
Merging Objects and Logic Programming: Relational Semantics 

Herve Gallaire 

European Computer-Industry Research Centre (E.C.R.C) 

Arabellastr. X7, D-8000 Muenchen 81 FRG 

Abstract 

This paper proposes new semantics for merging object pro- 
gramming into logic programming. It differs from previous at- 
tempts in that it takes a relational view of method evaluation 
and inheritance mechanisms originating from object program- 
ming. A tight integration is presented, an extended rationale 
for adopting a success/failure semantics of backtrackable 
methods calls and for authorizing variable object calls is given. 
New method types dealing with non monotonicity and deter- 
minism necessary for this tight integration are discussed. The 
need for higher functions is justified from a user point of view. 
as well as from an implementation one. The system POL is 
only a piece of a more ambitious goal which is to merge logic 
programming, object programming and semantic data models 
which can be seen as an attempt to bridge the gap between 
AI and databases. The paper is restricted to a programming 
perspective. 

1. INTRODUCTION 

This paper is not about yet another mix of logic program- 
ming and object programming. Its goals are at a different level 
than those of most systems which have been presented up to 

now p],p],p],p],[5] which merely copy object- programming 
semantics 16],/7],!8] into a logical one. The question addressed 
here is whether the notions of inheritance and of procedural 
semantics attached to the object programming systems can be 
kept, or whether they have to be revisited in the light of a 
relational rather than functional paradigm. The answer given 
in thic paper ic that these conreptc should indeed be defined 
differently in this context, and a complete solution is 
presented. This requires to adopt a success/failure semantics 
of backtrackable method calls. instead of the call/return classic 
mechanism. it also requires to allow for variable object calls 
and to introduce new types of methods dealing with non 
monotonicity and determinism. A for these decisions is given. 

Methods and method calling are discussed extensively here, 
but slots are not because they are orthogonal to the actual 
topics of interest in this paper. Similarly the paper does not 
analyse objects in the perspective of parallel execution as ob- 
ject programming and logic are still very much sequential. The 
problems studied do not suffer from these limits. 

Another important thrust of this study has been to develop 
ideas leading to realistic implementations of the complex opera- 
tions required in a full relational context as proposed in this 
paper. but they are not discussed here. 

Early applications of this system have sbown how this in- 
tegration could still be improved. Several more complex 
operators have been defined to give adequate tools to applica- 
tion developers in order to integrate operations to method calls 
(eg average,..) while retaining the efficiency of the method 
evaluation technique developed. In many ways they are the 
corresponding operators of the classical ‘set-of one in a logic- 
oriented framework, and in some sense of the aggregation 

operators added to the relational algebra in a database 

framework. 

The rest of the paper is divided into four further sections 
and a conclusion. Section 2 states the requirements set up to 
build the POL system. Section 3 defines the syntax of POL. 
Section 4 deals with the semantics. especially the method call 
interpretation. Section 5 presents the higher order operators. 
Initial ideas about the POL system have been presented briefly 
in [Q:. 

The work described here is part of a wider effort to bridge 
the gap between knowledge representation techniques as used 
in the A.1 (objects. frames) and in the Database communities 
(entities. relationships.....). based on the use of logic as a pos- 
sible unifying framework. Obviously POL bears relations to 
languages developed from the other ends: Al languages ex- 
tended to handle inference ! IO,. Ill:. Theorem Provers using 
theory resolution 117j, semantic database systems 1121 offering 
inference mechanisms [13:, /14j, 115,. It is anticipated that 
there will be a strong convergence through approaches of this 
type between the programming, the AI and the database 
fields. 

POL has been built through progressive refinement, intro- 
ducing first an interpreter of method calls: then a simple com- 
piled version has been developed and progressive optimisations 
which appeared necessary to fulfil the additional requirements 
were introduced later. 

2. REQUIREMENTS 

The following sums up the main ones retained for the 
development of POL. 
reql: the POL system must be a superset of Prolog, any 
Prolog program should run unchanged. 
req2: the POL system must allow for a programming based 
on objects. classes and method calls. Inheritance should be a 
feature of POL. including multiple inheritance. Slots are not 
disrussed here.but they are supported. 
& : the relational framework must he used to refine ap- 
propriately concepts such as inheritance and method evalua- 
tion. as the usual function-based semantics is not appropriate 

754 / ENGINEERING 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



reqd the main features of log~r programming. riamel! thr 
logic z ariahle. uon-determinism (including backtracking to int- 
plcment it) should tie used throughout. Thus nre! hod calls 
must be fully general and backtrackable. They provide fully 
associative retrieval of sets of objects. 

Requirements 1 and 2 are straightforward. Requirements 3 
and 4 give preeminence to logic. The semantics of object pro- 
gramming is for the most part system dependent. and this 
paper adds to the long list of such contributions with specific 
motivations. 

req5 : the system must allow dynamic creation and dele- 
tion of objects. classes, methods. 

There are additional requirements which tie the system to 
the semantic models domain. Although they are out of the 

by scope 
POL 

Of 

are 
this discussion. 

relationships 1121 
some of 
and fully 

the features supported 
deductive relationships. 

3. SYNTAX 

A sentence 
declaration: 

in POL is a clause belonging lo Prolog+ or a 

Prolog-t. A clause in Prolog+ is a Prolog clause, including 
additional built-in evaluable predicates (defined for most of 
them as Prolog operators) ; in particular the infuc operator ‘:’ 
to indicate a method call. Method calls are written ‘X:Y’ 
where X is an object (instance), or a Prolog variable. and 
where Y is a Prolog literal which must have been defined in 
an associated method declaration (see below); the parameters 
of Y can be objects or variables indifferently. Other operators 
introduced to deal with higher order functions are not dis- 
cussed here. As usual in Prolog. upper case letters denote vari- 
ables. while lower case letters denote constants. The added 
built-in predicates are simulated in the current implementation. 
but they are to be understood as true built-in, in a final im- 
plementation. 

4. SEMANTICS 

for the instarrces of that type which have another concrete 
structure possibly derived from the generic one: thus the 
generic structure would be attached to the class itself. POL 
requires objects to have names. We will note method calls 
X:methodname(Parameter), or 
X:methodname(Parameterl. Parametera). It is perhaps 
easier to view this notation as an alternative for another 
predicate, methodname(X,Parameter) or 
methodname(X.Parameterl.Parameter2), etc. 

4.1. Basic Choices 

The first point of interest to discuss has to do with the 
evaluation of a method call. In classical object programming 
system, a call Object:methodname(Parameter) is 
usually answered according to the following rules : 
take the first method according to the inheritance rules which 
has the name of the method call, evaluate that method for the 
couple (Object.Parameter), one of which is (almost) always a 
constant (Object), the other a variable (Parameter); only one 
such couple will be used; the call may then instantiate or not 
Parameter - usually it would do so. In this respect, the 
method call behaves exactly as a procedure call with a 
call!return paradigm. Of course some languages, e.g flavors in 
ISi offer ways to combine the values of relevant methods, but 
this is still in the functional context. 

In the logic framework both aspects of the above rules 
must be questioned. First even if logic provides also a 
procedural interpretation, its main interest stems from a 
declarative interpretation which corresponds to a success/failure 
paradigm rather than to a call/return one. Thus it is appeall- 
ing to modify and adapt the method call to the success/failure 
paradigm. This change has consequences that are analysed 
later. Similarly, but this is obvious. the constraint of ‘one’ 
answer must be released to fit the relational environment. 
Thus each method call will be hacktrackable. 
To clarify the issues we summarise the various possibilities : 

Case a : a call object:methodname(Paameter), where 
objecl is a known object, not a variable. This is called a 
constant object call. There are three possible independent 
semantic interpretation choices: 
al - call/return versus success/failure paradigm which in- 
fluences the notion of “first answer” 
a2 - multiple answers or single answer of the selected method 
by al 
a3 - multiple methods calls or single method call to provide 
additional answers when possible 
Most systems choose call/return, single answer to a2, and 
single method to a3. Instead POL implements success/failure, 
multiple answers to a2, multiple methods to a3. Obviously the 
programmer will have the possibility to control this and to ac- 
cept only one method, one answer, etc. This also corresponds 
to ESP /I 1, but see further comments. In 131 are provided a 
success/failure paradigm. multiple answers, single method. 

AI LANGUAGES AND ARCHITECTURES / 755 



Cast t, 
variablp in 

: a call )i:rnethod (Pararucter ). w here x is a frep 
the logic sense. Then the question is whether such 

a call. referred IO as variable object call in the sequel. is 
correctI> and efficient)! handled. in all contexts. i.e. even 111 

contexts where non-monotonicit, is handled. In 13, this is not 
dealt with: instead. as in man! other systems, one has to 
program this search at an exlernal level. Consider a predicate 
‘findallobjects’ defined as. 
findallobjects(&ickname):- Obj instance Something. 

Obj:whatis(Nickname) 
where ‘whatis’ could be a user-defined method returning the 
nickname of the object it is applied to. The call mechanism 
involving the complex evaluation scheme of ‘:’ will be reac- 
tibatrd for each object. a penalty. It is not possible to only 
have a pure loop around the method evaluation in order to 
produce obJecl variable calls. This would also have the obvious 
serious problem of redundant answers in lattices. Another 
problem due to the way defaults (i.e. non-monotonicity) are 
implemented in 131. would be the loss of completeness in such 
calls. ie not all answers would be obtained. Similar remarks 
apply to ESP 11;. One system seems to address such calls, 
Sidur 12,. but the programmer has to give a ‘program to do 
so. POL does solve these problems completely, but requires a 
much more complex implementation to be efficient, and new 
types of methods. 

Here are the rules retained; justifications are given after- 
wards: 
(Rl) a method is deemed to provide an answer to a method 
call when and only when the method predicate evaluates to 
true. Thus when a method predicate evaluates to false, the 
search for an answer goes on according to inheritance rules. 
This is the success/failure paradigm and it allows to simulate 
the call/return paradigm. 
(R2) inheritance is basically from bottom-up in the hierarchy 
of classes (which imposes to write the declaration of the 
methods with identical names corresponding to the lowest 
classes first). At a given level. siblings are examined in the or- 
der of declarations of the methods (not of the hierarchy). 
The above comparisons dealt with other systems integrating 
objects and logic programming. It must be noted that at the 
opposite end of the spectrum. a language like Gemstone 116 
which unifies Smalltalk and databases obviously offers variable 
objects thanks to its set notation. However it does not offer 
any deductive capabilities. While we are reviewing hybrid sys- 
tems, let us again mention /lO],/llj. which combine various 
modelling aspects and deductive features, at least to some ex- 
tent. They do not appear to offer the variable object feature. 

4.2. Success/failure versus call/retjurn 
paradigms 

student researcher - 

Figure1 describes a hierarchy of classes, with method-names. 
Corresponding to it we would have the following: 
._.. 
student researcher isa researcher (dl) - 
student researcher isa student id21 - 

756 I ENGINEERING 

researcher isa staff (d3) 
staff isa person id41 

pat instance researcher 
ida instance researcher 
frane instance student researcher - 
age( ida,Z5) 

age(pat3) 
age(franz,no value) - 

(d7) 
(d8) 
(d9) 
(fl) 
(f2) 
(f3) 

researcher with X:is- aged(Y):-age(X,Y).Y= J=no-value (rl) 
researcher with X:diplomlevel(Y):-dip(X.Y).Y=/=no-value (r2) 
staff with X:beginner:- X:diplomlevel(Y).Y=<4, (r3) 

X:experiencelevel(Z), Z=<3 

person with X:is- aged(Y):-askuset(age,X,Y) (r5) 
person with X:diplomlevel(Y):-askuser(diplomlevel.X,Y) (r6) 
researcher with X:topic(Y):-X:in- team(Z),topics(Z,Y) (4 
student with X:topic(Y):-tecord(X,Y) PI 

Examples in this paragraph will be taken from Figure1 
which describes a rather simple domain. They will be used to 
justify the success/failure paradigm as opposed to the 
call,/return one. This choice does not prevent from simulating 
the call/return evaluation as it would be a simple matter to 
introduce a control such as a ‘!’ (cut) at the beginning of 
each of method body. As will be seen however, more 
elaborate solutions will have to be found to properly take into 
account the variable object calls. Assume a query such as 
?-frans:is aged(Y) 
Such a query in an object programming system with 
call/return features. would yield as answer a free variable as it 
would be deemed to have had an answer given at class te- 
searcher where the ‘procedure’ is aged is defined (but fails in 
the logic programming sense), hence yielding the free variable 
answer. or perhaps an error. To palliate this. a ‘sendsuper’ 
call. classical in object systems. could be used in the body of 
is aged. but this is highly procedural in nature and thus - 
should probably not be used in this context. It would present 
other problems as well (see next). Another more problematic 
example would indeed be 
?-franz:topic( Z) 
As topic is defined first al class researcher before being 
defined at class student. if one is to take the call/return 
paradigm. it will evaluate that and only that method. This 
will call the procedures in the body of ‘topic’ defined at class 
researcher and return again a free variable for Z if franc is 
not registered in any team (he may instead have a topic 
which is his university topic, not given by the company). This 
means that the method call in researcher class fails and thus 

paradigm 
Here a 

the search 
would by 

slops. 
itself 

On the 
continue 

contrary, the 
the search 

success/fail 
correctly. 

sendsuper mechanism would not work as the search has to 
proceed in a different branch of the inheritance graph. Of 
course adopting the success/failure paradigm does not mean 
that one is necessarily interested in all answers and there 
should be ways to control that search. We turn to that now. 

4 .3. Default Methods 

Let us now assume the query 
I-pat:is aged(Y) 
with S/F (success/failure) as the call mechanism semantics. 
This would yield a first answer “35” using data of Figure1 
and when backtracked over, would call for ‘askuser’, an ob- 
viously non-desirable feature. Prolog programmers would thus 
rewrite (rl) as 
researcher with X:is-aged(Y):- age(X,Y),Y =/=no-value,! (rla) 



which solves this problem, by stoppmp propagation. But then. 
what about the query 
?- Who+ aged(Y) - 
i.r. what about variable object calls for such a query? The ‘I’ 
which is in (rla) prevents any backtrack. i.e. only one answer 
is obtained. There is no way to combine both features. The 
solution adopted in POL is to introduce a different type of 
method. so-called ‘default’ methods. Doing so, having a clear 
default semantics will put the burden on the structuring of 
methods and objects, not on coding individual bodies of 
methods. One would thus keep (rl) and further replace (r5) 
by (r5a) : 
person withdefault X:is-aged(Y):- askuser(age,X,Y) (r5a) 
Additionally (rl) could be replaced by (rla), but this would 
just be for (small) efficiency gains. 
Thus the semantics of ‘:’ evaluation and of default must be 
defined as follows: 
(R3) a default method is used on object X (constant) if and 
only if no earlier call of the same method has succeeded in 
the current call evaluation. Here, earlier is to be understood 
according to R2 in 4.1. 
(R4) variable object calls must work on all objects of relevant 
classes, no matter the contents (bodies) of the methods (i.e. 
even if those contain cuts). R4 is the one difficult rule to 
implement correctly and efficiently. 

These rules form the basis for the associative retrieval func- 
tions. The presence of such calls with variable objects has 
another important consequence that is now to be reviewed. 

4.4. Deterministic Methods 

Granted that we make provision for variable object calls, 
implying backtracking to get all relevant objects, when there 
are several (inherited) methods (other than default ones) ap- 
plying to a given class, each object will be applied to all 
methods relevant for that class. This may be redundant in 
some cases or desired; thus there must be ways to control that 
process. For instance assuming that ‘topic’ was also defined at 
class staff in addition to being defined at class researcher, it is 
lihely that one would want to evaluate only one ‘topic’ 
method for a given researcher: 

researcher with X:topic(Y):- body1 (4 
student with X:topic(Y):- body3 (r8) 
staff with X:topic(Y):- body2 kg) 

It is possible to control the use of methods in different 
classes by using the universal and versatile ‘!’ (cut) of Prolog 
once again, e.g. by replacing (r7) by 
researcher with X:topic(Y):- bodyl,! Wa) 
This I!’ dnrs not cause problem* as far a+ evaluation of calls 
such as X:topic(Y) thanks to the implementation of ‘:’ dis- 
cussed at the end of subsection 4.3. This can be contrasted to 
II],/3 - see the discussion in the introduction of section 4. But 
consider its semantics : it would in fact cut paths for branches 
which use true multiple inheritance. The few systems which 
have addressed this problem normally considered there was an 
OR between all methods, thus any cut had to stop all evalua- 
tions. It is more flexible to consider that any cut is to be 
only local to a branch in which it appears. Thus any cut in 
body3 in (r8) will not affect (r9) use. On the other hand it 
is sometimes necessary to have such methods which do stop 
evaluation on all branches : to do so we have introduced 
another type of method, deterministic ones. 

(R5) : When it anwers (i.e 
stops all calls for the same 
eluding on sibling methods. 

succeeds) a deterministic method 
object when backtrack occurs, in- 

Thus such methods correspond to high priorIt? oues. Assume 
that in the example we want to give stronger preference to 
topics defined in the research centre than to topics defined in 
relation to external bodies. then we would repldrv (r7). (r9) 
with (r7a) as above and (r9a) : 
staff withdeterministic X:topic(Y).- body2 Wa) 
Here are a few possible methods calls and their possible 
answers : 

?-ida:topic( Y) 

?-frane:topic(Y) 

?-joe:topir(Y) 

?-john:topic(Y) 

Y=knowledge-bases could be given by (r7a) 
-no more answer can be obtained. ida is a 
researcher and the path to (r9a) is cut in 

(r7a); as ida is not a student at the same 
time no link to (r8) exists 

Y=decision-making could be given by (r9a) 
assuming (r7a) fails for frane; even though 
frane is also a student, (r8) will not be tried 
as (r9a) is deterministic 

assuming joe is a student-researcher, and as- 
suming that (r7a) and (r9a) fail for him, 
then (r8) would be tried and might yield 
compilation-techniques as answer. No more 
search is involved 

Y=knowledge-bases and Y=logic, could be 
given by (r7a) and (rE), assuming john is a 
student-researcher whose work on knowledge 
bases is given by the non-deterministic rule 

(r7a). cutting the path to the deterministic 
(r9a) but leaving open the path to (r8) 

and of course, thanks to the ‘:’ evaluation (R4) 
?-X:topic(Y) would then yield (assuming the above data) : 

X = ida, Y = knowledge bases 
X = franz. Y = decision-making 
X = joe, Y = compilation-techniques 
X = john, Y = knowledge bases 
X = jobn, Y = logic 

but nothing for X = pat in case none of (r7a), (r8) (r9a) 
succeed for him. 

What has just been discussed is, of course, a way to have 
non-monotonic behaviour. While such a bebaviour is easily ob- 
tained in, e.g. 111, 131, where variable object calls are not dealt 
with, it has to be specifically produced in this more complex 
and complete context. 

4.5. Summary 

Rubs (Rl) through (RS) give the semantics of the method 
call mechanisms. They differ significantly from traditional ways 
of evaluating method calls but can be reduced to them by the 
programmer if he/she wishes to do so. Completeness of evalua- 
tion relative to these rules requires careful implementation of 
variable object calls. 

5. SOME HIGHER ORDER 
FUNCTIONS 

Following the running example, let us imagine the query is 
to find all beginners from the class staff only, i.e. not all of 
them. The obvious query to do that is ’ I-X:beginner, X in- 
stance staff, unless it is ‘?-X instance staff, X:beginner’. 

AI LANGUAGES AND ARCHITECTURES / 757 



80th queries have significant drawbarbs. Thts problem of 
where to put the generator or the test (in the first query. X 
instance staff is .a test. a filter. while in the second query it 1s 
a generator) is classic in the database field. and not well 
sob ed. The first query generates (with the high cost of 
method evaluation) too many values for X. the second 
generates people (probably too many) and loses any optimisa- 
lions of the call X:beginner which have been discussed in sec- 
tion 4 for variable object calls because X is now a consCant 
which has just been generated. What is needed here is to 
have a restriction operator for ‘:‘, namely the built-in evalu- 
able predicate ‘inclasses(X,Listofclasses.X:method(Y))’ which 
provides a kind of many-sorted logic in its implementation. 
This operator has been implemented and yields significant im- 
provements in performance. when used. But it is only one of a 
few others which have proved quite useful; a discussion of 
these is out of scope here. and only examples of their use are 
given. continuing the running example. Before doing so, let us 
stress that all these higher level operators share the goal to 
restrict the search as intimately as possible in the ‘:’ evalua- 
tion process. This is why they are useful. They are very 
similar in spirit to the classical set-of operator of Prolog, but 
they worh in the more complex context of classes and method 
calls. All following predicates are also built-in evaluable ones. 

Examples : 

laocwc (/researcher], X:has-children(Y),L) 
lists couples(an instance of researcher.a child) 

laocwcb (jresearcher], X:has- children(Y),Y,L) 
lists instances of researcher for whom X:has-children(Y) suc- 
ceeds: Y is hidden 

laocwcbis (Iresearcher],X.Y-(X:has- children(Y)),L) differs 
from the previous one because the constraint could have been 
any predicate, not just a call to a method; cannot be used in 
all contexts 

dfaor (Istaff;, X:is-aged(Y), tally(Y,Z), avge(Z,Av)) 
computes the average-age of a set of instances of class 

Obviously such 
one could define : 

unaesthetic operators can be hidden, and 

averageage (Listofclasses,Averageage) or 
average(Something,Listofclasses,Average) 

Using these operators not only simplifies considerably ap- 
plications writing but also helps in getting satisfactory perfor- 
mance. 

Finally, there is another available set of evaluable operators 
which allows the schema to be queried, i.e. the set of declara- 
tions itself so as to give metaleve! features : these operators 
are either global to the schema (e.g. list all methods, etc.) or 
local to a class (hst all methods attached to it,....) or to a 
method/relationship. Manipulating such a schema gives a way 
for end-users to understand what is described and manipulated 
in the knowledge base. 

CONCLUSION The ideas presented here appear to be 
original in that they try to really merge several formalisms : 
logic programming, object programming (and semantic data 

tern should be developed C(I g6 beyond the experimental slage 
described here, but the basics of the implementation nerd onl) 
be carried over. 11 is hoped thal ideas along these lines can 
contribute to the emergence of a better breed of logic lan- 
guages as it is obvious that the need of systems offering 
semantic modellinp capabilities jointly with inference 
capabilities is not yet satisfied- let alone if we add database 
requirements. 

Acknowledgments This work has benefitted from discussions 
with the Logic Programming group of ECRC, especially David 
Chan and Reinhard Enders. 

REFERENCES 

[l] Chikayama. T. : Unique features of ESP. Proceedings 
FGCS’84. ICOT, Tokyo, November 1984, PP. 292-298 

I?] Kogan. D.. Freiling, M. : SIDUR - A structuring for- 
malism for knowledge information processing systems. Proceed- 
ings FGCS’84, ICOT, Tokyo, November 1984, pp. 596-605 

131 Zaniolo, C. : Object-oriented programming in Prolog. 
Proceedings 1984 International Symposium on Logic Program- 
ming, Atlantic City, February 1984, pp. 265-270 

141 Enders, R., Chan, D. : Specification of BOP - an 
object-oriented extension to Prolog. ECRC, Technical Report 
LP-2, March 1985 

(51 Furukawa. K.. et al. : Mandala, a logic based knowledge 
programming system. Proceedings FGCS’84, ICOT, Tokyo, 
November 1984, pp. 613-622 

[S] Moon, D ., Stallman, R., Weinreb, 
manual 5th ed., MIT AI Laboratory 1983 

D. : Lisp Machine 

171 Goldberg, A., Robson, D. : Smalltalk-80. 
and its implementation, Addison-Wesley, 1983 

The language 

I81 
PARC, 

Bobrow, 
1983 

D., Stefik, M. : The Loops manual. Xerox 

191 Gallaire, H. : Logic Programming - further develop- 
ments. Proceedings of IEEE Symposium on Logic Program- 
ming , Boston, July 1985 

IlO] Brachman, R., Pigman Gilbert, V., Levesque. H.J. : An 
essential hybrid reasoning system - knowledge and symbol level 
accounts of KRYPTON. Proceedings JJCAI-85, pp. 532-539 

11 I] Vilain, M. : the restricted language architecture of a 
hybrid representation system. Proceedings IJCAI-85, pp. 
547-551 

1121 Chen, P. : The entity-relationship approach: towards a 
unified view of data. ACM Transactions on Database Systems, 
Vol. 1, No. 1, March 1976, pp. 9-36 

1131 Stonebraker. M. : Thoughts on new and extended data 
models. Journees AD1 - Bases de donnees avancees, Saint 
Pierre de Chartreuse, March 1985 

1141 Gallaire, H., Minker, J., Nicolas, J.M. : Logic and 
databases, a deductive approach. Computing Surveys, Vol. 16, 
No. 2, June 1984, pp. 153-185 

modelling), rather than purely juxtaposing them in a common 
formalism as seems to have been the main thrust of the work 
on merging objects and logic up to now. The system POL can 
be characterized by the fact that it offers a full treatment of 
variable object calls. and of default as well as deterministic 
mechanisms. Its implementation has been designed to deal with 
the above in the non-obvious way. Finally it proposes higher 
level operators which are original and have a high pay-off 
both in efficiency and for appiication development. A full sys- 

1151 Lloyd, J., Topor, R.W. : A basis for deductive 
database systems. TR 85-l. University of Melbourne, revised 
version, April 1985 

116) Copeland. G.. Maier. D. : Making Smalltalk a database 
system. ACM 0-89791-128-8/84/006/0316, pp. 316-325 

(171 Stickel. M.E. : Automated deduction by theory resolu- 
tion. Journal of Automated Reasoning 1, 1985, ~~333-355 

758 / ENGINEERING 


