
DOhIAINS IN LOGIC PROCNAMhfJNG

Arahellast, 17 D-WJO Munich 81 \\ cst-(;ernlan> European Computer-industr) Resrarrh (‘entrfs (E. (‘.I] (’

ABSTRACT.

When confronted with constraint sat isfaction prcjblerns (CSP).

the “generate b test“ strateg! of Prolog is particular\ lnefficifnt

tronal theorem proving arnoug ottters. The simple bacbt rack

search [del)th frr.st senr~l~ with chi-or,o~u~~caI bacctrack,rlgi 15 very

Prolog uses h

Also. control mechanisms defined for logic programming lan-

guages fall short In CSP because of their restrlcted use of con-

strainta. Indeed. consrraints are used passiveI> for t casting pc>NerfuI control mechanisms can reduce the 5carch -pace. I hf,>

fall short in CSP b&ause of their restrIcted pasql\r use of thr, generated values and not for actively pruning the search space

h eliminating combinations of values which cannot appear

together in a solution. One remedy is to introduce the domain

concept in logic programming language. This allows for an active

conat ralnts. Indeed. t hew rrlechanism\ can

roroutining which ib bawd on thr “apply tr3ts a< Soon a+

possible“ heuristic5 which 13 not the best-suited one for thl< clasc

use of constraints. This extension which does not impede the of problems. With these merhaniqms. a constramt IS tested a?

declarative (logic) reading of logic languages. consists in a

modification of the unification, the redefinition of the procedural

semantics of some built-in predicates (p , 5. <. 2. >) and a

new evaluable function and can be implemented efficientlj Ul’ith-

out an> chanpe to the search procedure and without introducing

a new control mechanism. look ahead strategies, more intelligent

choices and consistency techniques can be implemented nat uralI>

in programs. Moreover. when combined with a dela! mechanism.

this leads direct11 to a strategy which apphes active constraints

as soon as possible.

smn as its variables have rrceived their values Thus, 1 he

search space is only reduced in an “a posteriori w a\” after the

discovering that the generated value\ do not satisfl a constraint.

The main draw back> of \uch an approach are the continual

redlscoberjing of the same facts and the pathological behaviour

of (chronological) backtracking. See (Mackworth. 1977) for a con-

vincing example. Intelligent backtracking is a remed) to thtq

state of affairs hut does not attack the real cause of the

problems and introduces an important overhead when not nece+

There is another way to use constraints (wr will speak about an

1. Motivations
As Prolog IS applied to more and more areas, inadequacies of

its search procedure appear and, although there were substantial

active use of the constraints ((;allairr. 198.5) which consists in

reducing the search space m an “a priori” manner b) removing

inconsistencies. combinations of values which cannot appeared

together in a solution (E’rrudcr 19i8). This approach is the basis efforts to develop powerful control mechanisms. the proposed

solutions are IlOt entirely satisfactor) for different kinds of

problems. This is the case of constraint satisfaction problems

of consist enc! tc~rhnique~ (Ilackuort h 19i7). (F’reuder 1978)

which has been used III refinements of the simylr backtrack

search (i.e foruard checking. Iooklng ahead procedure:,) (tlarallcb (CSP). ,4 constraint satisfaction problem can be defined as fol-

and Elliot. 1380) and in Alire. a problem solver for cons-

binatorial problrms (Laurierr. 1978) When facing a constraint

satisfaction problem. a logic program (H hich can be considered as

a kind of meta-interpreter) can t)e writren which implement*.

sa). a forward checking strategy. II will general11 be mow ef-

ficlent that the usual Prolog programs. However. thii requires an

imporlant programming effort. leads to lesh readat)le and IPW

maintenable programs and does not allow the full cfficlency of

these approaches because II creates a level abc,\e l’rolog. Ah a

matter of fact. logic programming languages lack primltlves for

an actike treatment of constraints. It SCPI~IS dlfflcult to define

new control mechanisms in order to use ct,nst raints more ac-

t ively. This state of affairs comw from the fact that (first

AI LANGUAGES AND ARCHITECTURES / 759

-4 s6ume the existence of a finite se1 J of variables

jx,,x, ,.‘., A-f. supp ose each variable A’, takes iis values from a

finite set I. 1 called the domain of the variable. .4 constraint C

can be seen as a relation on a nor-empty subhef 1 =

,’ Y1. 1. ,. J’ 2 “’ M ,’ of J which d f’ e anes a set of tuples <u,. uM>

The constraint satisfaction problem in to determine all th

possible assignments f of values to variables such that the cor-

responding values assignments satisfy the constraints. The class

of CSP is related to man) problems in Al like logical puzzles.

scene labeling, graph isomorphisms. graph colourmg and proposi-

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

order) Nom clauSes .obscure sotnettmes properties of pro,dlcate

bvld t/luS prevenb tire Interpreter I-Mm us,na them. CsllS,der for

III~I Zlncr lhe case 01 var~ablcs. In I uglc pr~Igrarnmlng. the vari- progra mm in g (SW tor IllSi alIce (hl\ crdt and O’licefe, 1984 !) .

Buf the main new point oj thir paper i6 that using such a logic (II-

IOUM procedural MeA which have no counterparts in an unmrted

logic. The domain declarations can be used to determIne the

definiLion domain of each Lariable.” In the following. a variable

with an explicit and finlt,e definition domain is refered as a d-

variable and its domain is noted I),. Other variables are refer4

as h-variable. Moreover, at an) tirne of the computation. thp

ranpe ,)ver the Herbrand universe which IS

in CSP.

generalI> in-

Of HoNever, in many applications and the domain

variables is finite and much more restricted but this informatlon

is hidden in predicates like permut.ation(X.J’) monadic predicates

to restrict the range of variables or more generally in generators

Introducing the domain concept

guages leads directly to an actlbe

in10 logic programming lan-

use of constraints and the op-

portunity to implement natural)! forward checking, consisLenc> possible, set (i.e. the set of values in which a d-variable take> its

value) of a d-variable can be determmed. Jnit.iallJ ~ this set 15 the

definition domain but the constraints can reduce it. For instance.

a constraint “X # 3” can be used to remove “3” from the pas-

techniques and the like The ne.xt sect ion int.roduces domain

declarations in logic programming and its interest for using con-

straints actively is discussed For supporting this use. Lhr

procedural semantics is modified and thi, consist5 in a modiflca- sible set of the variable. This is an active way CO use the non-

equality constraints contrarily to the passive use of Prolog which

can only handle such a constraint when both arguments are in-

stantiated. This use of constraints. combined with the opppor-

tunity of generating onl> values in the possible set. increases sub-

stantially the efficiency of logic programming for solving (‘SF’.

Indeed, this allows to prune the search space in an “a priori”

Lion of the unification, the redefinition uf the

of some built-in predicates (f . 5. <.

procedural senlan-

tics >
-3 >) and a new

evaluable function. Next. some examples are given and compared

with usual Prolog programs. Final]). it is shown how some

heuristics and consist,ency techniques can be built from our basic

extension and implementation issues are discussed. The reader is

refered Lo (Van Hentenryck and

features defined here.

Dincbas, 1986) for more manner instead of the ” a posteriori” manner of Prolog.

on all the Aloreover. this can 1X used to reduce the gap between the

declarative and procedural semantics for the built-in predicates

and this I$ one of the directions of logic programming proposed

by (ho~alski, 1985).
2. Domain declarations.

It is often the case that the variables range over a finite

cannot be expressed clearly in logic domain but this information

programming languages. Domain declarations are introduced

for t,aking this fact into account. A domain declaration for predi-

cate p of arity n is an expression of the following form.

3. Procedural semantics.
The invarlant of all proposed extensions is that t,he domain of

a d-variable has a cardinality greater than 1. If domains of car-

dinalit! 1 are defined. the value can directl! be assigned to the

variables defined on this domain.
domain p:<a ,..... a 3,. n
where ai is either H or Dm 1 5 i < n.

When ai is equal to H. this means that argument i of p ranges 3.1. Ilnification.
over the Herbrand universe. Otherwise. it rnran* that argument i

of m varlableh uhich ranges o\er 1). A:, in CSP the

It 1s clear that the unification must Lake into account the

be 15 a set domain of the variable\ The unification algorithm mu51

number m is fixed. these declarations are full\ <atlsfactory. In modified to handle the three following c&es

the following, the domain D are finit 1% and explicit

constants The domain declarations can be considered as

set of

a kind l If a h-cariable and a d-x ariable must be unified, the
h-variable must be buu nd 10 the d-variable. of meta-knowledge although quite different from the one proposed

definitions is usual11 in logic programming The effect of Lhese
l If a consrant and a d-variable must be unified. the d-

variable is bound to the constant if it is in the
domain of the variable. Otherwise. the uniflcat ion
fails.

to reduce the class of interpretations which must be considered

for a logic program. In facL. the declarative logic semantics of

the -extended” language is a particular case of the many-sorted

logic defined in (Cohn. 1983). It is well-known that man)-sorted

The fact that we only considered constanls i> 11) no wa? rr-trirtive The
definitions given here cdn be extended CO arblLrar1 gruund term* LIUI the
generalization is not considered here for clarity arld bre\it>

l If two d-variables must, be unified. then let I), the

inLersection of their domains. If D, IS empr!. the

unification fails. If D,=(v) then v is bound to both

t*
The domain of a variable ran be determined a~ cornpile time

760 / ENGINEERING

variables. OtherwIse, both varla

new variable Z who* d OIllalll IS
ble are
D 2’

bownd to a

3.2. Built-in predicates.

The real interest of I he domain exrension 1s nor only in the

logic part of the language but also in thra procedural part. sa>.

in t hi r(Ldpfinll IOTI of +OIIIP built-in predlcat es. These predicates

can nr,w takr Inlo acr,ounl the domain of 1 ariables

3.2.1. Non-equality predicate.

The declarallve semant ICS of the predicate is n S # Y holds If

X is not equal lo Y”. However. the usual procedural semant KS

of this predicate IS given by the following clause

X#Y+
not(X = Y).

where not(G) is the “negation as failure” rule. Thus, the only

use of such a constraint is a passive one. Moreover, there is a

gap between the declarative and procedural semantics. A safe

computation rule *must be defined which only selects the non-

equality predicates when the) are ground. Moreover, a generator

of values for X and J. must be provided in order to be com-

plete. Our procedural semantics allows an active use of these

predicates and also reduces the gap between the declarative and

procedural semantics

X # 1. is defined b>

If X is d-variable and 1’ is a constant, let D, be

D,\{Y}. If DZ={v). then X is unified with v

and X # 1 succeeds. Otherwise, X is bound to
Z (whose domain is Dz) and X f- Y succeeds.

The case where Y is a d-variable and X 1s a con-
stant is similar t(o the previous one.

If X and Y are constants, X f Y succeeds if X
and Y are distinct constants and fails ot,herwise.

Its effect is undefined otherwise.

Note (hat this definition can easily be combined with a delay

mechanism like wait, geler, freeze, (Naish, 1985), (Colmerauer.

hanoui and \-an Caneghem. 1983) ,(Dincbas. 1984) in order to

dela? the constraint until one of the first three cases is fulfilled.

In this rase. there are no undefined cases and this usill lead to u

very efjiricnt way to handk non-equality constraints which con-

sists in using tht construfnt in an actite way as soon ab possible.

Indeed. a non-equality predicate ran he cnmidered aa active m

two dijjerent sensea. Firsi, it c an remove a value from the pob-

siblc bet of a variable. Second, it cm assign a laalue to a variable

when only one consistent value is left for this variable. The

procedural semantics is equivalenr to the declarative one in the

fhy,t three cascts. The gap between the semantics ES IIT the fuure

cae. If 4 safe csmputabolr rule whrch only Se&& d non-equality

predicate whrn III~C of th(b f’rrg three cages is fulfilled, the

procedural semantics will be sound HoMe\Pr. In ~rcl~,r 1~1 tie r.,)m-

plere. a generator of values for X and 1’ mu>{ i,e prnvlljPd. Note

that. in fact. this semantic> is suboptimal. Indf,rd 11 for in-

stance. X is a d-variable with d, = (1.2.3) and j i< a d-

variable with I), = (4.5.6;. then the predicate .‘\ f \ should

succeed because w hal*ver the values that X and \ HIII take.

they will be differenl.

3.2.2. Inequality predicates.

We consider here the predicates “X 1. Y” uhose declarative

semantics is given by “2; 5 J”‘ holds if X and J’ are integers

and X is less than or P~IIB~ IO J‘” The usual procedural seman-

11~s of this predicate is the following : “X <_ J’ succeeds if X

and J’ are instantiated to integers and X is less than or equal 1.0

J”‘. This time again. the procedural semantics entails only a

passive use of this constraint. Also, there is a discontinuity be-

tween the declarative and the procedural semantics. The

procedural scmamtlcs can be redefined as follows.

X 5 1’ succeeds in the following cases

l If X is a d-variable, Y is an integer [#hen let sui
= {I’: V E D, and V > Y} and D, = D, \

sup. If D, is empty, then X _< Y must. fail If

not, if D, = {v}. then X is bound to v and X

5 Y succeeds. Otherwise, X is bound to Z and
X 5 Y succeeds

l ,The case where X is an integer and Y is a d-
variable 15 similar to the previous one.

. If X and 1’ are Instantiated to int,eger values, X
< J‘ succeeds if X is less than or equal to

J’ Others ise, it fails.

l Otherwisp. its effect is undefined.

Therefore. this predicate is an active predicate which removes 0

or I,...or n value5 from the domain of a variable and which can

assign a value to a variable. It is clear that it can be combined

with a delay mechanism for handling the last case. Note also

that this implementation is suboptimal. If D, = { 1,2.3} and D,

is {4..5.6). X 5 j’ should succeed. In the same wa). Y 5 N

should fail. The others inequalIty predicates can be defined in

1he same waj.

3.2.3. Domain primitives.

The extensions presented so far can be improved by giving to

the user an access to t,he possible set of a variable. We intro-

duce a new evaluable function domain(X) (which holds if

dorrlain(X) returns the list of instances of a term uhlch satisfy

AI LANGUAGES AND ARCHITECTURES / 761

the dolltalns) whose procedural semana~cs is

domain(\) = the IIst of all t hc values
in D, of N I\ a d-h ariablr

= [x-j If x IS a ground term
IS undefmrd ot herwlqe

Thrh function can be used to generate values fnr a d-variable b>

u<lng. for ins1 ante. “rrlernt~erO;.d(,rrlalrlO;))” where member(NII’)

hold\ if S i> an elerrrrnt of the list J. *‘. This function is quite

u\eful when the “first fail” principle and arc-consistency are to

be used (see below).

4. Examples
In the follov.ing. ue will give two examples of the basic

nlechanlsms. The first one (h-queens problem) shows how a new

search procedure (foruard checking) can be implemented in a

logical w a! without the need LO rewrite a specific meta-

Inlrrpreler. The second one is a logical puzzle which also shows

that our extension combined with a delay mechanism can lead to

a “data-driven computation” as. for instance, in the constraint

language of (Sussman and Steele. 1980).

4.1. N-queens problem.

The folio% ing \-cjuccns program implements a forward checking

sLrateg> (based on rhe “lookahead in the future in order not to

worr> about the past” heuristics). This means that the program

chooses a possible value for a variable. removes the inconsistent

\ alues for the other Lariables and so on until all \ arlables have

a value. H> mo\lng along this way, there is no need to test the

value assigned to the present variable against the values of al-

ready assigncld variables. This is the most efficient heuristic for

this problem (Haralich and Elliot. 1980). The program is the fol-

lowing.

queens(u).
queens(lXjI7) C-

membw(X.domain(X))
safe(X.Y.l) 1
queens(Y).

safe(X,[J.Nb).
safe(X.[FjT].Nb) r

noattack(X.F.?jb
Newnb is Nb +
safe(.X.T.NeBnb)

it2
However. the unification will test if each value is in the domain of

thr~ bariable. Therefore. a predicate “indomain(ran tw int.rodured whose
derlaratibr semantics is P’ rndomain(X) holds II mernber(S.durrlain(X)) holds”

and which avoids the unification inefficienr!.

The five-queens program can br expressed b> the following

clause

domain five-queens.<{ 1.2.3.4.5}5>.
fi~e-queens({X;l.)i2.X5.X4.X5}) t

queens([Xl.X2,XY,X;4,)(53).

The usual Prolog program consists in assigning 10 the n 1 ariables

of the list a permutation of [I, ..,] n and then in testing if the as-

signment satisfies the constraints. This is a very inefficient ap-

proach. Control mechanisms. based on control informations

provided by the user, can be used to apply the tests as soon as

possible and thus improve the efficiency of the search (see I(‘-

Prolog (Clark and MC Cabe, 1979). Metalog (Dincbas. 1984).

MU-Prolog (Naish, 1985)). However, consider the first steps of

our program. The “membw(X.domain(X))” will choose a value

for X in its domain. Let say 1. Then immediately. all the in-

consistent values of X2....,X5 are ‘removed from their possible

set” by the safe predicate. Indeed, the noattack(X,Y,Nb) can be

used with the following modes. noattack(+,+,+) and

noatt.ack(+.-.+). In the later case, n-F means that Y is a d-

variable and the effect of the predicate is to remove X. X - Nb,

S + Nb from the domain of Y. Therefore. at this time, the

situation is given in figure I (0 represents an assigned value and

X an inconsistent value). In the next step, the values. 1 and 2

will not be considered for X2. In a coroutining program. these

values would have been t,est,ed. The next, step chooses 3 as value

for X2.

figure 1: 5-queens after 1 and 2 choices

Therefore. this instantiates immediately X3 and X4 (to 5 and 2

because their possible set is reduced to I element) and their safe

predicates will reduce CO one element the d:main of X5 (i.e 4).

‘The problem is solved with two choices and without any back-

t.racking.

Kow, consider, the search for another solution. In our case. the

first backtrack point is X2 and the values assigned to X2,X3.X4

and X5 will no more be compared with Xl. It’s not the case for

the logic program with a control mechanism: each time a value

762 / ENGINEERING

IS assrgned to X$X3,X4 and X5, this value must. be campar~d

with Xl Thus entatls a lot of redundancy. Conder now tlrka

eight-queens probi’er~~ after 3 C~IOI~CY

12 J 4 5 6 7 8

figure 2: 8-queens after 3 choices

X6 has alread> received a value as there is only one value left

in 11s domain. Therefore. when choosing 2 as value for X4. the

safe predicate will fail and this choice will be reviewed. This

failure is detected as early as possible. Moreover. the real cause

of the failure (X4) is detected. In a logic program with control

mechanism. the failure will be detect.ed only when assigning

values for X6 and the backtracking will consider all the values

(from 1 to 8) for X5, X6. The point here is twofold: jirst. there

exzst powerful search procedures for CSP which detert failure ear-

lier than control mechanisms: choose the right barktrark point

urthout any overhead and aooid a lot oj redundancy: second. a

ertenaion iS suffirient to allou, for fully declarative

programs which implements such a procedure without the need of

control injormations.

4.2. A combinatorial problem.

Th e problem is the following (Lauriere. 1978).

Six couples took part in a tennis match. Their names were

Howard. Kress. McLean, Randolph. Lewis and Rust. The first

name< of their wives were Margaret. Susan. Laura. Diana. Grace

and \‘irginia. Each of the ladies hailed from a different city:

Forth North. Wlchlta. Mt \ ernon. Boston. Dayton. Kansas City.

Finally. each of the women had a different hair color, name13

black, brown. gw. red. auburn and blond. Information5 are

given to state doubles and single which were played For in-

stance. Howard and Kress played against Grace and Susan or the

gra> hair lady played against Margaret. There is only one other

fact we ought to know to be able lo find the last names. home

towns and hair colors of all six wives. and that is the fact that

“no married couple ever took part in the same game”. Thp fol-

JoMing Prolog program solves the problem.

pernr([ljo,Ke,n~c,Ra,Le,Kw~, /ma,su,la,di,gr,va]).

Ho + pr 11~~ # <u. kc, I;f- or kc, f *II. MC # la.
MC 7 su.Ha # la. Ha # su. 31~ + g: Ra f gr.
Lr # gr. Kr T la. Kie + vi. 31~ j. dl. MC =& \i.

perm(H1.~r.C~r.Re.Au,Blo].~ma.su.la.d~.gr.~~~),

Hr -f vi.Hr # Ho. Br 3 MC. Ra f <:r. Gr 7 la.

Blo # la. Blo F di. LP # Blo. RIO =+ ma.

perm([Fo. U.i. Mt, Bo, Da.h’u~.~r~a.str.la.di.gr.tlil/.

Fo # Ho.Fo # Mc,F<, + Rh.n~ =# Ho.\ji +\lc.
Da =# ma.Mt -# ma,Mt f dl,])a + dl. Mt .=& \i.
\I i f Ra. W i f Ke.Ru + Fo.Fo # Ke.Gr F Ho
He # Da. Gr f Fo. Rr + h1t. 1310 f I)a.
HI # 1~0. Bl + Da. Ka 9 ma.

where perm(L.Res) holds if the list Res is a permutation of the

list L. In this program. the permutation predicates assign value5

to t,he variables. &ext, the constraints are tested and if they are

not satisfied. backtracking occurs in the permutations. Note also.

that if a value for “Ho” generated in the first permutation can-

not satisfy the constraint “Fo I Ho” tested after the third per-

mutation. the backtracking will generat,e all the possible values

for all the variables. This time again; this 1s quite inefficient.

These constraints can be used immediately in order to remove

inconsistencies. The program becomes the following. Let I)

(ma.su,la,di,gr.vi}

domain tennis:<D’.D6,D6>.
tennis({Ho.Ke,~lc.Ra,Le,Ru},{Fo.Wi,Mt~.Bo.Da.Ka}

,{ Bl,Br,Gr.Re,Au,Blo}) e
Ho # gr. Ho # su, Ke =f gr, Ke # su. hlc =# la.
Mc f su.Ra # la. Ra# su. MC # gr. Ha ;f gr.
Le # gr. Kr ;it la. Ke =& vi. Mc f di. MC + vi.
Mt # ma.Mt =#di, Da # di. Mt f vi.
Blo # la, Blo + di,Da # ma. Ka =# ma.
Br f vi. Gr + la, Blo =#- ma.
labeling(po,Ke,Me,Ra,Le.RuJ).

Fo 7 Ho.Fo =+ Mc,Fo # Ra.Mi = Ilu.Ni 731~.
Wi f Ra. W’i 1 Ke. Ru # Fo. Br 3 Ho.
Br + MC. Le # Blo. Ra += Gr. Fo = Ke.
labeling(~Bl,Br,Gr,Re,Au.Blo~).

Cr + Bo. Rc % Da, Gr ,i Fo, Rc F %lt.
I310 + Da, Bl F Bo, Bl # Da,
labeling([Fo, Wi,Mt,Bo,Da,Ka]).

labeling(u).
labeling([X(q) -

member(X,domain(X)).
out-of(X.Y).
labeling(1’).

our-of&[]).
out-of(M,IFIT]) .

x f F,
out-of(X,T).

The labeling procedure is used instead of the permutation proce-

dure in order to assign to variables 0111) \ slurs in their possible

set. The procedure labeling(L) h 11. (I c \ if all elements of the list L

AI LANGUAGES AND ARCHITECTURES / 763

are dIfferant (which IS Insured by the “out-or’ prcdtcare). The putatK7ri C St on ralr~ts recfwe the passable sets of the urrcaMes. As

list L must include only ground terms Or d-variables. In the lat-
ter case. the dornaln of the varlabl(, I\ used as generator by the this variable und thdh jact 16 propagalcd by allowzng other cm-

straints to be aclected ” mern her” predieare. The, rnam difference hpl w pen the two

programs is that thr second nne Immedlatel~ solar\ nlost of the

constraints and therefore reduces immediateI> the search space.
5. Others features of the extensions.

The constraints are solved once for all. (lonsider the case of the

constraint “Fo # Ho”. This constraint is solved after the first
Our extension can be considered as a set of primitives Nhich

ran be used to huild more qophislicated mechanisms and heurib-

tars. An example is the “first fail principle” (IIaralick and Elliot.
labeling prrcedure instead of after three permutal IOII~ Zlr)reover.

when encountered, it will reduce the possible srt of “E’o“. Other

constraints also reduce this set or assign values IO variable. The

choices are made in smaller domains and only a few constraints

depend on them. No pathological behaviour (like in the case of

1980) Forward checking (and other search procedures) can be

substantial11 improved b> using the so-called “to succeed. tr>

first where you are most likely to fail” heuristics. This heuristic>

can he implemented in CSP b> choosing

variables to be instantiated first. Consider

the most constrained
simple backtracking) will arise. This allows us to move from a

the labeling procedure
“generate and test” strategy towards a ‘.constraintd-search”

strategy for problem solving.
seen before. It can be rewritten as

labeling(u)
labeling([X(Y]) +-

choosr-car(lX:)oY],Var,Other) ,
member(\-ar,domain(Var)) ,
out-of(\-ar,Ol her),
labeling(Oc her).

If a delay mechanism is used for the non-equality predicates. in

the first program. all the constraints can be written first and

will be tested as soon as possible (i.e. in this case when the Iwo

variables are instantiated.

remains as the constraints are used passively

but the above-mentionned problem

However. the

The procedure choose-var(L,Var,Other) holds if Var is the ele-

ment of L whose domain cardinality is the smallest one and

Other is the list of other variables of L. The domain cardinalit)

of a variable can be computed by a goal ” -

length(domain(V).Lg)” where the procedure length(L.Lg) holds if

I ,g is the length of the list L. It is clear that further efficient)

can he obtained by building in the “choose-var(L,Var.Other)”

program where labeling predicates are replaced by alldifferent

predicateA (i.e. alldifjerent(fHo.h’e,Alc.Ra.Le.Ru]).

alldifferent(~Bl.Br.Gr.Re,.4u,BloJ),

alldzfferent(lFo. ~~-i.,~lt.Bo,Da,h’aj)l will solve the probletu if a

delay mechanism is combined with our basic mechanism. The

predicate alldifferent holds if all lhe elements of the hst L are

not equal. It can be defined by the following clauses
predicate This heuristics is particularly well suited for many

alldifferen t ([I)
alldifferent ([M\Y]) c

out-of(X.)‘) ,
alldifferent)

problems like map (graph) coloring problems where man!

guidelmes

)‘efficiency”

are known. In usual logic programs for CSP, the

greatly affected by the order of the litterals inside is

a clause or the order of arguments in predicates like permuta-

tion. Such an order must be determined statically and requires a

deep analysis of the problem. With our extension, the order of

instantiation can be determined dynamicall> and requires no

analysis of the problem. It seems ver> difficult to get a similar

effect in usual logic languages without rewriting all the program

in order to manipulate explicitely the domains. In (Van Henten-

ryck and Dincbas, 1986), it is shown how arc-consistency and

others more sophisticated mechanisms. like the reasoning on in-

t ervalb of (Lauriere, 1978)) can be implemented easil) with the

prirnitlvey presented here. The point here is twofold. first. our

basic TrkeChanismS are sufficiently powerful to implement more

sophisticated mechanisms which requires a lot of progratnming ej-

jort in usual logic language. This gilles to the user the oppor-

tunity to define his own mechanisms zf necessary Also, the ustr

is not restricted to a particular strategy for applying these

mechanisms Second. there exist specific mechanisms which are

often used and which ran substantially reduce .!he search space.

This predicate is the same as the Colmerauer’s one but it is

used here in an active ua) inst>ead of in a purely passive wa> in

((,‘olmcraucr. hsnoul and \.an Canrghcm. 1935) ‘I’hcrr. an non-

equality prfadicate IS <elected as soon as both arguments are

ground In our case. ir i+ selected as soon as one of these ar-

guments is ground and can assign values to variables. It entails

that this problem can be solved without generation of values and

thus without choices (1): the program just solves the

constraints. This is indeed a particular case but it shows how

the search space can be reduced with a simple extension. This

will be very important for interesting (NP-complete) problems. In

this case, it is very important to reduce as soon and as much as

possible the search space in order to avoid the combinat,orial cx-

plosion. The point here is twofold: first, active constrainls are

used to reduce in an “a priori” manner the search space and

thus avoids the pathological behaviour oj backtracking. Second.

rambined with a delay mechaniswc, it allows a data-driven rom-

764 I ENGINEERING

pr/mrtrvcs once the domarn extension has been prr)r,tdrd

blned with a delay mechanism, this lead to a “data8rrvgyt” com-

putation which aapl~es constraints actively as soon as possible. It

has been shown h<)w more aophlqticated mechanisms can be built

from the prlmlt~ves and that such extenslonb can be Implemented

efficient]).
6. Implementation issues.

The implementation of this extension entails no overhead when

not used and can be Implemented efficiently. two condition+

stated by (Shapiro. 1983) What are the modifications required

by our basic mechanisms ? In the variables environment. besides

the usual informatlon. a pointer to the domain (or more precisely

the possible set) mu\t be provided. In thr following. we consider

only the case where the domains are defined as a set of consecu-

tive integers This i> in no wa> restrictive. Indeed, a corrcspon-

dance can be made at implementation level between a finite set

of constants and a set of consecutive integers. Then. it is clear

1. Clark, K.L.. .\lc CabBe, F I’hc control fat illlies of I(‘-
I’rolog. In Ezperl c~yslrltr~6 zti thf rrrzrro-electrontc age., ED
Mitchie D. Edinburgh urliverhlt\ press.. 1979

2. (:ohn. A.G. Improving the Expressiveness of Many Sorted
Logic AAAI-83. 1l‘ashlnrton DC. 1983.

3. Colmerauer, A., Kanoul. H.. Van Caneghem. M. “Prolog.
bases theoriques et developpements actuels.” T.S.I. (techniques

et sciences injormatiques) 2, 4 (83). 271-311.
that this can also t,p done for set of integers and that we have

4.
a direct access to elements of the domain. Therefore. only a

Dincbas, M. . Lepape. J.P. Metacontrol of logic program in
METALOG. Proceedings of FGCS’84.. Tokyo. Japan, November,

boolean array ‘*a” is necessar) to represent the domain of a d- 84, pp. 361-370.

variable At the beginning. all the booleans are true but the con-

straints can modify them. At any time of the computation. if

ari] = true then this means that i is in the possible set of the

variable. Otherwise, it is not. However, it can be int,eresting to

store the minimum and maximum indices. In this case, the pos-

5. Freuder E. C. “Synthesizing constraint expressions”. Comrn
ACM 21 (November 1978), 958-966.

6. Gallaire. H. LQgic programming: further developments.
IEEE symposium on logic programming, Boston. july. 85, pp.
88-99. Invited paper.

sible set of a d-variable is given by all the values between the

minimun and the maximun such that a[ij is true. The resolution

of a non-equality predicate “X # i” consists in accessing ajij. If

it is true, ali! must be set to “false”. If necessary, the variable

must be put on the trail with a pointer to i. When backtrack-

ing, the only thing to do is to reset a!il to true. In general. the

inequality case is more complicated as a list of values could need

to be reset. However. if maximum and minimum values are

7. Haralick R.M., Eliiot G.L. “Increasing tree search efficiency
for constraint satisfaction problems.“. Artificial intelligence 14
(80). 263-313.

a. Kowalski R. Directions of logic programming. Proceedings
of the IEEE international symposium on logic programming, Bos-
ton (USA), 85. invited paper.

9. Lauriere J.L. “A language and a program for stating and
solving combinatorial problems”. .4rtificial znteffigence 10 (1978),

stored. only these values must be modified and thus reset when

backtracking occurs. However. a set of values must be stored if

we unify two d-variables. In an! case, this modification can be

implemented efficiently (especial11 when combined with a delay

mechanism).

7. Conclusion
An extension of logic programming languages has been proposed

which increases their efficiency when solving CSP. It is based on

domain declarations. a slight modification of unification. the

redefinitions of sorne built-in predicates <, 5, >, 2 , # and a

new evaluable function. Its main advantages are to bring active

use of constraints into logic programming and to allow look
ahead strategies. first fail heuristics, consistency techniques and

the like to be implemented efficiently without programming effort

and the need for extra control informations. The efficient! of

logic programs for solving CSP is substantialI> improved by

avoiding the pathological behaviour of backt,racking and by

reducing the search space in an “a priori” manner. When com-

10. Mackworth. A.K. “Consistency in network of relations”.
Artificial inlelligence 8. 1 (1977). 99-118

11. Mycroft. A. , O’Keefr R.A. “A Polymorphic type system
for Prolog”. .4rtificial intelligence 23, 3 (1984). 295-307.

12. Naish L. “.4utomating control for logic programs”.
Journal of logic programming .Z, 3 (October 1985). 167-184.

13. Shapiro E. Methodology of logic programming. Proceeding
of logic programming workshop. Proceedings of logic program-
ming workshop, Praia da falencia, Portugal, 26-june I-july, 1983.
pp. 84-93.

14. Sussman, G.J. , Steele, G.L. “CONSTRAINTS: a language
for expressing almost-hierarchical descriptions”. Artificial intel-

ligence 14, 1 (1980), l-39.

15. Van Hentenryck. P. .Dincbas M. Associating domain to
variables in order to solve C.S.P. in logic programming. lp-10.
E.C.R.C (E uro ean p computer-industry research center), February,
86.

16. Walther. C. A mechanical Solution of Shubert’s Steam-

roller by Many-sorted resolution. qth National Conference on Ar-
tificial Intelligence (A-4.41-84). Austin. 1984.

AI LANGUAGES AND ARCHITECTURES / 765

