From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

AN EXPERT SYSTEM
FOR CHORALE HARMONIZATION!

Kemal Ebcioglu?
Department of Computer Science
226 Bell Hall
State University of New York at Buffalo
Buffalo, NY 14260

Abstract

We have designed an expert system called CHORAL, for harmonizing
four-part chorales in the style of J.S. Bach. The system contains over
270 rules, expressed in a form of first order predicate calculus, for re-
presenting the knowledge required for harmonizing a given melody.
The rules observe the chorale from multiple viewpoints, such as the
chord skeleton, individual melodic lines of each voice, and the
Schenkerian voice leading within the descant and bass. The program
harmonizes chorales using a generate-and-test method with intelligent
backtracking. A substantial number of heuristics are used for biasing
the search toward musical solutions. Examples of program output are
given in the paper. BSL, a new and efficient logic programming lan-
guage which is fundamentally different from Prolog, was designed to
implement the CHORAL system.

Introduction

In this paper, we will describe a rule-based expert system called
CHORAL, for harmonization? and Schenkerian analysis* of chorales in
the style of Johann Scbastian Bach. We will first outline a program-
ming language called BSL, that was designed to implement the project,
and we then will describe the CHORAL system itself.

BSL: an efficient logic programming language

Lisp, Prolog, and certain elegant software packages built on them, are
known to be good languages for writing A.L. programs. However, in
many existing computing environments, the inefficiency of these lan-
guages has a tendency to limit their domain of applicability to compu-
tationally small problems, whereas the problem of generating non-trivial
music appears to require gigantic computational resources, and a sizable
knowledge base. As a result, we were led to look for an alternative de-
sign language for implementing our project. We decided to use first
order predicate calculus for representing musical knowledge, and we
designed BSL, an efficient logic programming language.

From the execution point of view, BSL is an Algol-class non-
deterministic language where variables cannot be assigned more than
once except in controlled contexts. It has a Lisp-like syntax and is
compiled into C via a Lisp program. We have provided BSL with formal
semantics, in a style inspired from [de Bakker 79]. The semantics of a
BSL program F is defined via a ternary relation ¥, such that
Y (F, 0, o') means program F leads to final statc o' when started in ini-
tial state o, where a state is a mapping from variable names to elements
of a “‘computer’” universe, consisting of integers, arrays, records, and
other ancillary individuals. Given an initial state, a BSL program may
lead to more than one final state, since it is non-deterministic, or it may

This work was supported by NSF grant MCS-8316665.

lead to none at all, in case it never terminates. What makes BSL dif-
ferent from ordinary non-deterministic languages [e.g. Floyd 67, Smith
and Enea 73, Cohen 79], and relates it to logic, is that there is a simple
mapping that translates a BSL program to a formula of a first order
language, such that if a BSL program terminates in some state o, then
the corresponding first order formula is true in ¢ (where the truth of a
formula in a given state o is evaluated in a fixed “computer” interpre-
tation involving integers, arrays, records, and operations on these, after
replacing any free variables x in the formula by o(x)). A BSL program
is very similar in appearance to the corresponding first order formula,
and for this reason, we call BSL programs formulas.

A formal and rigorous description of BSL and a proof of its soundness
can be found in [Ebcioglu 86]. In this paper, we will only try to give an
idea about the language, without attempting to explain all details. Here
is a BSL program to solve a classic puzzle [Floyd 67], followed by its
first order translation: Place eight queens on a chess board, so that no
two queens are on the same row, column, or diagonal. Assume that the
rows and columns are numbered from O to 7, and the array elements
plOl.... p[7] represent the column number of the queen on row 0,...,7,
respectively.

(E ((p (array (8) integer)))
(An0(<n8) (1+ n)
(EjO0(<j®) (1+)
(and (AkO (< kn) (1+ k)
(and (!=j (p k)
(!=(C¢jk)(-nk)
(I=(Gjpk) (-kn))))
G=(pn)jNN)

First order translation:

(3p | type(p)="“(array (8) integer)”’)
(¥n|0<n<8)
(3i10<j<8)
[(Vk| 0<k<n) [j#plk] & j-p[k]#n-k & j-plk]s#k-n]
& pln]=ji

As a reader familiar with logic can readily see, the first-order translation
of the BSL formula shown here asserts that there exists an array p that
is a solution for the eight queens problem. It can be seen that the BSL
program and the corresponding first order assertion are very similar. In
fact the assertion can be obtained from the program, provided that we
translate the quantifiers in the program to a conventional notation, and
we convert the assignment symbol in the program to an equality symbol.
This BSL program compiles into an efficient backtracking program in
C that finds and prints instantiations for the array p, that would make

Author’s present address: IBM, Thomas J. Watson Research Center, P.O, Box 218, Yorktown Heights, NY 10598.
A chorale is a short musical piece that is sung by a choir consisting of men's and women’s voices. There are four parts in a chorale (soprano, alto, tenor, bass) which are sung together;

the soprano part is the main melody. Harmonization is the process of composing the alto, tenor and bass parts when the soprano is given. J.S. Bach has produced many chorale

harmonizations [Terry 64].

Schenkerian analysis refers to a music analysis method developed by Heinrich Schenker [1868-1935], whereby an entire piece of tonal music is reduced to a fixed descending se-

quence of three, five or eight notes (accompanied by a bass), via a process roughly similar to parsing using a formal grammar. It is often regarded as the deepest way of understanding

music.

784 / ENGINEERING

the (3Ip)-quantified part of the corresponding assertion true in the fixed
interpretation.

We can informally describe the non-deterministic semantics of BSL by
drawing our examples from this eight-queens program: The existential
quantifier (E ((p (array (8) integer))) F)) is like a begin-end block with
a local variable p: it is executed by binding p with (in this case) an array
of eight elements whose values are initially equal to U (the unassigned
object), and then executing the constituent formula ;. The possible
type declarations for p in the context of this construct include the inte-
ger type, and inductively defined array and record types. The bounded
universal quantifier (A n 0 (< n 8) (14 n) F}) is similar to a C “for”
loop with a local variable n; its constituent formula F; is executed suc-
cessively with n=0,1,...,7. The bounded existential quantifier (E j 0 (<
j 8) (1+ j) F}) is a non-deterministic choice construct; it is executed by
setting its local variable j to O, incrementing j an arbitrary number of
times (possibly zero times), and finally executing the constituent for-
mula F;. If jis incremented too many times so that it is no longer less
than 8, the program does not terminate. The construct (and F; F; ...)
is like the Pascal semicolon; it is executed by executing Fj, F,,... one
after the other. (or F; F, ...), not exemplified in the program, is another
non-deterministic choice construct; it is executed by executing one of
F, , F,,.... BSL’s tests and assignments are called aromic formulas. A
test such as (!= j (p k)), is executed through ordinary comparison, but
if the test does not come out to be true, the program does not terminate.
(!= means “not equal” and (p k) is an abbreviation for (sub p k), i.e.
plk]). An assignment such as (:= (p n) j) is executed in the usual de-
structive manner, but the value of the left hand side p[n] must be U
before the assignment, or else the program does not terminate (the
purpose of this check of the left hand side is to ensure that formulas
such as (E ((x integer)) (and (:= x 0) (:= x 1))) cannot terminate; BSL
formulas involving more than one explicit assignment to a variable are
considered erroneous). Other erroneous computations (such as at-
tempting to use a variable while its value is still U, or dividing by 0) also
cause non-termination.

The translation of a given BSL formula to the first order assertion which
is true at its termination states is mostly obvious, as the eight-queens
example illustrates, however, both the equality test (==) and the as-
signment (:=) symbols of BSL are translated to the equality symbol in
the logical counterpart. Thus, the program may contain procedural in-
formation not present in its logical translation. The first order trans-
lation of a BSL program without free variables is a sentence, whose
truth does not depend on the value of any variable at the termination
state; successful execution of such a BSL program amounts to a con-
structive proof of the corresponding first-order sentence.

A BSL program of the form (E ((x #p)) ...) compiles into a back-
tracking program that attempts to simulate essentially all of its possible
executions, and prints out the value of x at the end of every execution
that turns out to be successful. However, certain intuitively unneces-
sary executions involving assignment-free formulas are skipped over via
a built-in “cut” convention, similar to Prolog’s cut. The compiled code
does not implement backtracking blindly; it omits the run-time checks
against double assignment, incorporates elaborate optimizations, and is
very efficient, rivaling hand-coded C. On the simple integer computa-
tions for which BSL is intended, BSL tends to be significantly faster
than Prolog and Lisp in the traditional or RISC computing environ-
ments. Also, because the single assignment nature of BSL facilitates the
detection of parallelism, some further modest speedup for BSL appears
to be achievable in the future, via the emerging “very long instruction
word” architectures and compilation techniques [Fisher 79, Ellis 86,
Nicolau 85, Touzeau 84].

The language subset described up to here is called L*, and constitutes
the “pure” subset of BSL. The full language has some more, but not
many more features; we tried to keep BSL small. These features are
mainly user-defined predicates that allow Prolog-style backward chain-
ing, user-defined functions, enumeration types, and macro and constant
definitions that allow access to the full procedural capabilities of Lisp.
A limited form of the “not” connective is defined as a macro, which is
expanded by moving the ‘““not”’s in front of the tests via DeMorgan-like
transformations, and then eliminating the ‘“not”s by changing == to
=, etc.. The language is also extended with heuristics, which are BSL
formulas themselves, which can guide the backtracking search in order
to enumerate the better solutions first.

Representing knowledge from multiple viewpoints

Representing knowledge using multiple views of the solution object is
a need that arises during the design of complex expert systems. For ex-
ample the Hearsay-II speech understanding system [Erman et al. 80],
had to view the input utterance as mutually consistent streams of sylla-
bles, words and word sequences. Similarly, the “Constraints’ system
[Sussman and Steele 80] had used equivalent circuits for viewing a given
circuit from more than one viewpoint. A similar need for a multiple
viewpoint knowledge representation was felt during the design of the
CHORAL system.

In a first order logic representation of knowledge, a good way to encode
multiple viewpoints is to use different primitive predicates and functions
for each viewpoint. For example, to represent the harmonic view of a
polyphonic piece of music, two functions p(n,v), a(n,v) and a predicate
s(n,v) can be used as primitives that stand for the pitch and accidental
of voice v at time unit n, and whether a new note is struck by voice v
at time unit n. A different set of primitives would be required for ex-
pressing constraints about the melodic lines of the individual voices.
Multiple sets of primitives are important, because formulas tend to be
unnecessarily long when written with the wrong primitives.

However, since BSL incorporates native operations on Pascal-style data
structures, it is preferable to use data structure substitutes for the
primitive functions and predicates of a viewpoint when this is possible.
We now describe one particular method of representing knowledge
from multiple viewpoints in BSL, where we assume that each viewpoint
is represcnted by a different data structure, typically an array of records
(called the solution array of that viewpoint), which serves as a rich set
of primitive pseudo functions and predicates for that view. This multi-
ple view paradigm, which was used in CHORAL, has the following
procedural aspect, which amounts to parallel execution of generate-
and-test: It is convenient to visualize a separate process for each view-
point, which incrementally constructs (assigns to) its solution array, in
close interaction with other processes constructing their respective sol-
ution arrays. Each process executes a sequence of ‘“‘generate-and-test
step”’s. At the n’th generate-and-test step of a process, an acceptable
value is selected and assigned to the n’th element of the solution array
of the viewpoint, depending on the elements 0,...,n-1 of the same sol-
ution array, the currently assigned elements of the solution arrays of
other viewpoints, and the program input. The processes, implemented
as BSL predicate definitions, are arranged in a round-robin scheduling
chain. With the exception of the specially designated process called the
clock process, each process first attempts to execute zero or more
generate-and-test steps until all of its inputs are exhausted, and then
gets blocked, giving way to the next process in the chain. The specially
designated clock process attempts to execute exactly one step when it
is scheduled, all other processes adjust their timing to this process.’ By
adjusting the input-wait predicates of the processes, a variety of known
techniques can be implemented, ranging from graceful shift of focus

* In certain cases a view may be completely dependent on another, i.e. it may not introduce new choices on its own. In the case of such redundant views, it is possible to maintain
several views (solutions arrays) in a single process, and share heuristics and constraints, provided that one master view is chosen to execute the process step and comply with the

paradigm.

APPLICATIONS / 785

among the different viewpoints [Erman et al. 80], to hierarchical plan-
ning by stages [Sacerdoti 74].

The knowledge base of each viewpoint is expressed in three groups of
subformulas, which determine the way in which the n’th generate-and-
test step is executed: Production rules: These are the formal analogs of
the production rules that would be found in a production system for a
generate-and-test application [Stefik 78]. The informal meaning of a
production rule is “IF certain conditions are true about the partial sol-
ution (elements 0,...,n-1, and the already assigned attributes of element
n), THEN a certain value can be added to the partial solution (assigned
to a group of attributes of element n).” Their procedural effect is to
generate the possible assignments to element n of the solution array.
Constraints: These side-effect-free subformulas assert absolute rules
about elements 0,...,n of the solution array, and external inputs. They
have the procedural effect of rejecting certain assignments to element
n of the solution array (this effect is also called early pruning).
Heuristics: These side-effect-free subformulas assert desirable proper-
ties of the solution elements 0,...,n and external inputs. They have the
procedural effect of having certain assignments to element n of the sol-
ution array tried before others are. The purpose of the heuristics is to
guide the search so that the solution first found is hopefully a good sol-
ution. The worth of each candidate assignment to solution element n
which complies with the constraints is determined by summing the
weights of the heuristics that it makes true. Execution then continues
with the best assignment to solution element n (with ties being resolved
randomly), and then, if backtracking occurs to this step, with the next
best, etc.. Heuristics are weighted by decreasing powers of two; this
weighting scheme was chosen because it does not involve arbitrary nu-
merical coefficients, and because it is known to vield good results in
music generation [Ebcioglu 81].

In case no possibilities can be found at a particular step of a process,
control does not necessarily return to the chronologically preceding step
in the history of the steps of the processes. Every scalar variable (or
scalar part of a variable) has a tag associated with it. When a variable
is assigned a value, its tag is assigned a stack level to backtrack to in
order to undo that assignment. During the execution of step, a running
maximum of the tags of the variables that occur in the failing tests is
maintained; and when the step fails, backtracking occurs to the most
recent responsible step (stack level) thus computed. This is a domain
independent, compilable intelligent backtracking technique, and has
little run-time overhead when it is useless. It does eliminate the typical
need for the (somewhat inelegant) explicit intrusion into the control
mechanism in the style of Conniver [Sussman and McDermott 72].
Other approaches to this problem were tried by, e.g. [de Kleer 86],
[Bruynooghe and Pereira 81], [Stallman and Sussman 77], [Doyle 79].

An expert system is often praised by the esoteric control structures that
it introduces. We must therefore explain why we have chosen such a
streamlined architecture for designing an expert system, rather than a
more complex paradigm such as the multiple demon queues of [Staliman
and Sussman 77], where demons are arranged within several scheduling
queues, or the opportunistic scheduling of Hearsay II (|Erman et al. 80],
also [B. Hayes-Roth 85]), where the production system control is
achieved by essentially a separate expert system. We believe that
striving to use simpler control structures is a better approach to the de-
sign of large systems, provided that an attempt is made to alleviate the
non-optimal nature of such control structures through an efficient im-
plementation. Unfortunately, we do not know of an easy way to extend
the streamlined design approach to the knowledge base itself: certain
application domains appear to resist simplification.

The knowledge models of the CHORAL system

We are finally in a position to discuss the CHORAL system itself. The
CHORAL system uses the back-trackable process scheduling technique
described above to implement the following viewpoints of the chorale:

786 / ENGINEERING

The chord skeleton view observes the chorale as a sequence of
rhythmless chords and fermatas, with some unconventional symbols
underneath them, indicating key and degree within key. This is the
clock process, and produces one chord per step. This is the view where
we have placed, e.g., the production rules that enumerate the possible
ways of modulating to a new key, constraints about the preparation and
resolution of a seventh in a seventh chord, and heuristics that prefer
Bachian cadences.

The fill-in view observes the chorale as four interacting automata that
change states in lockstep, generating the actual notes of the chorale in
the form of suspensions, passing tones and similar ornamentations,
depending on the underlying chord skeleton. This view reads the chord
skeleton output. This is the view where we have placed, e.g., the pro-
duction rules for enumerating the long list of possible inessential note
patterns that enable the desirable bold clashes of passing tones, a con-
straint about not sounding the resolution of a suspension above the
suspension, and a heuristic on following a suspension by another in the
same voice (a Bachian cliché).

The time-slice view observes the chorale as a sequence of vertical time-
slices each of which has a duration of an eighth note, and imposes the
harmonic constraints. This view is redundant with and subordinate to
fill-in. We have placed, e.g., the constraint about consecutive octaves
and fifths in this view.

The melodic string view observes the sequence of individual notes of the
different voices from a purely melodic point of view. The merged
melodic string view is the similar to the melodic string view, except that
the repeated adjacent pitches are merged into a single note. These
views are also redundant with, and subordinate to fill-in. These are the
views where we have placed, e.g., a constraint about sevenths or ninths
spanned in three notes, and a heuristic about continuing a linear
progression.

The Schenkerian analysis view is based on our formal theory of hierar-
chical voice leading, inspired from [Schenker 79] and [Lerdahl and
Jackendoff 83]. The core of this theory consists of a set of rewriting
rules [Ebcioglu 85, 86] which are used for parsing the bass and descant
(melody) lines of the chorale separately. The Schenkerian analysis view
observes the chorale as the sequence of steps of two non-deterministic
bottom-up parsers for the descant and bass. These read the fill-in view
output. In this view we have placed, e.g., the production rules that
enumerate the possible parser actions that can be done in a given state,
a constraint about the agreement between the fundamental line acci-
dentals and the key of the chorale, and a heuristic for proper recognition
of a Schenkerian D-C-B-C ending pattern.

The chorale program presently incorporates over 270 production rules,
constraints and heuristics. The rules were found from empirical obser-
vation of the Bach chorales [Terry 64], personal intuitions, and certain
anachronistic, but nevertheless useful traditional music treatises such
as [Louis and Thuille 06] and [Koechlin 28].

As a concrete example as to what type of knowledge is embodied in the
program, and how such musical knowledge is expressed in BSL’s
logic-like notation, we take a constraint from the chord skeleton view.
The following subformula asserts a familiar constraint about false re-
lations: “When two notes which have the same pitch name but different
accidentals occur in two consecutive chords, but not in the same voice,
then the second chord must be a diminished seventh, or the first inver-
sion of a dominant seventh, and the bass of the second chord must
sound the sharpened fifth of the first chord, or the soprano of the sec-
ond chord must sound the flattened third of the first chord.” (The ex-
ception where the bass sounds the sharpened fifth of the first chord is
commonplace, the less usual case where the soprano sounds the flat-
tened third, can be seen in the chorale “Herzlich thut mich verlangen,”

no. 165.% There exist some further, less frequent exceptions, e.g. false
relations between phrase boundaries when the roots of the two chords
are equal (no. 46), but we did not attempt to be exhaustive.) The
complexity of this rule is representative of the complexity of the pro-
duction rules, constraints and heuristics of the CHORAL system. We
see the BSL code for this rule below:

(A u bass (<= u soprano) (1+ u)
(A v bass (<= v soprano) (1+ v)
(imp (and (> n 0)
== (mod (p1 u) 7) (mod (p0 v) 7))
(!= (al u) (a0 v))
(I=uv))
(and (member chordtype0 (dimseventh domseventh1))
(or (and (== (a0 v) (1+ (al u)))
(== v bass)
== (mod (- (p0 v) root1) 7) fifth)
(and (== (a0 v) (1- (al u)))
(==v soprano)
(== (mod (- (p0 v) rootl) 7)
third)))))))

Here, n is the sequence number of the current chord, (pi v), i=0,1...
is the pitch of voice v of chord n-i, encoded as 7*octave number+ pitch
name, (ai v), i=0,1,... is the accidental of voice v in chord n-i, and
chordtypei and rooti, i=0,1... are the pitch configuration and root of
chord n-i, respectively. The notation p0, pl, etc. is an abbreviation
system, obtained by an enclosing BSL ‘“‘with” statement, that allows
convenient and fast access to the most recent elements of the array of
records representing the chord skeleton view. (imp F, F,), and (mem-
ber x (4 3, ...)) are macros that have the predictable expansions. We
repeat the constraint below in a more standard notation for clarity, us-
ing the conceptual primitive functions of the chord skeleton view in-
stead of the BSL data structures that implement them:

(Vu | bass<u<soprano)(Vv | bass<v<soprano)
[n>0 & mod(p(n-1,u),7)=mod(p(n,v),7) & a(n-1,u)#a(n,v) & u#v =
chordtype(n) € {dimseventh,domseventhl} &
[a(n,v)=a(n-1,u)+1 & v=bass & mod(p(n,v)-root(n-1),7)=fifth V
a(n,v)=a(n-1,u)-1 & v=soprano & mod(p(n,v)-root(n-1),7)=third}}.

To exemplify the BSL code corresponding to a heuristic, we again take
the chord skeleton view. The following heuristic asserts that it is unde-
sirable to have all voices move in the same direction unless the target
chord is a diminished seventh. Here the construct (Em Q (¢, ¢, ...) (F
Q)) is a macro which expands into (or (F ¢;) (F ¢)...), thus producing
a useful illusion of second order logic.

(imp (and (> n 0)
EmQ (< >)
(A v bass (<= v soprano) (1+ v)
(Q (pt v) (PO V)))))
(== chordtypeO dimseventh))

We again provide the heuristic in a more standard notation, for clarifi-
cation:

[n>0 & (3Q € {<,>})(Vv|bass<v<soprano)[Q(p(n-1,v),p(n,v)] =
chordtype(n)=dimseventh].

What has been accomplished

Although the CHORAL system is primarily a research project rather
than a commercial expert system, we have spent considerable effort to
make it do well in its task; it has not been easy, and our success has only
been moderate by scholarly standards. While it is certainly up to the
music theorist reader to evaluate the harmonizations, we nevertheless

° All chorale numbers in this paper are from {Terry 64].

wish to make a few remarks here. We are not aware of previous re-
search on computer-generated tonal music that has yielded results of
comparable quality. Unfortunately, the style of the program is not
Bach’s, except for certain cliché patterns; in particular the program is
too greedy for modulations. Whether the present algorithm is indeed a
natural cognitive model for Bach chorales or for musical composition in
general (e.g. whether modifying the constraints and heuristics could
yield a significantly better approximation of the Bach style), would be
the topic of a much longer research. However, the results appear to
demonstrate that tonal music of some competence can indeed be
produced through the rule-based approach. The program has also
produced good hierarchical voice leading analyses of descant lines, but
the Schenkerian analysis knowledge base still reflects a difficult basic
research project; we were simply unable to produce a sufficiently large
number of rules for Schenkerian analysis. The CHORAL system ac-
cepts an alphanumeric encoding of the chorale melody as input, and
produces the chorale score in conventional music notation, and the
parse trees in Schenkerian slur-and-notehead notation. The output can
be directed to a graphics screen, or can be saved in a file for later
printing on a laser printer. We present some output examples at the end
of this paper. The examples show an harmonization of Chorale no. 48
from [Terry 64], and an analysis of its descant line. In the last three
measures of the bass part of the harmonization, the g-a-a-g#-a pattern
(x-y-x-y pitch pattern with possible repeats), and the (eighth eighth
quarter) rhythmic pattern that falls on a strong beat, may be considered
objectionable by a trained musician, however, for computational econ-
omy reasons, we had to install some of the rules advising against these
patterns as ‘‘negative” heuristics, which unfortunately cannot rule them
out completely. The figures underneath the descant analysis of no. 48
indicate the internal depth of the parser stack and the state of the
parser, after the corresponding note is seen. For those familiar with
Schenkerian analysis, the numbers might be taken to mean the lowest
level that the note belongs to, where level numbers increase as we go
from the background to the foreground. We can follow the fundamental
line, a fifth progression preceded by an initial ascent in this case, at
those notes whose levels are 1, except for the final note, whose level is
0.

Acknowledgements

I wish to thank my advisor Prof. John Myhill for getting me interested
in the mechanization of Schenkerian analysis, and his enlightening dis-
cussions.

References

Bruynooghe, M. and Pereira, L.M. "Revision of Top-down Logical
Reasoning through Intelligent Backtracking" Centro di
Informatica da Universidade Nova de Lisboa, Report no.
8/81, March 1981.

Cohen, J. "Non-deterministic Algorithms' Computing Surveys Vol. 11,
No. 2, June 1979.

de Bakker, J. ''Mathematical Theory of Program Correctness' North
Holland, 1979.

de Kleer, J. "An Assumption-based TMS" Artificial Intelligence 28
(1986), 127-162.

Doyle, J. "A Truth Maintenance System' Artificial Intelligence 12
(1979), 231-272.

Ebcioglu, K. "Computer Counterpoint" Proceedings of the 1980
International Computer Music Conference, Computer Music
Association, San Francisco, 1981.

Ebcioglu, K. "An Expert System for Schenkerian Synthesis of Chorales
in the Style of J.S. Bach" Proceedings of the 1984 Interna-
tional Computer Music Conference, Computer Music Associ-
ation, San Francisco, 1985.

APPLICATIONS / 787

Ebciogiu, K. ""An Expert System for Harmonization of Choraies in the
Style of J.S. Bach" Ph.D. thesis, Department of Computer
Science, S.U.N.Y. at Buffalo, February 1986.

Ellis, J.R. "Bulldog: A Compiler for VLIW Architectures’ MIT Press,
19R6.

Erman, L.D., Hayes-Roth, F., Lesser, V.R., and Reddy, D.R., ""The
Hearsay-1I Speech Understanding System: Integrating Know-

ledge to Resolve Uncertain tv'"' Comnuting
Resolve Uncertainty ' Computing

No 2, June 1980.

Fisher, J. "The Oplimiution of Horizontal Microcode within and be-
yond Basic Blocks: An Application of Processor Scheduling
with Resources" Ph.D. Thesis, Dept. of Computer Science,
New York University, October 1979

Floyd, R. "Nondeterministic Algorithms" JACM, Vol. 14, no. 4, Oc-
tober 1967.

Hayes-Roth, B. "A Blackboard Architecture for Control" Artificial
Intelligence 26 (1985), 251-321.

in, Ch, "Traité de PHarmonie" Volumesg LIT 1T Editiong M

Eschig, Paris, 1928, 1930, 1928, respectively.

Lerdahl, F. and Jackendoff, R. "A Generative Theory of Tonal Music"
MIT Press, 1983.

Louis, R. and Thuille, L. "Harmonielehre'" C. Griininger, Stuttgart,
1906.

Nicolau, A. "Percolation Scheduling: A Parailel Compilation Tech-

nigue' TR 85-678, Dept. of Computer Science, Cornell Uni-

versity, May 1985.

Curvave \/ 12
SUr A4 14,

Chorale no. 438

IO
~n I R | P
U ! } ¢

1 L‘ﬂlh — T

o AALy 0

X =

' - v

~ o]

s ol L) dde .
—Y ey 7 3

& P

788 / ENGINEERING

Sacerdoti, E.D. "Planning in a Hierarchy of Abstraction Spaces" Arti-
ficial Intelligence 5 (1974), 115-135.

Schenker, H. "Free Composition (Der freie Satz)" translated and ed-
ited by Ernst Oster, Longman 1979.

Smith, D.C. and Enea, HJ. "Backtracking in Mlisp
the third IJCAI, 1973.

Stallman, R.M. and Sussman,
Dependency-Directed B

Computer-Aided Circuit

(1977) 135-196.

TNA A Qi

Dteflk 1‘1 IIllc‘l'Ill'lg DNA Siruciures ll'Om aegmemduon Udld AI'Llll—
cial Intelligence 11 (1978), 85-114.

Sussman, G.J. and McDermott, D.V. "From PLANNER to

CONNIVER -- A Genetic Approach” Proc. AFIPS 1972
FICC. AFIPS Press (1972), 1171-1179

Sussman, G.J. and Steele, G.L. "Constramts - A Language For Ex-

pressing Almost-Hierarchical Descriptions' Artificial Intelli-

oanca 14 /1020Y 1_20
8ence 14 (156V), 1-57.

1. "Forward Reasoning and
king in a System for

nalysis" Artificial Intelligence 9

1+

G.
ackirac
A

Terry, C.S. (ed.) ""The Four-voice Chorals of J.S. Bach" Oxford Uni-

versity Press, 1964.
Touzeau, R.F. "A Fortran Compiler for the FPS-164 Scientific Com-
puter’ Proceedings of the SIGPLAN ’84 Symposium on
Compiler Construction, June 1984.

1

