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ABSTRACT. 

When confronted with constraint sat isfaction prcjblerns (CSP). 

the “generate b test“ strateg! of Prolog is particular\ lnefficifnt 

tronal theorem proving arnoug ottters. The simple bacbt rack 

search [del)th frr.st senr~l~ with chi-or,o~u~~caI bacctrack,rlgi 15 very 

Prolog uses h 

Also. control mechanisms defined for logic programming lan- 

guages fall short In CSP because of their restrlcted use of con- 

strainta. Indeed. consrraints are used passiveI> for t casting pc>NerfuI control mechanisms can reduce the 5carch -pace. I hf,> 

fall short in CSP b&ause of their restrIcted pasql\r use of thr, generated values and not for actively pruning the search space 

h eliminating combinations of values which cannot appear 

together in a solution. One remedy is to introduce the domain 

concept in logic programming language. This allows for an active 

conat ralnts. Indeed. t hew rrlechanism\ can 

roroutining which ib bawd on thr “apply tr3ts a< Soon a+ 

possible“ heuristic5 which 13 not the best-suited one for thl< clasc 

use of constraints. This extension which does not impede the of problems. With these merhaniqms. a constramt IS tested a? 

declarative (logic) reading of logic languages. consists in a 

modification of the unification, the redefinition of the procedural 

semantics of some built-in predicates ( p , 5. <. 2. >) and a 

new evaluable function and can be implemented efficientlj Ul’ith- 

out an> chanpe to the search procedure and without introducing 

a new control mechanism. look ahead strategies, more intelligent 

choices and consistency techniques can be implemented nat uralI> 

in programs. Moreover. when combined with a dela! mechanism. 

this leads direct11 to a strategy which apphes active constraints 

as soon as possible. 

smn as its variables have rrceived their values Thus, 1 he 

search space is only reduced in an “a posteriori w a\” after the 

discovering that the generated value\ do not satisfl a constraint. 

The main draw back> of \uch an approach are the continual 

redlscoberjing of the same facts and the pathological behaviour 

of (chronological) backtracking. See (Mackworth. 1977) for a con- 

vincing example. Intelligent backtracking is a remed) to thtq 

state of affairs hut does not attack the real cause of the 

problems and introduces an important overhead when not nece+ 

There is another way to use constraints (wr will speak about an 

1. Motivations 
As Prolog IS applied to more and more areas, inadequacies of 

its search procedure appear and, although there were substantial 

active use of the constraints ((;allairr. 198.5) which consists in 

reducing the search space m an “a priori” manner b) removing 

inconsistencies. combinations of values which cannot appeared 

together in a solution (E’rrudcr 19i8). This approach is the basis efforts to develop powerful control mechanisms. the proposed 

solutions are IlOt entirely satisfactor) for different kinds of 

problems. This is the case of constraint satisfaction problems 

of consist enc! tc~rhnique~ (Ilackuort h 19i7). (F’reuder 1978) 

which has been used III refinements of the simylr backtrack 

search (i.e foruard checking. Iooklng ahead procedure:,) (tlarallcb (CSP). ,4 constraint satisfaction problem can be defined as fol- 

and Elliot. 1380) and in Alire. a problem solver for cons- 

binatorial problrms (Laurierr. 1978) When facing a constraint 

satisfaction problem. a logic program (H hich can be considered as 

a kind of meta-interpreter) can t)e writren which implement*. 

sa). a forward checking strategy. II will general11 be mow ef- 

ficlent that the usual Prolog programs. However. thii requires an 

imporlant programming effort. leads to lesh readat)le and IPW 

maintenable programs and does not allow the full cfficlency of 

these approaches because II creates a level abc,\e l’rolog. Ah a 

matter of fact. logic programming languages lack primltlves for 

an actike treatment of constraints. It SCPI~IS dlfflcult to define 

new control mechanisms in order to use ct,nst raints more ac- 

t ively. This state of affairs comw from the fact that (first 
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-4 s6ume the existence of a finite se1 J of variables 

jx,,x, ,.‘., A-f. supp ose each variable A’, takes iis values from a 

finite set I. 1 called the domain of the variable. .4 constraint C 

can be seen as a relation on a nor-empty subhef 1 = 

,’ Y1. 1. ,. J’ 2 “’ M ,’ of J which d f’ e anes a set of tuples <u,. uM> 

The constraint satisfaction problem in to determine all th 

possible assignments f of values to variables such that the cor- 

responding values assignments satisfy the constraints. The class 

of CSP is related to man) problems in Al like logical puzzles. 

scene labeling, graph isomorphisms. graph colourmg and proposi- 
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order) Nom clauSes .obscure sotnettmes properties of pro,dlcate 

bvld t/luS prevenb tire Interpreter I-Mm us,na them. CsllS,der for 

III~I Zlncr lhe case 01 var~ablcs. In I uglc pr~Igrarnmlng. the vari- progra mm in g (SW tor IllSi alIce (hl\ crdt and O’licefe, 1984 !) . 

Buf the main new point oj thir paper i6 that using such a logic (II- 

IOUM procedural MeA which have no counterparts in an unmrted 

logic. The domain declarations can be used to determIne the 

definiLion domain of each Lariable.” In the following. a variable 

with an explicit and finlt,e definition domain is refered as a d- 

variable and its domain is noted I),. Other variables are refer4 

as h-variable. Moreover, at an) tirne of the computation. thp 

ranpe ,)ver the Herbrand universe which IS 

in CSP. 

generalI> in- 

Of HoNever, in many applications and the domain 

variables is finite and much more restricted but this informatlon 

is hidden in predicates like permut.ation(X.J’) monadic predicates 

to restrict the range of variables or more generally in generators 

Introducing the domain concept 

guages leads directly to an actlbe 

in10 logic programming lan- 

use of constraints and the op- 

portunity to implement natural)! forward checking, consisLenc> possible, set (i.e. the set of values in which a d-variable take> its 

value) of a d-variable can be determmed. Jnit.iallJ ~ this set 15 the 

definition domain but the constraints can reduce it. For instance. 

a constraint “X # 3” can be used to remove “3” from the pas- 

techniques and the like The ne.xt sect ion int.roduces domain 

declarations in logic programming and its interest for using con- 

straints actively is discussed For supporting this use. Lhr 

procedural semantics is modified and thi, consist5 in a modiflca- sible set of the variable. This is an active way CO use the non- 

equality constraints contrarily to the passive use of Prolog which 

can only handle such a constraint when both arguments are in- 

stantiated. This use of constraints. combined with the opppor- 

tunity of generating onl> values in the possible set. increases sub- 

stantially the efficiency of logic programming for solving (‘SF’. 

Indeed, this allows to prune the search space in an “a priori” 

Lion of the unification, the redefinition uf the 

of some built-in predicates ( f . 5. <. 

procedural senlan- 

tics > 
-3 >) and a new 

evaluable function. Next. some examples are given and compared 

with usual Prolog programs. Final]). it is shown how some 

heuristics and consist,ency techniques can be built from our basic 

extension and implementation issues are discussed. The reader is 

refered Lo (Van Hentenryck and 

features defined here. 

Dincbas, 1986) for more manner instead of the ” a posteriori” manner of Prolog. 

on all the Aloreover. this can 1X used to reduce the gap between the 

declarative and procedural semantics for the built-in predicates 

and this I$ one of the directions of logic programming proposed 

by (ho~alski, 1985). 
2. Domain declarations. 

It is often the case that the variables range over a finite 

cannot be expressed clearly in logic domain but this information 

programming languages. Domain declarations are introduced 

for t,aking this fact into account. A domain declaration for predi- 

cate p of arity n is an expression of the following form. 

3. Procedural semantics. 
The invarlant of all proposed extensions is that t,he domain of 

a d-variable has a cardinality greater than 1. If domains of car- 

dinalit! 1 are defined. the value can directl! be assigned to the 

variables defined on this domain. 
domain p:<a ,..... a 3,. n 
where ai is either H or Dm 1 5 i < n. 

When ai is equal to H. this means that argument i of p ranges 3.1. Ilnification. 
over the Herbrand universe. Otherwise. it rnran* that argument i 

of m varlableh uhich ranges o\er 1). A:, in CSP the 

It 1s clear that the unification must Lake into account the 

be 15 a set domain of the variable\ The unification algorithm mu51 

number m is fixed. these declarations are full\ <atlsfactory. In modified to handle the three following c&es 

the following, the domain D are finit 1% and explicit 

constants The domain declarations can be considered as 

set of 

a kind l If a h-cariable and a d-x ariable must be unified, the 
h-variable must be buu nd 10 the d-variable. of meta-knowledge although quite different from the one proposed 

definitions is usual11 in logic programming The effect of Lhese 
l If a consrant and a d-variable must be unified. the d- 

variable is bound to the constant if it is in the 
domain of the variable. Otherwise. the uniflcat ion 
fails. 

to reduce the class of interpretations which must be considered 

for a logic program. In facL. the declarative logic semantics of 

the -extended” language is a particular case of the many-sorted 

logic defined in (Cohn. 1983). It is well-known that man)-sorted 

The fact that we only considered constanls i> 11) no wa? rr-trirtive The 
definitions given here cdn be extended CO arblLrar1 gruund term* LIUI the 
generalization is not considered here for clarity arld bre\it> 

l If two d-variables must, be unified. then let I), the 

inLersection of their domains. If D, IS empr!. the 

unification fails. If D,=(v) then v is bound to both 

t* 
The domain of a variable ran be determined a~ cornpile time 
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variables. OtherwIse, both varla 

new variable Z who* d OIllalll IS 
ble are 
D 2’ 

bownd to a 

3.2. Built-in predicates. 

The real interest of I he domain exrension 1s nor only in the 

logic part of the language but also in thra procedural part. sa>. 

in t hi r(Ldpfinll IOTI of +OIIIP built-in predlcat es. These predicates 

can nr,w takr Inlo acr,ounl the domain of 1 ariables 

3.2.1. Non-equality predicate. 

The declarallve semant ICS of the predicate is n S # Y holds If 

X is not equal lo Y”. However. the usual procedural semant KS 

of this predicate IS given by the following clause 

X#Y+ 
not(X = Y). 

where not(G) is the “negation as failure” rule. Thus, the only 

use of such a constraint is a passive one. Moreover, there is a 

gap between the declarative and procedural semantics. A safe 

computation rule *must be defined which only selects the non- 

equality predicates when the) are ground. Moreover, a generator 

of values for X and J. must be provided in order to be com- 

plete. Our procedural semantics allows an active use of these 

predicates and also reduces the gap between the declarative and 

procedural semantics 

X # 1. is defined b> 

If X is d-variable and 1’ is a constant, let D, be 

D,\{Y}. If DZ={v). then X is unified with v 

and X # 1 succeeds. Otherwise, X is bound to 
Z (whose domain is Dz) and X f- Y succeeds. 

The case where Y is a d-variable and X 1s a con- 
stant is similar t(o the previous one. 

If X and Y are constants, X f Y succeeds if X 
and Y are distinct constants and fails ot,herwise. 

Its effect is undefined otherwise. 

Note (hat this definition can easily be combined with a delay 

mechanism like wait, geler, freeze, (Naish, 1985), (Colmerauer. 

hanoui and \-an Caneghem. 1983) ,(Dincbas. 1984) in order to 

dela? the constraint until one of the first three cases is fulfilled. 

In this rase. there are no undefined cases and this usill lead to u 

very efjiricnt way to handk non-equality constraints which con- 

sists in using tht construfnt in an actite way as soon ab possible. 

Indeed. a non-equality predicate ran he cnmidered aa active m 

two dijjerent sensea. Firsi, it c an remove a value from the pob- 

siblc bet of a variable. Second, it cm assign a laalue to a variable 

when only one consistent value is left for this variable. The 

procedural semantics is equivalenr to the declarative one in the 

fhy,t three cascts. The gap between the semantics ES IIT the fuure 

cae. If 4 safe csmputabolr rule whrch only Se&& d non-equality 

predicate whrn III~C of th(b f’rrg three cages is fulfilled, the 

procedural semantics will be sound HoMe\Pr. In ~rcl~,r 1~1 tie r.,)m- 

plere. a generator of values for X and 1’ mu>{ i,e prnvlljPd. Note 

that. in fact. this semantic> is suboptimal. Indf,rd 11 for in- 

stance. X is a d-variable with d, = (1.2.3) and j i< a d- 

variable with I), = (4.5.6;. then the predicate .‘\ f \ should 

succeed because w hal*ver the values that X and \ HIII take. 

they will be differenl. 

3.2.2. Inequality predicates. 

We consider here the predicates “X 1. Y” uhose declarative 

semantics is given by “2; 5 J”‘ holds if X and J’ are integers 

and X is less than or P~IIB~ IO J‘” The usual procedural seman- 

11~s of this predicate is the following : “X <_ J’ succeeds if X 

and J’ are instantiated to integers and X is less than or equal 1.0 

J”‘. This time again. the procedural semantics entails only a 

passive use of this constraint. Also, there is a discontinuity be- 

tween the declarative and the procedural semantics. The 

procedural scmamtlcs can be redefined as follows. 

X 5 1’ succeeds in the following cases 

l If X is a d-variable, Y is an integer [#hen let sui 
= {I’: V E D, and V > Y} and D, = D, \ 

sup. If D, is empty, then X _< Y must. fail If 

not, if D, = {v}. then X is bound to v and X 

5 Y succeeds. Otherwise, X is bound to Z and 
X 5 Y succeeds 

l ,The case where X is an integer and Y is a d- 
variable 15 similar to the previous one. 

. If X and 1’ are Instantiated to int,eger values, X 
< J‘ succeeds if X is less than or equal to 

J’ Others ise, it fails. 

l Otherwisp. its effect is undefined. 

Therefore. this predicate is an active predicate which removes 0 

or I,...or n value5 from the domain of a variable and which can 

assign a value to a variable. It is clear that it can be combined 

with a delay mechanism for handling the last case. Note also 

that this implementation is suboptimal. If D, = { 1,2.3} and D, 

is {4..5.6). X 5 j’ should succeed. In the same wa). Y 5 N 

should fail. The others inequalIty predicates can be defined in 

1he same waj. 

3.2.3. Domain primitives. 

The extensions presented so far can be improved by giving to 

the user an access to t,he possible set of a variable. We intro- 

duce a new evaluable function domain(X) (which holds if 

dorrlain(X) returns the list of instances of a term uhlch satisfy 
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the dolltalns) whose procedural semana~cs is 

domain( \) = the IIst of all t hc values 
in D, of N I\ a d-h ariablr 

= [x-j If x IS a ground term 
IS undefmrd ot herwlqe 

Thrh function can be used to generate values fnr a d-variable b> 

u<lng. for ins1 ante. “rrlernt~erO;.d(,rrlalrlO;))” where member(NII’) 

hold\ if S i> an elerrrrnt of the list J. *‘. This function is quite 

u\eful when the “first fail” principle and arc-consistency are to 

be used (see below). 

4. Examples 
In the follov.ing. ue will give two examples of the basic 

nlechanlsms. The first one (h-queens problem) shows how a new 

search procedure (foruard checking) can be implemented in a 

logical w a! without the need LO rewrite a specific meta- 

Inlrrpreler. The second one is a logical puzzle which also shows 

that our extension combined with a delay mechanism can lead to 

a “data-driven computation” as. for instance, in the constraint 

language of (Sussman and Steele. 1980). 

4.1. N-queens problem. 

The folio% ing \-cjuccns program implements a forward checking 

sLrateg> (based on rhe “lookahead in the future in order not to 

worr> about the past” heuristics). This means that the program 

chooses a possible value for a variable. removes the inconsistent 

\ alues for the other Lariables and so on until all \ arlables have 

a value. H> mo\lng along this way, there is no need to test the 

value assigned to the present variable against the values of al- 

ready assigncld variables. This is the most efficient heuristic for 

this problem (Haralich and Elliot. 1980). The program is the fol- 

lowing. 

queens(u). 
queens(lXjI7) C- 

membw(X.domain(X)) 
safe(X.Y.l) 1 
queens(Y). 

safe( X,[J.Nb). 
safe( X.[FjT].Nb) r 

noattack(X.F.?jb 
Newnb is Nb + 
safe(.X.T.NeBnb) 

it2 
However. the unification will test if each value is in the domain of 

thr~ bariable. Therefore. a predicate “indomain( ran tw int.rodured whose 
derlaratibr semantics is P’ rndomain(X) holds II mernber(S.durrlain(X)) holds” 

and which avoids the unification inefficienr!. 

The five-queens program can br expressed b> the following 

clause 

domain five-queens.<{ 1.2.3.4.5}5>. 
fi~e-queens({X;l.)i2.X5.X4.X5}) t 

queens([Xl.X2,XY,X;4,)(53). 

The usual Prolog program consists in assigning 10 the n 1 ariables 

of the list a permutation of [I, .., ] n and then in testing if the as- 

signment satisfies the constraints. This is a very inefficient ap- 

proach. Control mechanisms. based on control informations 

provided by the user, can be used to apply the tests as soon as 

possible and thus improve the efficiency of the search (see I(‘- 

Prolog (Clark and MC Cabe, 1979). Metalog (Dincbas. 1984). 

MU-Prolog (Naish, 1985)). However, consider the first steps of 

our program. The “membw(X.domain(X))” will choose a value 

for X in its domain. Let say 1. Then immediately. all the in- 

consistent values of X2....,X5 are ‘removed from their possible 

set” by the safe predicate. Indeed, the noattack(X,Y,Nb) can be 

used with the following modes. noattack(+,+,+) and 

noatt.ack(+.-.+). In the later case, n-F means that Y is a d- 

variable and the effect of the predicate is to remove X. X - Nb, 

S + Nb from the domain of Y. Therefore. at this time, the 

situation is given in figure I (0 represents an assigned value and 

X an inconsistent value). In the next step, the values. 1 and 2 

will not be considered for X2. In a coroutining program. these 

values would have been t,est,ed. The next, step chooses 3 as value 

for X2. 

figure 1: 5-queens after 1 and 2 choices 

Therefore. this instantiates immediately X3 and X4 (to 5 and 2 

because their possible set is reduced to I element) and their safe 

predicates will reduce CO one element the d:main of X5 (i.e 4). 

‘The problem is solved with two choices and without any back- 

t.racking. 

Kow, consider, the search for another solution. In our case. the 

first backtrack point is X2 and the values assigned to X2,X3.X4 

and X5 will no more be compared with Xl. It’s not the case for 

the logic program with a control mechanism: each time a value 
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IS assrgned to X$X3,X4 and X5, this value must. be campar~d 

with Xl Thus entatls a lot of redundancy. Conder now tlrka 

eight-queens probi’er~~ after 3 C~IOI~CY 

12 J 4 5 6 7 8 

figure 2: 8-queens after 3 choices 

X6 has alread> received a value as there is only one value left 

in 11s domain. Therefore. when choosing 2 as value for X4. the 

safe predicate will fail and this choice will be reviewed. This 

failure is detected as early as possible. Moreover. the real cause 

of the failure (X4) is detected. In a logic program with control 

mechanism. the failure will be detect.ed only when assigning 

values for X6 and the backtracking will consider all the values 

(from 1 to 8) for X5, X6. The point here is twofold: jirst. there 

exzst powerful search procedures for CSP which detert failure ear- 

lier than control mechanisms: choose the right barktrark point 

urthout any overhead and aooid a lot oj redundancy: second. a 

ertenaion iS suffirient to allou, for fully declarative 

programs which implements such a procedure without the need of 

control injormations. 

4.2. A combinatorial problem. 

Th e problem is the following (Lauriere. 1978). 

Six couples took part in a tennis match. Their names were 

Howard. Kress. McLean, Randolph. Lewis and Rust. The first 

name< of their wives were Margaret. Susan. Laura. Diana. Grace 

and \‘irginia. Each of the ladies hailed from a different city: 

Forth North. Wlchlta. Mt \ ernon. Boston. Dayton. Kansas City. 

Finally. each of the women had a different hair color, name13 

black, brown. gw. red. auburn and blond. Information5 are 

given to state doubles and single which were played For in- 

stance. Howard and Kress played against Grace and Susan or the 

gra> hair lady played against Margaret. There is only one other 

fact we ought to know to be able lo find the last names. home 

towns and hair colors of all six wives. and that is the fact that 

“no married couple ever took part in the same game”. Thp fol- 

JoMing Prolog program solves the problem. 

pernr([ljo,Ke,n~c,Ra,Le,Kw~, /ma,su,la,di,gr,va]). 

Ho + pr 11~~ # <u. kc, I;f- or kc, f *II. MC # la. 
MC 7 su.Ha # la. Ha # su. 31~ + g: Ra f gr. 
Lr # gr. Kr T la. Kie + vi. 31~ j. dl. MC =& \i. 

perm( H1.~r.C~r.Re.Au,Blo].~ma.su.la.d~.gr.~~~), 

Hr -f vi.Hr # Ho. Br 3 MC. Ra f <:r. Gr 7 la. 

Blo # la. Blo F di. LP # Blo. RIO =+ ma. 

perm([Fo. U.i. Mt, Bo, Da.h’u~.~r~a.str.la.di.gr.tlil/. 

Fo # Ho.Fo # Mc,F<, + Rh.n~ =# Ho.\ji +\lc. 
Da =# ma.Mt -# ma,Mt f dl, ])a + dl. Mt .=& \i. 
\I i f Ra. W i f Ke.Ru + Fo.Fo # Ke.Gr F Ho 
He # Da. Gr f Fo. Rr + h1t. 1310 f I)a. 
HI # 1~0. Bl + Da. Ka 9 ma. 

where perm(L.Res) holds if the list Res is a permutation of the 

list L. In this program. the permutation predicates assign value5 

to t,he variables. &ext, the constraints are tested and if they are 

not satisfied. backtracking occurs in the permutations. Note also. 

that if a value for “Ho” generated in the first permutation can- 

not satisfy the constraint “Fo I Ho” tested after the third per- 

mutation. the backtracking will generat,e all the possible values 

for all the variables. This time again; this 1s quite inefficient. 

These constraints can be used immediately in order to remove 

inconsistencies. The program becomes the following. Let I) 

(ma.su,la,di,gr.vi} 

domain tennis:<D’.D6,D6>. 
tennis({Ho.Ke,~lc.Ra,Le,Ru},{Fo.Wi,Mt~.Bo.Da.Ka} 

,{ Bl,Br,Gr.Re,Au,Blo}) e 
Ho # gr. Ho # su, Ke =f gr, Ke # su. hlc =# la. 
Mc f su.Ra # la. Ra# su. MC # gr. Ha ;f gr. 
Le # gr. Kr ;it la. Ke =& vi. Mc f di. MC + vi. 
Mt # ma.Mt =#di, Da # di. Mt f vi. 
Blo # la, Blo + di,Da # ma. Ka =# ma. 
Br f vi. Gr + la, Blo =#- ma. 
labeling(po,Ke,Me,Ra,Le.RuJ). 

Fo 7 Ho.Fo =+ Mc,Fo # Ra.Mi = Ilu.Ni 731~. 
Wi f Ra. W’i 1 Ke. Ru # Fo. Br 3 Ho. 
Br + MC. Le # Blo. Ra += Gr. Fo = Ke. 
labeling(~Bl,Br,Gr,Re,Au.Blo~). 

Cr + Bo. Rc % Da, Gr ,i Fo, Rc F %lt. 
I310 + Da, Bl F Bo, Bl # Da, 
labeling([Fo, Wi,Mt,Bo,Da,Ka]). 

labeling(u). 
labeling( [X(q) - 

member(X,domain(X)). 
out-of(X.Y). 
labeling(1’). 

our-of&[]). 
out-of(M,IFIT]) . 

x f F, 
out-of(X,T). 

The labeling procedure is used instead of the permutation proce- 

dure in order to assign to variables 0111) \ slurs in their possible 

set. The procedure labeling(L) h 11. (I c \ if all elements of the list L 
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are dIfferant (which IS Insured by the “out-or’ prcdtcare). The putatK7ri C St on ralr~ts recfwe the passable sets of the urrcaMes. As 

list L must include only ground terms Or d-variables. In the lat- 
ter case. the dornaln of the varlabl(, I\ used as generator by the this variable und thdh jact 16 propagalcd by allowzng other cm- 

straints to be aclected ” mern her” predieare. The, rnam difference hpl w pen the two 

programs is that thr second nne Immedlatel~ solar\ nlost of the 

constraints and therefore reduces immediateI> the search space. 
5. Others features of the extensions. 

The constraints are solved once for all. (lonsider the case of the 

constraint “Fo # Ho”. This constraint is solved after the first 
Our extension can be considered as a set of primitives Nhich 

ran be used to huild more qophislicated mechanisms and heurib- 

tars. An example is the “first fail principle” (IIaralick and Elliot. 
labeling prrcedure instead of after three permutal IOII~ Zlr)reover. 

when encountered, it will reduce the possible srt of “E’o“. Other 

constraints also reduce this set or assign values IO variable. The 

choices are made in smaller domains and only a few constraints 

depend on them. No pathological behaviour (like in the case of 

1980) Forward checking (and other search procedures) can be 

substantial11 improved b> using the so-called “to succeed. tr> 

first where you are most likely to fail” heuristics. This heuristic> 

can he implemented in CSP b> choosing 

variables to be instantiated first. Consider 

the most constrained 
simple backtracking) will arise. This allows us to move from a 

the labeling procedure 
“generate and test” strategy towards a ‘.constraintd-search” 

strategy for problem solving. 
seen before. It can be rewritten as 

labeling(u) 
labeling([X(Y]) +- 

choosr-car(lX:)oY],Var,Other) , 
member(\-ar,domain(Var)) , 
out-of(\-ar,Ol her), 
labeling(Oc her). 

If a delay mechanism is used for the non-equality predicates. in 

the first program. all the constraints can be written first and 

will be tested as soon as possible (i.e. in this case when the Iwo 

variables are instantiated. 

remains as the constraints are used passively 

but the above-mentionned problem 

However. the 

The procedure choose-var(L,Var,Other) holds if Var is the ele- 

ment of L whose domain cardinality is the smallest one and 

Other is the list of other variables of L. The domain cardinalit) 

of a variable can be computed by a goal ” - 

length(domain(V).Lg)” where the procedure length(L.Lg) holds if 

I ,g is the length of the list L. It is clear that further efficient) 

can he obtained by building in the “choose-var(L,Var.Other)” 

program where labeling predicates are replaced by alldifferent 

predicateA (i.e. alldifjerent(fHo.h’e,Alc.Ra.Le.Ru]). 

alldifferent(~Bl.Br.Gr.Re,.4u,BloJ), 

alldzfferent(lFo. ~~-i.,~lt.Bo,Da,h’aj)l will solve the probletu if a 

delay mechanism is combined with our basic mechanism. The 

predicate alldifferent holds if all lhe elements of the hst L are 

not equal. It can be defined by the following clauses 
predicate This heuristics is particularly well suited for many 

alldifferen t ([I) 
alldifferent ([M\Y]) c 

out-of(X.)‘) , 
alldifferent ) 

problems like map (graph) coloring problems where man! 

guidelmes 

)‘efficiency” 

are known. In usual logic programs for CSP, the 

greatly affected by the order of the litterals inside is 

a clause or the order of arguments in predicates like permuta- 

tion. Such an order must be determined statically and requires a 

deep analysis of the problem. With our extension, the order of 

instantiation can be determined dynamicall> and requires no 

analysis of the problem. It seems ver> difficult to get a similar 

effect in usual logic languages without rewriting all the program 

in order to manipulate explicitely the domains. In (Van Henten- 

ryck and Dincbas, 1986), it is shown how arc-consistency and 

others more sophisticated mechanisms. like the reasoning on in- 

t ervalb of (Lauriere, 1978)) can be implemented easil) with the 

prirnitlvey presented here. The point here is twofold. first. our 

basic TrkeChanismS are sufficiently powerful to implement more 

sophisticated mechanisms which requires a lot of progratnming ej- 

jort in usual logic language. This gilles to the user the oppor- 

tunity to define his own mechanisms zf necessary Also, the ustr 

is not restricted to a particular strategy for applying these 

mechanisms Second. there exist specific mechanisms which are 

often used and which ran substantially reduce .!he search space. 

This predicate is the same as the Colmerauer’s one but it is 

used here in an active ua) inst>ead of in a purely passive wa> in 

((,‘olmcraucr. hsnoul and \.an Canrghcm. 1935) ‘I’hcrr. an non- 

equality prfadicate IS <elected as soon as both arguments are 

ground In our case. ir i+ selected as soon as one of these ar- 

guments is ground and can assign values to variables. It entails 

that this problem can be solved without generation of values and 

thus without choices (1): the program just solves the 

constraints. This is indeed a particular case but it shows how 

the search space can be reduced with a simple extension. This 

will be very important for interesting (NP-complete) problems. In 

this case, it is very important to reduce as soon and as much as 

possible the search space in order to avoid the combinat,orial cx- 

plosion. The point here is twofold: first, active constrainls are 

used to reduce in an “a priori” manner the search space and 

thus avoids the pathological behaviour oj backtracking. Second. 

rambined with a delay mechaniswc, it allows a data-driven rom- 

764 I ENGINEERING 



pr/mrtrvcs once the domarn extension has been prr)r,tdrd 

blned with a delay mechanism, this lead to a “data8rrvgyt” com- 

putation which aapl~es constraints actively as soon as possible. It 

has been shown h<)w more aophlqticated mechanisms can be built 

from the prlmlt~ves and that such extenslonb can be Implemented 

efficient]). 
6. Implementation issues. 

The implementation of this extension entails no overhead when 

not used and can be Implemented efficiently. two condition+ 

stated by (Shapiro. 1983) What are the modifications required 

by our basic mechanisms ? In the variables environment. besides 

the usual informatlon. a pointer to the domain (or more precisely 

the possible set) mu\t be provided. In thr following. we consider 

only the case where the domains are defined as a set of consecu- 

tive integers This i> in no wa> restrictive. Indeed, a corrcspon- 

dance can be made at implementation level between a finite set 

of constants and a set of consecutive integers. Then. it is clear 

1. Clark, K.L.. .\lc CabBe, F I’hc control fat illlies of I(‘- 
I’rolog. In Ezperl c~yslrltr~6 zti thf rrrzrro-electrontc age., ED 
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3. Colmerauer, A., Kanoul. H.. Van Caneghem. M. “Prolog. 
bases theoriques et developpements actuels.” T.S.I. (techniques 

et sciences injormatiques) 2, 4 (83). 271-311. 
that this can also t,p done for set of integers and that we have 

4. 
a direct access to elements of the domain. Therefore. only a 

Dincbas, M. . Lepape. J.P. Metacontrol of logic program in 
METALOG. Proceedings of FGCS’84.. Tokyo. Japan, November, 

boolean array ‘*a” is necessar) to represent the domain of a d- 84, pp. 361-370. 

variable At the beginning. all the booleans are true but the con- 

straints can modify them. At any time of the computation. if 

ari] = true then this means that i is in the possible set of the 

variable. Otherwise, it is not. However, it can be int,eresting to 

store the minimum and maximum indices. In this case, the pos- 
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ing, the only thing to do is to reset a!il to true. In general. the 
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to be reset. However. if maximum and minimum values are 
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An extension of logic programming languages has been proposed 
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domain declarations. a slight modification of unification. the 

redefinitions of sorne built-in predicates <, 5, >, 2 , # and a 

new evaluable function. Its main advantages are to bring active 

use of constraints into logic programming and to allow look 
ahead strategies. first fail heuristics, consistency techniques and 

the like to be implemented efficiently without programming effort 

and the need for extra control informations. The efficient! of 

logic programs for solving CSP is substantialI> improved by 

avoiding the pathological behaviour of backt,racking and by 

reducing the search space in an “a priori” manner. When com- 
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