From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

DOMAINS IN LOGIC PROGRAMMING

P. Van Heuntenrvek and M. Dinchas

European Computer-industry Research Centre (E.C.R.C))

ABSTRACT.

When confronted with constraint satisfaction problems (CSP}.
the "generate & test” strategy of Prolog is particulary inefficient.
Also. defined for
guages fall short in CSP because of their restricted use of con-
Indeed.
generated values and mnot for actively pruning the search space
which

together in a solution. One remedy is to introduce the domain

control mechanisms logic programming lan-

straints. constraints are used passively for testing

by eliminating combinations of values cannol appear

concept in logic programming language. This allows for an active
use of constraints. This extension which does not
(logic)
modification of the unification, the redefinition of the procedural
£, < 2, >) and a

impede the

declarative reading of logic languages. consists in a
semantics of some built-in predicates (# ,
new evaluable function and can be implemented efficiently. With-
out any change to the search procedure and without introducing
a new control mechanism. look ahead strategies, more intelligent
choices and consistency techniques can be implemented naturally
in programs. Moreover, when combined with a delay mechanism,
this leads directly to a strategy which applies active constraints

as soon as possible.

1. Motivations

As Prolog i1s applied to more and more areas, inadequacies of
its search procedure appear and, although there were substantial
efforts to develop powerful control mechanisms. the proposed
kinds of

is the case of constraint satisfaction problems

solutions are not entirely satisfactory for different
problems. This
(CSP).

lows.

A constraint satisfaction problem can be defined as fol-

Assume the ezistence of a finite set J of variables
{X,,X,..,X }. Suppose each variable X, takes ils values from a
A constraint C
nor-empty I =
{).I‘YQ‘”"YM} of J which defines a set of tuples <u,..up>.

The constraint satisfaction problem is to determine all the

finite set U called the domain of the vartable.

can be seen as a relation on a subsel

possible assignments [of values to variables such that the cor-
The class

of CSP is related to many problems in Al like logical puzzles.

responding values assignments satisfy the constraints.

scene labeling, graph isomorphisms, graph colouring and proposi-

Arabellast. 17 D-8000 Munich &1 West-German)

tional theorem proving among others. The simple backtrack
search (depth first search with chronological backtrackingi is very
inefficient for thi~ kind of Indeed

problems Prolog uses a

“generate and test” strategy and this leads 1o give values 1 all
variables before testing the constraints. Moreover. although more
powerful control mechanisms can reduce the search ~pave. they
fall short in CSP because of their restricted passive use of the
Indeed.

coroutining which Is

constraints. these mechanisms can only provide

based on the Tapply tests as soon as
possible”™ heuristics which 1s not the best-suited one for this class
of problems. With these mechanisms. a constraint is tested as
Thus. the

search space is only reduced in an "a posteriori way" after the

soon as its variables have received their values.
discovering that the generated values do not satisfy a constraint.
The main drawbacks of such an approach are the continual
rediscoverying of the same facts and the pathological behaviour
of (chronological) backtracking. See (Mackworth, 1977) for a con-
backtracking 1s a remedy to this

attack the real

vincing example. Intelligent

state of affairs but does not cause of the
problems and introduces an important overhead when not neces-

sary.

There i1s another way to use constraints (we will speak about an
active use of the constraints (Gallaire. 1985) which consists in
reducing the search space in an "a priori” manner by removing
inconsistencies, combinations of values which cannot appeared
together in a solution (Freuder. 1978). This approach is the basis
(Mackworth, 1977), (Freuder. 1978).

refinements of the backtrack

of consistency techniques

which has been used in simple
search (i.e. forward checking. looking ahead procedures) (Haralick
and Elliot. 1980) and in

binatorial problems (Lauriere, 1978&).

Alice. a problem solver for com-
When facing a constraint
satisfaction problem. a logic program (which can be considered as
a kind of meta-interpreter) can be writien which implements.
say. a forward checking strategy. It will generally be more ef-
ficient that the usual Prolog programs. However. this requires an
important programming effort. leads to less readable and less
maintenable programs and does not allow the full efficiency of
these approaches because it creates a level above Prolog. As a
matter of fact, logic programming languages lack primitives for
an active treatment of constraints. It seems difficult to define
new control mechanisms in order to wuse constraints more ac-
This state of affairs comes from the fact that

tively. {first

AI LANGUAGES AND ARCHITECTURES / 759

order) Horn clauses obscure sometimes properties of predicates
and thus prevents the interpreter from using them. Cousider for
wmstance the case of variables. In logic programming. the vari-
ables range over the Herbrand universe which 1s generally in-
finite. However, in many applications and in CSP, the domain of

variables is finite and much more restricted but this information

Introducing the domain concept into logic programming lan-
guages leads directly to an active use of constraints and the op-
portunity to implement naturally forward checking, consistency
techniques and the like. The next section introduces domain
declarations in Jogic programming and its interest for using con-
straints actively is discussed. For supporting this wuse. the
procedural semantics is modified and this consists in a modifica-
tion of the unification, the redefinition of the procedural seman-
tics of some built-in predicates { #, <. <. 2, >) and a new
evaluable function. Next, some examples are given and compared
with usual Prolog programs. Finally. it is shown how some
heuristics and consistency techniques can be built from our basic
extension and implementation issues are discussed. The reader is
refered to (Van Hentenryck and Dincbas, 1986) for more details

on all the features defined here.

2. Domain declarations.

It is often the case that the variables range over a finite
domain but this information cannot be expressed clearly in logic
programming languages. Domain declarations are introduced
for taking this fact into account. A domain declaration for predi-
cate p of arity n is an expression of the following form.

domain pi<a ...a >.

where a, is either H or D™ 1 < i < n.

When a; is equal to H. this means that argument i of p ranges
over the Herbrand universe. Otherwise, it means thai argument i
is a set of m variables which ranges over D). As in CSP the
number m is fixed. these declarations are fully satisfactory. In
the following, the domain D are finite and explicit set of
constants . The domain declarations can be considered as a kind
of meta-knowledge although quite different from the one proposed
usually in logic programming. The effect of these definitions is
to reduce the class of interpretations which must be considered
for a logic program. In fact. the declarative logic semantics of
the "extended” language is a particular case of the many-sorted

logic defined in (Cohn. 1983). It is well-known that many-sorted

*

The fact that we only considered constants is in no way restrictive. The
definitions given here can be extended to arbitrary ground term: but the
generalization is not considered here for clarity and brevity’

760 / ENGINEERING

logic can jmprove the efficiency of theorem-provers (Wahhfr‘
1984) and this kind of extensrons has already been used in logic
programming (see for instance (Mycroft and O’Keefe, 19841).
But the tain new point of this paper is that using such a logic al-
lows procedural uses which have no counterparts in an unsorted
logic. The domain declarations can be used to determine the
definition domain of each variable.” In the following. a variable
with an explicit and finite definition domain is refered as a d-
variable and its domain is noted I)X' Other variables are refered
as h-variable. Moreover, at any time of the computation. the
possible set (i.e. the set of values in which a d-variable takes its
value) of a d-variable can be determined. Initially, this set is the
definition domain but the constraints can reduce it. For instance.
a constraint "X # 3”7 can be used to remove "3” from the pos-
sible set of the variable. This is an active way to use the non-
equality constraints contrarily to the passive use of Prolog which
can only handle such a constraint when both arguments are in-
stantiated. This use of constraints. combined with the opppor-
tunity of generating only values in the possible set. increases sub-
stantially the efficiency of logic programming for solving CSP.
Indeed, this allows to prune the search space in an "a prioni”
manner instead of the “a posteriori” manner of Prolog.
Moreover. this can be used to reduce the gap between the
declarative and procedural semantics for the built-in predicates

and this i1s one of the directions of logic programming proposed

by {Kowalski, 1985).

3. Procedural semantics.

The invariant of all proposed extensions is that the domain of
a d-variable has a cardinality greater than 1. If domains of car-
dinality 1 are defined. the value can directly be assigned to the

variables defined on this domain.

3.1. Unification.
It 1s clear that the unification must take into account the
domain of the variables. The unification algorithm must be

modified to handle the three following cases.

e 1If a h-variable and a d-variable must be unified, the
h-variable must be bound to the d-variable.

e If a constant and a d-variable must be unified, the d-
variable 1s bound to the constant if it is in the
domain of the wvariable. Otherwise. the wunification
fails.

e If two d-variables must be unified, then let D, the
intersection of their domains. If D, is empty. the
unification fails. If D, ={v} then v is bound to both

1%
The domain of a variable can be determined at compile time.

variables. Otherwise, both variables are bound to a
new varishle Z whose domain is D,.

3.2. Built-in predicates.

The real interest of the domain extension is not only in the
logic part of the language but also in the procedural part. say.
in the redefinition of some built-in predicates. These predicates

can now take 1mmto account the domain of variables.

3.2.1. Nomn-egnality predicate.
The declarative semantics of the predicate is » X # Y holds if
X 15 not equal to Y". However. the usual procedural semantics

of this predicate is given by the following clause

X #Y &
not(X = Y).

where not(G) is the “negation as failure” rule. Thus, the only
use of such a constraint i1s a passive one. Moreover, there is a
gap between the declarative and procedural semantics. A safe
computation rule ‘must be defined which only selects the non-
equality predicates when they are ground. Moreover, a generator
of values for X and Y must be provided in order to be com-
plete. Our procedural semantics allows an active use of these
predicates and also reduces the gap between the declarative and

procedural semantics.
X # Y is defined by

e If X is d-variable and Y is a constant, let D, be
DAY If Dy={v}. then X is unified with v
and X # Y succeeds. Otherwise, X is bound to
Z (whose domain is D;) and X # Y succeeds.

e The case where Y is a d-variable and X is a con-
stant 1s similar to the previous one.

e If X and Y are constants, X # Y succeeds if X
and Y are distinct constants and fails otherwise.

e lts effect is undefined otherwise.

Note that this definition can easily be combined with a delay
mechanism like wait, geler, freeze, (Naish, 1985), (Colmerauer.
Kanoui and Van Caneghem, 1983) ,(Dincbas. 1984) in order to
delay the constraint until one of the first three cases is fulfilled.
In this case. there are no undefined cases and this will lead to a
very efficitent way to handle non-equality constraints which con-
sists in using the constraint in an active way as soon as possible.
Indeed. a non-equality predicate can be considered as active in
two different senses. First, it can remove a value from the pos-
sible set of a variable. Second. it can assign a value to a variable
when only one consistent value s left for this variable. The

procedural semantics is equivalent to the declarative one in the

first three cases. The gap between the semantics is in the fourth

cace. I & sz
< LI g 2

age. ytation rele which only seleals a non-equality

mpy
predicate when one of the first three cases is fulfilled, the
procedural semantics will be sound. However. in order to be com-
plete. a generator of values for X and Y must be provided. Note

that. in fact. this semantics is suboptimal. Indeed f. for in-

stance. X is a d-variable with dy = {1.2.3] and Y is a d-
variable with D = {4.5.6}. then the predicate X + Y should
succeed because whatever the values that X and Y will take.

they will be different.

3.2.2. Inequality predicates.

We consider here the predicates "X < Y” whose declarative
semantics is given by "X < Y” holds if X and Y are integers
The usual procedural seman-
"X <€ Y succeeds if X

and Y are instantiated to integers and X is less than or equal to

and X is less than or equal to Y7

tics of this predicate is the following

Y”. This time again. the procedural semantics entails only a
passive use of this constraint. Also, there is a discontinuity be-
tween the declarative and the procedural semantics. The

procedural semantics can be redefined as follows.

X < Y succeeds in the following cases

e If X is a d-variable, Y is an integer then let sup
= {V: V &€ DX and V > Y} and DZ = DX \
sup. If D, is empty. then X < Y must fail. If
not, if D, = {v}. then X is bound to v and X
< Y succeeds. Otherwise, X is bound to Z and
X < Y succeeds

e The case where X is an integer and Y is a d-
variable is similar to the previous one.

e If X and Y are instantiated to integer values, X
< Y succeeds if X is less than or equal to
Y. Otherwise, it fails.

e Otherwise. its effect is undefined.

Therefore. this predicate is an active predicate which removes 0
or 1,..or n values from the domain of a variable and which can
assign a value to a variable. It is clear that it can be combined
with a delay mechanisin for handling the last case. Note also
that this implementation is suboptimal. If Dy = {1,2.3} and Dy
is {45.6). X < Y should succeed. In the same way. Y < X
should fail.

the same way.

The others inequality predicates can be defined in

3.2.3. Domain primitives.

The extensions presented so far can be improved by giving to
the user an access to the possible set of a variable. We intro-
duce a new evaluable function domain(X) (which holds if

domain(X) returns the list of instances of a term which satisfy

AI LANGUAGES AND ARCHITECTURES / 761

the doinains) whose procedural semantics is

domain{X) = the hst of all the values
in Dy if X 1 a d-variable.

I

L\J if X is a ground term
s undefined otherwise

This function can be used to generate values for a d-variable by

using. for instance. “member(X.domain(X)}" where member(X,Y)
. Cxaz)) .)

holds if X is an element of the list Y. This function is quite
useful when the “first fail” principle and arc-consistency are to

be used (see below).

4. Examples

In the following. we will give two examples of the basic
niechanisms. The first one (N-queens problem) shows how a new
search procedure (forward checking) can be implemented in a
logical way without the need to rewrite a specific meta-
interpreter. The second one is a logical puzzle which also shows
that our extension combined with a delay mechanism can lead to
a “data-driven computation” as. for instance, in the constraint

language of (Sussman and Steele. 1980).

4.1. N-queens problem.

The following N-queens program implements a forward checking
strategy (based on the “lookahead in the future in order not to
worry about the past” heuristics). This means that the program
chooses a possible value for a variable, removes the inconsistent
values for the other variables and so on until all variables have
a value. By moving along this way, there is no need to test the
value assigned to the present variable against the values of al-
ready assigned variables. This is the most efficient heuristic for
this problem (Haralick and Elliot. 1980). The program is the fol-

lowing.

queens((}).

queens([X]|Y]) &
member(X.domain(X)) .
safe(X.Y.1) ,
queens(Y).

safe(X,U.Nb].

safe(X,[FIT].Nb) «
noattack(X.F.Nb) ,
Newnb i1s Nb + 1
safe(X.T.Newnb).

1

T3l
However, the unification will test if each value is in the domain of

the variable. Therefore. a predicate “indomain{X)” can be introduced whose
declarative semantics is "indomain(X) holds if member(X.domain(X)) holds"
and which avoids the unification inefficiency.

762 / ENGINEERING

noattack (X,Y,Nb) «
Y # X,
XmoinsNb 1s X - Nb |
Y # XmoinsNb
XplusNb is X + Nb
Y = XplusNB.

The five-queens program can be expressed by the following

clause.

domain five-queens:<{1,2.3,4.5;°>
five-queens({X1,X2.X3.X4,X5}} <
queens([X1,X2. ’3.X4.X5]).

The usual Prolog program consists in assigning to the n variables
of the list a permutation of [1,...,n] and then in testing if the as-
signment satisfies the constraints. This is a very inefficient ap-
proach. Control mechanisms. based on control informations
provided by the user, can be used to apply the tests as soon as
possible and thus improve the efficiency of the search (see 1C-
Prolog {Clark and Mc Cabe, 1979), Metalog (Dincbas, 1984},
MU-Prolog (Naish, 1985}). However, consider the first steps of
our program. The “member(X.domain(X}))” will choose a value
for X in its domain. Let say 1. Then immediately, all the in-
consistent values of X2,..X5 are "removed from their possible
set” by the safe predicate. Indeed, the noattack(X,Y,Nb) can be
used with the following modes: noattack(+.+,+) and
noattack(=4,-.+). In the later case, ”-" means that Y is a d-
variable and the effect of the predicate is to remove X, X - Nb,
X + Nb from the domain of Y. Therefore. at this time, the
situation is given in figure 1 {O represents an assigned value and
X an inconsistent value). In the next step, the values, 1 and 2
will not be considered for X2. In a coroutining program. these

values would have been tested. The next step chooses 3 as value
for X2.

1 2 3 4 5 1 23 45
VoI x[xIX] 1ol x| Xl x{X
2 X 2f Ix[X
3 X 3L 1OIXIX| X
4 X 4 X[X
5 X] 5 X[X

figure 1: 5-queens after 1 and 2 choices

Therefore. this instantiates immediately X3 and X4 (to 5 and 2
because their possible set is reduced to 1 element) and their safe
predicates will reduce to one element the do‘main of X5 (ie 4).
The problem is solved with two choices and without any back-

tracking.

Now, consider, the search for another solution. In our case. the
first backtrack point is X2 and the values assigned to X2,X3.,X4
and X5 will no more be compared with X1. It's not the case for

the logic program with a control mechanism: each time a value

is assigned to X2, X3 X4 and X5, this value must be compared
with X1. This entails a lot of redundancy. Consider now the
eight-queens problen: after 3 choices.

1 2 3 4 5 6 7 8
1 O I XIXIXIX (X
2 XX NES
3 QI XIXIXI XX
4 XiX (o)
5 Olx (X X|X
6 x| x|{X
7 XIx X
8 X1xlX

figure 2: 8-queens after 3 choices

X6 has already received a value as there is only one value left
in its domain. Therefore. when choosing 2 as value for X4. the
safe predicate will fail and this choice will be reviewed. This
failure is detected as early as possible. Moreover, the real cause
of the failure (X4) is detected. In a logic program with control
mechanism, the failure will be detected only when assigning
values for X6 and the backtracking will consider all the values
{from 1 to 8) for X5, X6. The point here is twofold: first. there
eris! powerful search procedures for CSP which detect failure ear-
lier than control mechanisms, choose the right backtrack point
without any overhead and avoid a lot of redundancy: second, a
simple ertension is sufficient to allow for fully declarative
programs which itmplements such a procedure without the need of

control informations.

4.2. A combinatorial problem.

The problem is the following (Lauriere. 1978).

Six couples took part in a tennis match. Their names were
Howard. Kress. McLean, Randolph. Lewis and Rust. The first
names of their wives were Margaret. Susan. Laura. Diana. Grace
and Virginia. Each of the ladies hailed from a different city:
Forth Worth. Wichita, Mt Vernon, Boston. Dayton, Kansas City.
Finally., each of the women had a different hair color, namely
black, brown. gray. red. auburn and blond. Informations are
given to state doubles and single which were played. For in-
stance, Howard and Kress played against Grace and Susan or the
gray hair lady played against Margaret. There is only one other
fact we ought to know to be able to find the last names, home
towns and hair colors of all six wives. and that is the fact that
“"No married couple ever took part in the same game”. The fol-

lowing Prolog program solves the problem.

tennis((Ho,Ke,Mc Ra,Le,Rv] [Fo, Wi Mt Bo,Da,Ka],
{BI,Br,Gr,Re,Au.Blc)) <

pernmi([Ho,Ke,Mc, Ra,Le,), [ma,sulla,dlygrlmjj,
Ho # gr. Ho # su. Ke =% gr. Ke =€ su. Mce 5 la.
Me = suRa = la. Ra = su. Mc * gr Ra 5 gr.
Le # gr. Ke = la. Ke == vi. Me =£ di. Mc =5 vi
perm{‘HI.BL(:'f,Re.Au,BIo].[ma.su.la,dz]gr.ri])).
Br % viBr % Ho. Br = Mc. Ra #£ Gr. Gr = la.
Blo % la. Blo 5= di. Le % Blo. Blo # ma.
pcrm([FO.WzﬂMt,Bo,Da.Ka].[ma.qua.di.gr.vi_‘]j.
Fo # Ho.lo % McFo = Ra. Wi 5= Ho. Wi = Mec.
Da =% maMt =£ maMit s£di, Da = di. Mt # i
Wi =% Ra. Wi % KeRu = Fo.Fo # Ke.Gr = Bo.
Re # Da. Gr £ Fo. Re 3 Mt Blo # Da.
Bl # Bo. Bl == Da. Ka % ma.

where perm(L.Res} holds if the list Res is a permutation of the
list L. In this program, the permutation predicates assign values
to the variables. Next, the constraints are tested and if they are
not satisfied, backtracking occurs in the permutations. Note also.
that if a value for "Ho” generated in the first permutation can-
not satisfy the constraint "Fo # Ho” tested after the third per-
mutation. the backtracking will generate all the possible values
for all the variables. This time again, this is quite inefficient.
These constraints can be used immediately in order to remove
inconsistencies. The program becomes the following. Let D

{ma.su,la,di,gr.vi}

domain tennis:<D® D® D&>.
tennis({Ho,Ke,Mc,Ra,Le, Ru},{Fo,WiMt,Bo.Da.Ka}
,{BLBr,Gr.Re ,Au,Blo}) «—

Ho # gr, Ho s su, Ke 5% gr, Ke ¢ su, Mc # la.
Mc # suRa 5= la. Ra =t su, Mc 5= gr. Ra # gr.
Le # gr. Ke 5= la. Ke == vi, Mc = di, Mc == vi,
Mt #= maMt =£di, Da %= di, Mt # vi
Ble # la, Blo 5 di,Da # ma. Ka % ma.
Br s vi. Gr # la, Blo % ma.
labeling(ﬂ]o,]\'e,Mc,Ra,Lc,Rq]}
Fo = Ho.Fo = McFo == Ra.Wi = Ho. Wi =Mc,
Wi = Ra, Wi-== Ke, Ru 5= Fo. Br = Ho.
Br = Mec, Le == Blo, Ra == Gr. Fo = ke,
labeling(/Bl,Br,Gr,Re, Au,Blo/),
Gr = Bo, Re 3= Da, Gr 5= Fo, Re = Mt
Blo % Da, Bl = Bo, Bl % Da,
labeling([Fo, Wi,[\/lt,Bo,Da,]\'aJ).

labeling(]).

]abeling([XlY]] —
member(X,domain{X})).
out-of (X.Y).
labeling(Y).

out-of (X,{]).
out-of (X,[F|T]) —
X # F,
out-of(X,T).
The labeling procedure is used instead of the permutation proce-
dure in order to assign to variables only values in their possible

set. The procedure labeling(L) holds if all elements of the list L

AI LANGUAGES AND ARCHITECTURES / 763

are different (which 1s insured by the “ocut-of? prcdlc—ate), The
hist L. must include only ground terms or d-variables, In the lat-
tec case, the domain of the variable 1~ used as generator by the
“member” predicate. The main difference beiween the two
programs s that the second one immediately solves most of the
constraints and therefore reduces immediately the search space.
The constraints are solved once for all. Consider the case of the
constraint "Fo # Ho”. This constraint is solved after the first
labeling precedure instead of after three permutations. Moreover.
when encountered, it will reduce the possible set of "Fo". Other
constraints also reduce this set or assign values to variable. The
choices are made in smaller domains and only a few constraints
depend on them. No pathological behaviour (like in the case of
simple backtracking) will arise. This allows us to move from a
“generate and test” strategy towards a “constrained-search”

strategy for problem solving.

If a delay mechanism is used for the non-equality predicates. in
the first program, all the constraints can be written first and
will be tested as soon as possible (i.e. in this case when the two
variables are instantiated. but the above-mentionned problem
remains as the constraints are used passively. However. the
program where labeling predicates are replaced by alldifferent
predicates (i.e. alldifferent(/Ho.Ke,]\1(.R(1.L(;,Ru]).
alldifferent(/Bl.Br.Gr.Re , Au,Bloj},
alldifferent{1Fo, Wi, Mt.Bo,Da,Kaf)] will solve the problem i a
delay mechanism is combined with our basic mechanism. The
predicate alldifferent(L) holds if all the elements of the list L are

not equal. lt can be defined by the following clauses.

alldifferent([]).
alldifferent ([X|Y]) <
0ul~of(X.Y) N
alldifferent(Y)

This predicate is the same as the Colmerauer’s one but it is
used here in an active way instead of in a purely passive way in
(Colmerauer. Kanoui and Van Cancghem. 1983). There. an non-
equality predicate is selected as soon as both arguments are
ground. In our case. it is selected as soon as one of these ar-
guments 1s ground and can assign values to variables. It entails
that this problem can be solved without generation of values and
thus without choices (!): the program just solves the
constraints. This is indeed a particular case but it shows how
the search space can be reduced with a simple extension. This
will be very important for interesting (NP-complete) problems. In
this case, it is very important to reduce as soon and as much as
possible the search space in order to avoid the combinatorial ex-
plosion. The point here is twofold: first, active constraints are
used to reduce in an ”a priori” manner the search space and
thus avoids the pathological behaviour of backtracking. Second.

combined with a delay mechanism, it allows a data:driven com-

764 / ENGINEERING

putation. Constraints reduce the possible sets of the variahles. As
soon as the domain has a cardinality one, a value s assigned to
this variable and this fact s propagated by allowing other con-

straints to be sclected.

5. Others features of the extensions.

Our extension can be considered as a set of primitives which
can be used to build more sophisticated mechanisms and heuris-
tics. An example is the "first fail principle” (Haralick and Elliot.
1980). Forward checking (and other search procedures) can be
substantially improved by using the so-called "to succeed. try
first where vou are most likely to fail” heuristics. This heuristics
can be implemented in CSP by choosing the most constrained
variables to be instantiated first. Consider the labeling procedure

seen before. It can be rewritten as

labeling([]).

labeling([X[Y]) <
choose-var([X[Y],Var,Other) ,
member(Var,domain{Var)) ,
(,ml-nf(\'ar,()rhﬂr),
labeling(Other).

The procedure choose-var(L,Var,Other) holds if Var is the ele-
ment of L whose domain cardinality is the smallest one and
Other is the list of other variables of L. The domain cardinality
of a variable <can be computed by a goal 7 —
length(domain(V).Lg)” where the procedure length(L.Lg) holds if
Lg is the length of the list L. It 1s clear that further efficiency
can be obtained by building in the ”choose-var(L,Var.Other)”
predicate. This heuristics is particularly well suited for many
problems like map (graph) coloring problems where many
guidelines are known. In wusual logic programs for CSP, the
“efficiency”™ is greatly affected by the order of the litterals inside
a clause or the order of arguments in predicates like permuta-
tion. Such an order must be determined statically and requires a
deep analysis of the problem. With our extension, the order of
instantiation can be determined dynamically and requires no
analysis of the problem. It seems very difficult to get a similar
effect in usual logic languages without rewriting all the program
in order to manipulate explicitely the domains. In (Van Henten-
ryck and Dincbas, 1986), it is shown how arc-consistency and
others more sophisticated mechanisms, like the reasoning on in-
tervals of (Lauriere, 1978), can be implemented easily with the
primitives presented here. The point here is twofold: first. our
basic mechanisms are sufficiently powerful to implement more
sophisticated mechanisms which requires a lot of programming ef-
fort in usual logic language. This gives to the user the oppor-
tunity to define his own mechanisms if necessary. Also, the user
is not restricted to a particular strategy for applying these
mechanisms. Second. there exist specific mechanisms which are

often used and which can substantially reduce the search space.

There‘fore) it may be worth to prowide these mechanisms as

primitives ance the domain extension has been provided

6. Implementation issues.

The implementation of this extension entails no overhead when
not used and can be implemented efficiently, two conditions
stated by (Shapiro. 1983). What are the modifications required
by our basic mechanisms ? In the variables environment. besides
the usual information. a pointer to the domain (or more precisely
the possible set} must be provided. In the following, we consider
only the case where the domains are defined as a set of consecu-
tive integers. This is in no way restrictive. Indeed, a correspon-
dance can be made at implementation level between a finite set
of constants and a set of consecutive integers. Then. it is clear
that this can also be done for set of integers and that we have

a direct access to elements of the domain. Therefore, only a

boolean array "a” is necessary to represent the domain of a d-
variable. At the beginning, all the booleans are true but the con-
straints can modify them. At any time of the computation. if
afi] = true then this ‘means that i is in the possible set of the
variable. Otherwise, it is not. However, it can be interesting to
store the minimum and maximum indices. In this case, the pos-
sible set of a d-variable is given by all the values between the
minimun and the maximun such that alij is true. The resolution

2

of a non-equality predicate "X # 1" consists in accessing ali]. If
it is true, ajil must be set to "false”. If necessary, the variable
must be put on the trail with a pointer to i. When backtrack-
ing, the only thing to do is to reset alij to true. In general, the
inequality case is more complicated as a list of values could need
to be reset. However. if maximum and minimum values are
stored, only these values must be modified and thus reset when
backtracking occurs. However, a set of values must be stored if
we unify two d-variables. In any case, this modification can be
implemented efficiently (especially when combined with a delay

mechanism).

7. Conclusion

An extension of logic programming languages has been proposed
which increases their efficiency when solving CSP. It is based on
domain declarations, a slight modification of unification. the
redefinitions of some built-in predicates <, <, >, >, # and a
new evaluable function. Its main advantages are to bring active
use of constraints into logic programming and to allow look
ahead strategies. first fail heuristics, consistency techniques and
the like to be implemented efficiently without programming effort
and the need for extra control informations. The efficiency of
logic programs for solving CSP is substantially improved by
avoiding the pathological behaviour of backtracking and by

reducing the search space in an “a priori” manner. When com-

bined with a delay mechanism, this lead to a "data-drwen” com-
putation whick applies constraints actively as soon as possible. Tt
has been shown how more sophisticated mechanisms can be built
from the primitives and that such extensions can be implemented

efficiently.

References

1. Clark, K.L.. M¢ Cabe; F. The control facibiues of 1C-
Prolog. In Ezpert systems in the micro-electronic age., ED
Mitchie D. Edinburgh university press.. 1979.

2. Cohn, A.G. Improving the Expressiveness of Many Sorted
Logic. AAAIL-83, Washington DC. 1983.

3. Colmerauer, A., Kanoui. H., Van Caneghem. M. ”Prolog.
bases theoriques et developpements actuels.”. 7.S.I. (techniques
et sciences informatiques). 2, 4 (83). 271-311.

4. Dincbas, M. , Lepape. J.P. Metacontrol of logic program in
METALOG. Proceedings of FGCS’84., Tokyo, Japan. November,
84, pp. 361-370.

5. Freuder E. C. “Synthesizing constraint expressions™. Comm
ACM 21 (November 1978), 958-966.

6. Gallaire, H. Logic programming: further developments.
IEEE symposium on logic programming, Boston, july, 85, pp.
88-99. Invited paper.

7. Haralick R.M., Elliot G.L. T7Increasing tree search efficiency
for constraint satisfaction problems.”. Artificial intelligence 14
(80), 263-313.

8. Kowalski R. Directions of logic programming. Proceedings
of the IEEE international symposium on logic programming, Bos-
ton (USA), 85. invited paper.

9. Lauriere JL. "A language and a program for stating and
solving combinatorial problems”. Artificial intelligence 10 (1978),
29-127.

10. Mackworth, A.K. . “Consistency in network of relations”.
Artificial intelligence 8. 1 (1977), 99-118.

11. Mycroft. A. , O’Keefe R.A. A Polymorphic type system
for Prolog”™. Artificial intelligence 29, 3 (1984). 295-307.

12. Naish L. 7 Automating control for logic programs”.
Journal of logic programming 2, 3 {october 1985), 167-184.

13. Shapiro E. Methodology of logic programming. Proceeding
of logic programming workshop. Proceedings of logic program-
ming workshop, Praia da falencia, Portugal, 26-june 1-july, 1983,
pp. 84-93.

14. Sussman, G.J. , Steele, G.L. "CONSTRAINTS: a language
for expressing almost-hierarchical descriptions”. Artificial intel-
ligence 14, 1 (1980), 1-39.

15. Van Hentenryck. P. .Dincbas M. Associating domain to
variables in order to solve C.S.P. in logic programming. lp-10.
E.C.R.C (European computer-industry research center), February,
86.

16. Walther. C. A mechanical Solution of Shubert’s Steam-

roller by Many-sorted resolution. 4'" National Conference on Ar-
tificial Intelligence (AAAI-84). Austin, 1984.

AI LANGUAGES AND ARCHITECTURES / 765

