation obtained by iterated local averaging. 

L, (a radial line from 

I 
Rc right eye 

epipolar 
line) 

(left eye epipolar line) 

Figure 2. Schematic representation of stereomatching ge- 
ometry (redrawn from 61). This diagram represents the 
1-D stereomatching pro b lem at a particular y coordinate, 
that is, for a pair of epipolar lines or scanlines. The black 
and white circles are potential matches, or points in x-d 
space where the features from both images are compati- 
ble. The black circles are hypothetical correct matches. 
The uniqueness constraint states that there can be at 
most one match along any radial line from either eye (such 
as L1 and L,). 

3.2 Computing potential matches 

The set of potential matches in a one-dimensional stereo- 
matching problem, i.e., for a pair of corresponding epipolar 
lines, can be represented by the diagram in Figure 2. These 
diagrams can be “stacked” perpendicular to the page to 
obtain a three-dimensional set of potential matches. This 
representation of the stereomatching problem is very con- 
venient for mapping a stereo algorithm into the Connec- 
tion Machine computer, since the resulting set of potential 
matches can be stored in a field in the machine (see Figure 
3, compare with Figures 1 and 2). 

For simplicity, we have assumed that the images are 
perfectly registered and that all epipolar lines are horizon- 
tal. Potential matches are allowed to occur between zero 
crossings of the same sign on corresponding epipolar lines. 
Note that this implements the compatibility constraint [6]. 
For D disparity values ranging from d; to d,, we computi! 
the set of potential matches in the following way: 

Allocate a field P = (paddr, D) to contain the set of 
potential matches. Initialize P to contain zero everywhere. 

the 
Allocate two 2-bit fields, L and R, initialized 
zero crossings of the left and right images. 

to contain 

While holding L stationary, “slide” R horizontally one 
pixel at a time along the x-axis of the NEWS grid, from 
x = d; to x = df. After the ith shift, write a I into the 
field ((paddr i- i), 1) at each (x, y) where L and R contain 
identical zero crossings. 

For example, in the third step, after the first shift of R, the 
would be 1 at every point (x, y) where 
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Figure 3. Diagram describing how the geometry of stere- 
omatching is mapped into the Connection Machine com- 
puter. The 1-D situations (as in Figure 2) are “stacked” 
in the y direction to form a complete 2-D stereomatching 
problem. 

After this operation, the field P represents a rectangular 
block of z-y-d space with some configuration of matches 
(l’s) embedded in it. 

3.2.1 Image registration 

As stated so far. this algorithm assumes that the stereo 
images are perfectly registered with respect to the epipolar 
lines. In nractice. of course. this is rarelv the case. In our 

I I I 

implementation. we first “undistort” the images to compen- 
satk for perspective distortion and camera-misalignment. 
The nositional error of each pixel is measured using a semi- 
automatic svstem based on a test nattern which, rn effect, 
produces a *stereo pair with no false matches, Each pixel 
is then “sent” to its corrected position via the hype&be 
communication mechanism. 

Due to rounding-off of pixel displacements, it is inevi- 
table that more than one pixel will collide at the same des- 
tination pixel. We take the average of the colliding pixels 
as the value of the destination. It is very convenient to 
use the router for this computation, since it automatically 
combines colliding messages with a user-specified “combin- 
ing function,” such as MAX, MIN, LOGIOR, etc. In our 
case. the combining function is ADD. The destination pixel 
is normalized acco:ding to the number of pixels that collide 
there. 

3.3 Gathering local support 

Our first step at distinguishing the correct matches from 
the false ones is to apply a continuity or smoothness con- 
straint. Many algorithms based on such constraints have 
been developed [6] [9] [lo] [ll] [12]. 

3.3.1 Three-dimensional convolution 

A straightforward way to measure how well each dispar- 
ity satisfies the smoothness condition is to convolve the 
three-dimensional region of x-y-d space contained by the 

field P with a three-dimensional kernel that gathers sup- 
port from locally smooth disparity configurations. There 
are many different kernels, or support functions, that will 
do a good job on this task. Reference [6] uses a very simple 
support function (or “excitatory region”) that is circular, 
uniformly-weighted, and flat, i.e., it occupies only one level 
in the disparity dimension. More elaborate, 3-D support 
functions are described in [9] and [12]. It should be noted 
that these algorithms do not perform a simple linear convo- 
lution. Prazdny’s algorithm, for example, includes a non- 
linear step designed to ignore irrelevant matches and cut 
down on computational costs [12]. 

Three-dimensional convolutions are computed in a man- 
ner similar to two-dimensional convolutions. In the 3-D 
case, however, a memory location in each processor might 
accumulate values not only from neighbors in the x and y 
dimensions, but also in the memory dimension. 

.4 Enforcing uniqueness 

The uniqueness constraint [6] allows a left image feature 
to be matched with only one right image feature and vice 
versa. Every working stereo algorithm uses the uniqueness 
constraint or something similar to it. It expresses the fact 
that under normal circumstances a single physical object 
does not simultaneously give rise to a single feature in one 
image and many features in another image. 

Figure 2 and its caption illustrate the uniqueness con- 
straint. In the simple algorithm which we are now describ- 
ing, potential matches are retained if they have the max- 
imum local support score along the radial lines projecting 
from each eye. This process of non-maximum suppression 
along lines of sight has been called the winner-take-all ap- 
proach; it is analyzed in detail in [14]. It is used, with 
slight variations, by the algorithms in [9], [12] and [14], and 
it is similar to the inhibition employed by the cooperative 
algorithm in [6]. 

4 A new algorithm combining 
uniqueness and ordering con- 
straints 

4.1 The forbidden zone 

Every potential match is surrounded by an hourglass-shaped 
region extending through the d and x dimensions, as shown 
in Figure 4. This region is called the forbidden zone, see 
[13]. Any straight 1 ine lying in the forbidden zone must 
intersect no more than one match, unless the scene con- 
tains transparent or narrow occluding objects. Examples 
of such a scene include a pane of glass with markings on 
both surfaces or a vertical wire suspended in front of a tex- 
tured wall. These situations can give rise to violations of 
the ordering constraint. 

Assuming that the scene contains none of the situations 
just described, any surviving match must be unique not 
only along the left and right eye radii (Li and L, in Fig- 
ures 2 and 4), but along any line situated between them, 
such as L in Figure 4. The set of all such lines fills the 
forbidden zone completely. Therefore, we implemented an 
algorithm in which a potential match is eliminated unless its 
local support score is greater than that of any other match 
in its entire forbidden zone. 

If there are D disparity levels, the forbidden zone sur- 
rounding each potential match contains approximately 
D2/2 other potential matches. Therefore, the a priori time 
complexity of an algorithm that considers every score in ev- 
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Figure 4. The forbidden zone. Enforcing uniqueness in 
the directions of Li and L, in this diagram corresponds to 
allowing only one match per image feature (recall Figure 
2). If we assume that the scene contains opaque objects 
and no narrow occluding objects, then a straight line lying 
inside the forbidden zone, such as L above, must also 
contain at most one match. Consideration of all such 
lines implies that every correct match must be the only 
match in its own forbidden zone, The forbidden zones 
of a few matches are shown above (shaded). Note that 
none of the black dots hypothetical correct matches) has 
another black dot insi e its forbidden zone. 
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Forbidden 

Zone 

B’s 
Forbidden 

Zone 

ery forbidden zone is O(D3). However, an O(D2) algorithm 
exists, which we now describe. 

4.1.1 An O(D2) algorithm for non-maximum 
suppression over the entire forbidden 
zone. 

Figure 5 shows a slice of the field P, through the x-memory 
plane, in the neighborhood of a single processor. Figure 
5 is equivalent to Figure 4, but it makes the relationship 
between Figure 4 and the Connection Machine architec- 
ture more explicit. Notice that here the forbidden zone is 
“skewed.” This is a consequence of the way the field P was 
constructed in section 3.2. In particular, a vertical line in 
Figure 4 maps into a vertical line in Figure 5, but a hori- 
zontal line in Figure 4 maps into a diagonal line in Figure 
5. 

In our algorithm, a potential match must examine the 
local-supporr scores of every potential match in its forbid- 
den zone. The Connection Machine implementation steps 
through each disparity level i, first up (i = di, . . . . df) then 
down (; = d , . . . . d;). On the upward pass the lower “lobes” 
of the forbi den zones are considered. For example, in Fig- d 
ure 5, the match A checks whether its score is greater than 
all scores in the horizontally cross-hatched lobe below it. 
If this is not the case, then A is disqualified. Next, the 
match B checks whether its score is greater than all scores 
in the diagonally cross-hatched lobe below it. If this is not 
the case, then B is disqualified. Note, however, that the 
maximum value found in the horizontally-shaded lobe can 
be cached and used to help compute the maximum in the 
diagonally-shaded lobe. In particular, in order to compute 
the maximum value in the entire diagonally-shaded lobe, B 
needs to examine only the scores covered by diagonal shad- 
ing alone, because the scores covered by both diagonal and 

Figure 5. Algorithm for non-maximum suppression over 
the entire forbidden zone (see text). LI and L, (from Fig- 
ures 2 and 4) are redrawn here to make the relationship 
between this figure and Figure 4 explicit. Note, however, 
that the line L, is tilted 45 degrees. This is a conse- 
quence of the way the field P was constructed in section 
3.2. In particular, lines parallel to Li lie inside a single 
processor’s memory, but lines parallel to L, are oriented 
as shown. 

horizontal shading have already been examined (by A). In 
this way, the time complexity of the foribdden zone com- 
putation can be kept down to O(D2). (Note that a similar 
“downward pass” is necessary to cover the upper lobes.) 

5 Results and discussion 

Some results of running our algorithm on natural and syn- 
thetic images are shown in Figures 6 through 10. 

5.1 Time complexity of the algorithm 

Given the efficient implementation of the forbidden-zone 
computation described in the previous section, the most 
time-consuming component of the entire algorithm is the 
local support step, which involves an expensive 3-D con- 
volution. This operation requires time proportional to the 
number of disparity levels being investigated. Therefore, 
for a particular local-support function, the time complex- 
ity of the entire algorithm is roughly O(D) . 

5.2 Using 3-D support functions 

References [9] and [12 describe algorithms that are based 
on the winner-take-al i approach and which use elaborate 
support functions. These functions are circularly symmet- 
ric in the x-y plane, with a butterfly-shaped cross-section. 
The values of the function decrease gradually from a non- 
zero weight at the center to zero at the extreme perimeter. 
Such a function is designed to respond to a configuration 
of matches that is locally smooth and roughly planar, and 
which may have a nonzero disparity gradient [9]. 
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The Connection Machine implementation allows the use 
of such 3-D support functions, but the best results we have 
obtained so far have been with simple 2-D kernels. We 
intend to perform further research on this topic. 

5.2.1 Color vectors and other matching fea- 
tures 

It is possible to combine information from various color 
channels to improve stereomatching results. One method 
that we have tried is to use the sign of convolution (SOC) 
as a matching primitive. This was used by Nishihara in the 
PRISM stereomatching system [8]. 

Our approach was to compute the SOC for each of three 
color channels, then load them into separate positions in a 
S-bit field of “SOC color vectors.” These vectors were used 
instead of the 2-bit zero crossings to compute the potential 
matches. This was found to give a noticeable improvement 
for very contrived scenes. For example, we ran such an al- 
gorithm on a scene containing a matte white hammer on a 
matte white background, with a randomly colored random 
dot stereogram projected onto the objects to provide a rich 
texture for matching. This technique, called unstructured 
light, was invented by Nishihara (81; he used it for a sin- 
gle broad color channel. We noticed a severe drop in the 
number of matches and a roughly proportional drop in the 
number of errors. The method offered little or no improve- 
ment for typical natural scenes. We do not regard these 
results as conclusive; rather, we mention them in order to 
stimulate interest in the use of color in stereomatching. 

6 Conclusions 

Stereomatching can be performed extremely fast on a mas- 
sively parallel processor such as the Connection Machine 
computer. The use of this machine also helps us represent 
the problem easily, since the geometry of the stereomatch- 
ing situation naturally maps into such a parallel architec- 
ture. 

The Connection Machine computer has been used to 
implement an efficient new algorithm, winner-take-all us- 
ing the entire forbidden zone. The new algorithm exploits 
uniqueness and ordering constraints more fully than previ- 
ous similar algorithms. 

The tremendous speed afforded by the Connection Ma- 
chine computer makes it possible to experiment with so- 
phisticated computer vision algorithms, such as the stereo- 
matching algorithm described here, interactively. 
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Figure 6. A natural stereo pair. The scene consisted 
of a terrain model approximately 1 meter wide, with a 
simulated building added. 

Figure 7. Contour map for the natural stereo pair. The 
disparities were computed using the simple version of al- 
gorithm, i.e., with non-maximum suppression only in the 
directions of Ll and L, (from Figure 2). The algorithm 
was run over a disparity range of 23 prxels; the support 
region was a flat square 23 pixels on a side. Computa- 
tion time for the stereomatching algorithm (not including 
edge detection was 0.95 seconds. The contour map was 
computed by d rawing isodisparity lines after interpolat- 
ing the disparity field. (The interpolation algorithm used 
a “rubber sheet” model. This is basically an iterative 
solution to the heat equation., performing approximately 
1000 iterations of nearest-neighbor averaging at 20 bits 
of precision and with known disparities held fixed, fol- 
lowed by a slight gaussian smoothing, all computed in 
1.5 seconds). 

Figure 8. Another contour map for the natural stereo 
pair, using the full-forbidden-zone algorithm. All other 
parameters are the same as in Figure 7. Note that drastic 
errors (such as the peaks and erratic elevations appearing 
in Figure 7) are almost non-existent in this contour map. 
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Figure 9. A computer-generated stereo pair. The 
consisted of a vase in front of a textured backdrop. 

scene 

1 ~ 
A B C 

Figure 10. (A) h s ows the occluded region for the syn- 
thetic stereo pair, where no matches should be found. 
(B) shows the locations where matches were found using 
the simple algorithm. (C) shows the locations of matches 
found using the full-forbidden-zone algorithm. Note that 
the full-forbidden-zone algorithm was more successful at 
eliminating matches in the occluded region, where the 
ordering constraint is violated. 
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