
DESIGN AND EXPERIHENTATION OF AN EXPERT SYSTEM

FOR PROGRANNING IN-THE-LARGE

Giovanni Guida, Marco Guida, Sergio Gusmeroli, Marco Somalvico

Milan Polytechnic Artificial Intelligence Project
Politecnico di Milan0

Mi Lano, Italy

1. INTRODUCTION

The results of artificial intelligence
research are often important to other areas
than computer science itself. One area which
presents a wide variety of potential
applications of artificial intelligence
tecniques, is the area of software production.
A well knoun role of artificial intelligence in
software technology has been in the area of
program synthesis; several experimental systems
based on different methodological approaches
have been deveLoped in the past (Barstou
(1979); BarteLs et al. (1981); Green (1977);
Green and Barstou (1978); Green et al. (1979);
Manna and Waldinger (1979); Smith (1981)). At
the Milan Polytechnic Artificial Intelligence
Project, the BIS system (Caio et al. (1982))
based on an approach oriented to problem
reduction methodology for problem solving has
been developed.
In our opinion, the recent evolution of
knowledge-based systems is showing how the role
of artificial intelLigence can be further
extended in dealing uith the conceptual
analysis of complex probLems and applications.
While the complexity of the problems solvable
by a program synthesizer is of Limited size, we
may expect that a knowledge-based system can
assist the designer of a camp lex software
system devising its modular architecture. This
activity is called within software technology
programming in-the-large, as opposed to
programming izhe-smalL, i.e. the classical
programming activity devoted to design the data
structures and algorithms needed for
representing and solving a given problem.

The purpose of this paper is the
illustration of the results obtained in a
research project, devoted to design an expert
system assisting the programmer in-the-large in
his activity of problem analysis and software
design: the ESAP (Expert System for Automatic
Programming) (Guida et al. (1984); Guida et al.
(1985)). The environment where the ESAP has
been designed refers to a new rearrangement of
the softuare Life-cycLe, in which several tools
for automating software production are
avai lable. We call this environment Software
Factory of the Future CSFF), as illustrated in -m---
Figure 1.

Initial
Problem

----a------- ----------------e-- --e--e

1 SOFTWARE]------>I I
I I
1 DESIGNER

1 SPECIFICATION EXPERT f
Ix------I

------------ -_----------------------

I! II I
II II Formal High-Level

II II
Specification

I

II II

I

II I -------->I PROGRAMMING I

II '
I IN-THf-LARGE

------c------ I EXPERT I

I I
I I ------------------------

I I
I

Modular Architecture

I I
I --------_---------------

I I I I

1
---------->I

I PROGRAMMING I

I
IN-THE-SMALL

EXPERT I

I
I

Target Program

1 PROGRAM MODULES 1 1 PROGRAM 1
I LIBRARY 1 1 SYNTHESIZER 1

Fig. 1 The Software Factory of the Future-

ESAP receives in input the description of a
Large software system, supplied by the user by
means of an high-Level formal representation
Language and interacts with the programmer in
refining the specification, progressively
decomposing the problem into modules, and
defining the appropriate interfaces among them.

APPLICATIONS / 1155

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

This process halts when all the modules are
simple enough to be easily manufactured by a
set of Lower-Level actors for programming
in-the-small, namely automatic program
synthesizers and program modules libraries. The
output of ESAP consists of the overall modular
architecture of the desired software system,
from which the final program can be
implemented.

The goal of the project is, thus, to
interactively support the activities carried
out by a programmer during the design of a
Large software system. On the contrary, both
the management of a software project and the
programming in-the-small activity are not
considered in this research.

ESAP has been implemented in Franz-Lisp, on

coopera ting subproblems, in order to obta
the car respondent modula r architec ture.

in

- The programming in-the-small, i.e. the
solution of the simple problems
constituting the leaves of the modular
architecture.

ESAP is conceived as a set of expert systems,
each one "expert" in one of the above mentioned
domains. In particular, ESAP includes:

- Specification Expert, which enables the
user to formally describe the initial
problem he wants to soLve, to modify the
problem description and to incrementally
complete it with new details. The activity
of the specification expert divides into
three phases:

DEC VAX11/780.

In this paper we will illustrate the
experimental activity carried out in designing
the various components of ESAP and
experimenting with them. We will first discuss
the architecture of ESAP (section 2); later, we
describe the knowledge representation Language
(section 3) and the inferential engine (section
4); finally, the experimental results wi 11 be
outlined (section 5).

2. ESAP ARCHITECTURE

In the past, severa 1 research directions have
been carried out in the area of automatic
programming (Barstow (1979); Green et
aL.Cl979); Manna and Waldinger (1979); Smith
(1981)). In particular, the approach of program
transformation, which is based on incremental
transformations of an high-level formal
specification in order to achieve an
automatically compilable representation (Manna
and Waldinger (1979); Barstow (1984); Smith et
al. (1985); BaLzer (1985); Fickas (198511,
revealed very interesting. Furthermore,
artificial intelligence techniques for the
construction of knowledge-based systems have
proved very powerful in constructing automatic
programming systems (Barstow (1979); Green et
al. (1979); Manna and Waldinger (1979)).

ESAP represents a synthesis of several
approaches to program design and construction,
developed in the areas both of automatic
programming and of software engineeringcparnas
(1972); Stevens et al. (1974); Parnas (1979);
Booth (1983); BaLzer (1985)>, in the Light of a
new concept of the software Life cycle, where
several solutions in automating software
production are available.
ESAP can support three major activities
involved in software production:

- The specification of the problem to be
solved and of the subproblems obtained
during the decomposition process.

- The programm ing in-the-large, i.e. the
decorposition of a problem into a set of

Key-words (verbs and nouns)
identification.

Description of a problem in terms of
the classes of activities involved in
it.

Problem reformulation by means of a
formal representation Language, in
terms of input and output data and of
operations on them and relationships
among them.

This approach to problem specification,
supported by a knowledge base concerning
the specification Language (Representation
Language knowledge base), enables the user
to gradually frame his problem in the ESAP
environment, interactively supported during
each step in the representation process.
The output of the Specification Expert is a
Largely formal problem description, in
which, however, the user is allowed to
Leave some informa 1 Ly expressed
informations. At any stage during the
decomposition process, the user can modify
a representation, either substituting an
informal sentence with a formal one, or
adding previously omitted detai Is.
The Last task of the Specification Expert
consists in analyzing (syntactically and
semantically) and translating the
specification into an internaL
representation, easy to deal with by the
inferential engine of ESAP.

Prograrni ng in-the- large Expert , which
analyzes a problem, finding out its
possible decompositions in cooperating
subproblems, shows them to the user, and,
with his help, chooses the most promising
one. Furthermore, a knowledge base
concerning the specification Language and
the application domain allows ESAP to
derive the specification of the
subproblems, starting from the description
of the initial problem and from the chosen
decomposition.
It relies on two different kinds of
knowledge:

1156 / ENGINEERING

- software engineering knowledge,
concerning principles and methodologies
to be used in software design.

- domain knowledge, concerning criteria
characteristic of the application
domain to be used in Leading the
decomposition of problems into
subproblems.

Both these knowledge-bases are independent
of the specification Language of ESAP and
of the target programming Language.

- Lower-Level Actors Expert, which analyzes a
problem to find out whether and how it is
solvable using the two foundamental
resources ESAP has at his disposal:

- A set of program synthesizers, varying
in methodologica 1 approach and in
application domain, capable of
generating algorithms and constructing
programs solving problems of limited
complexity.

- A set of program Libraries, each one
containing strongly parameterited
programs, implementing elementary tasks
in the chosen application domain. Each
program has been designed and
implemented with the aim to make it
reusable for different, but similar
tasks, using it directly or after
performing on it some changes,
according to user's needs. Program
libraries are, thus, a collection of
reusable software components. Each
module is described by ESAP
representation language and by the
corresponding program, but the first
description is the only one used by
Lower-Level Actors Expert.

The synthesis of the final program implementing
the modular architecture and, thus, solving the
user's problem is not at ESAP's charge, but it
is performed by an external subsystem, called
implementation expert.

Decomposition
Knowledge-base

1 PROGRAMMING 1

Representation 1 IN-THE-LARGE 1
Language I EXPERT I

Knowledge-base -----------------

I

1 SPECIFICATION 1
I
I EXPERT I-

I
INFERENCE 1

I I
I ENGINE 1
I I
-------e-w-------

1

Lower-leve 1
Actors

Knowledge-base

----------------- -----------------
I I
I -------------

I ------------------- ---------------
I SYNTHESIZERS 1
I AND -----

1 LOWER-LEVEL 1
I I ACTORS

1 PROGRAM LIBRARY 1 I EXPERT I ------------------- ---------------

Fig. 2 The architecture of ESAP.

The architecture of ESAP (see Figure. 2)
represents a prototype of an integrated
environment for a first step towards toward the
software factory of the future.

In particular, ESAP makes an extensive use
of the crucial concept of reuse of resources,
that we have interpreted in various ways:

- Reuse of general design methodologies, that
is of domain and Language independent
principles (Stevens et al. (1974); Parnas
(1972); Parnas (1979); Booth (1983)).

- Reuse of general domain concepts, both
representation and target programming
languages independent (Barstow (1984);
Barstow (1985); Kant (1985); Adelson and
SoLoway (1985)).

- Reuse of software components, i.e. of
parameterized and ad hoc designed programs,
developed in order to solve different,
though simi Lar problems (Sommervi 1 Le
(1982); Wegner (1984); Ramamoorthy et al.
(1984)).

APPLICATIONS / 1157

the accounts; a registry archiv, containing
the orivate data of the clients.
Some’ primitives are inspired by the

3. THE KNRULEDCE REPRESENTATIOW LANGUAGE

We have identified two representation languages
in ESAP: one for the interaction with the user,
a 1 lowing semplicity of use and supporting
abstractions in the definition of the problem
he wants to solve; the other for the
inferential activity of the system, allowing an
efficient representation of facts and rules.
The possi bi li ty to translate the representat ion
of a problem from the former language to the
latter is offered by a conversion algorithm.

3.1 User representation language

The foundamental characteristic of ESAP user
representation language is the ability to
support abstractions in the definition of a
problem. This goal is achieved by allowing the
user to neglect all the details of the
representation that he considers unimportant
and to define them only when it is necessary to
complete the description.
Furthermore, the user is allowed to employ
terminology and concepts of the task domain,
since the system has knouledge about them and
about hou to deal with.

The interaction with the user through ESAP
user representation language is supported at
two abstraction levels:

Class definition level, which allows the
definition of a problem in terms of the
types (classes) of the functionalities
involved in it. This allows a graceful
approach to the problem, that is
represented in an highly abstracted way.

relational algebra and they allou to handle
archivs by - means of operations

projecting
of

retrieving, se letting,
fields, joi ni ng, and so on.

on

Other primitives define the usual set
operations of union, intersection and
difference of archivs.
Other more primitives allou to define
updating operations, consisting in
inserting, deleting or
tuplas into an archi v.

modifying fields or

Furthermore, ue have introduced the
the "compute" and "compact" primitives:

former a 1 lows to represent typical
computations in the management of current
accounts, using domain concepts. The latter
a 1 lows two types of manipulation of an
archiv: adding the values of an assigned
field of the tuplas with the same value of
another assigned -field and adding the
values of an- assigned field in a<1 the
archiv.
The primitive “ord” allous to sort the
tuplas of archivs on the basis of values
assumed by their fields or by expressions
containing one or more references to
fields.
Finally, we have introduced the primitive
“reduce”, which allows to select
occurrences of element
ordinal constrai nts.

s on the basis of

As an example,

class 1 COMPUTE interest IN current account
class 2 UPDATE archiv IN current ac;ount

The example above
level as follows:

may be detai Led at the module

MOD esmp Cc a archiv trans archiv
-rate date 1 date 2
--> new c-a archTv) ---

LINK
BODY INPUT c a archiv :

--current account archiv
trans archi : - represents the problem consisting in

computing the interest of all
current_accounts of a bank and in updating
the corresponding archivs with the new
balance computed values . The user can
disregard all the details not relevant for
a first description of his problem, as the
value of the interest rate or the time
period on which compute the interest.

- Module deflnitfon level, which allous an
incremental representat ion of the problem
through a set of primitive expressions.
They make reference to an abstract data
type, called "archiv", whose instances
represent the foundamental data of all the
problems in a bank environment.
There are three basic instances of the
"archiv" type: a current account archiv,
containing informations about the present
situation of the accounts; a transactions
archiv, recording all the transactions on

transactions archiv
: number - rate

date 1 : date
date-2 : date
neu c a archiv

-curTent ac -
OUTPUT .

count arch iv
STOP
COMPUTE interest OF current account

- FROM date 1 TO date 2
-WITH ANNUAL RATE rate %

WHERE (USING c-a archTv --
AND trans archiv)

IN c a archiv (money = dollar)
IN tFa;s archiv (money = dollar) -

END
MODIFY FIELD (balance) INTO c a archiv
WITH KEW VALUE (Cc a archiv 'Ealance --

+ interZsF))
WHERE (OBTAINING neu c a archiv) ---

END
MOD END -

1158 / ENGINEERING

In this example, we have already introduced all
the particulars of the problem, but ESAP is
able to start its activity even with incomplete
specifications, allowing the user to correct*
and modify the representation at each step of
the decomposition process. As an example, we
can omit the where conditions (i.e. the
conditions appearing after the key-word "IN",
which define the tuplas to be handled by the
primitive), but the system is nevertheless able
to suggest a set of possible decompositions.
The flexibility of this language is increased
by means of informal user sentences, which can
be included in the specification of a problem,
a 1 lowing to satisfy particular user's
exigencies. These sentences will be handled
interactively by the system in a second step,
in order to transform them into forma 1
expressions containing known concepts and in
acquiring new knowledge.

3.2 System representation language

A knowledge base may be viewed as made up of
facts and actions (Hayes-Roth (1983); Laurent
(1984)). In the ESAP system representation
Language, a fact is a pattern with the
following structure:

FACT -+-> object (relation object I attribute
value>

where "object" may be any element of the
description of the activity of a moduLe. An
object may have one or more attribute with a
value (e.g. we represent the fact that a
variable A is of type T as: CA type T)).
Furthermore, an object may be bound to another
object by a relation (e.g., we represent the
fact that the variable A is input for the
module M as: CM input A)).
The Left-hand side of a rule is made up of
conjunctions, disjunctions and negations of
patterns; the right-hand side is made up of new
patterns to be added to the knowledge base,
when the rule is applied. Furthermore, we allow
to use in the left-hand side of a rule two
speciaL patterns, namely ASK and ASKY/N. They
allow to point directly to functions that
evaluate to a boolean value CASKY/N) or to a
new binding for the variables CASK).

4. THE INFERENCE ENGINE

As we have pointed out in section 2, ESAP is
conceived as a set of knowledge-based
subsystems. The control cycle, on which the
system is based, determins the correct order in
which each expert has to be activated.

We have considered a particular
interpretation of an expert system in terms of
the state space model for problem solving
(Laurent (1984)). In this view, a given
knowledge base represents a state and an action
represents an operator that allows a transition

from a state to another state. In particular,
the inner representation of the initial user's
problem represents the initial state.
The control cycle of an expert system is
usually based on four steps: selecting the next
state to be expanded; finding all the
transitions appliable to the chosen state;
selecting the next transition to wp Ly;
effectively applying the chosen transition.
The conflict resolution may be implemented in
two sub-steps, consisting in the choice of the
object on which to apply the next transition
and in the choice of the transition to be
executed; the two steps can appear in any order
in the control cycle of the inferential engine.
In particular, we have chosen a S-O-A
(State-Object-Action) strategy, consisting in
selecting first the next state to be expanded,
then the object (i.e. the module) on which the
expansion will be based, finally the action
(i.e. the decomposition operator) to be applied
on it.
A state is a set of modules, that are leaves of
the decomposition tree under development. At
each control cycle, the system checks for the
necessity to change the state. This corresponds
to abandoning the current decomposition and
restoring a previous state, in which it is
possible to apply a new decomposition operator
to derive a different modularization of the
same problem (state selection).
The next step consists in activating the
programming-in-the small expert to check the
terminality of the Leaves of the modular
architecture and to choose the next one to
decompose (object selection).
Then, the programming in-the-large expert
searches for all the elementary appliable
decomposition operators, reasoning on them and
selecting one of their consistent and complete
combinations, possibly the most promising one
(action selection).
Finally, the choosen operator is applied and
the representation expert is activated to
deduce the representation of the subproblems
from the initial problem's one and to complete
them, interacting with the user. This activity
corresponds to the construction of the new
current state for the next controL cycle of the
inferential engine of ESAP. Each cycle
corresponds to a design step for the
construction of the modular architecture of the
desired software system.

The inferential process is based on
production rules and on metarules, that define
the order in which a set of goals are to be
achieved (i.e. implement strategies) and allow
to quickly focouse on relevant rules' subsets,
referring to them by name CAieLLo (1983)).

5. EXPERIMENTAL RESULTS

ESAP has been successfully implemented at the
MiLan Polytechnic Artificial Intelligence
Project on DEC-VAX11/780, in Franz Lisp.
The task domain we have chosen is that one of

APPLICATIONS / 1159

current accounts management in a bank. This
domain is sufficiently known and large to allow
a realistic programming in-the-Large activity.
At the present, in the Knowledge Base of ESAP
there is enough knowledge to deal with a set of
domain concepts as "interest", "interest rate",
"current account", "transactions", and so on.
Furthermore, domain-independent know ledge has
been supplied to deal with a top-down
structured design methodology for the
development of the modular architecture of
software systems. It is currently under
development a knowledge area to support
object-oriented design.
Such programming in-the-large know ledge a LLous
ESAP to find out all the possibLe decomposition
criteria that are applicable to a given
problem. The final choice among the set of
applicable operators is at user's charge, but
ESAP can give suggestions to direct the
decomposition towards problems manageable by
its lower leve L actors for programming
in-the-small.

sample problem allows to add to the knowledge
base the basic informations to be used by the
representation expert to derive the description
of the submodules. Acting on its private
knowledge area and interacting with the user to
ask for informations whenever they cannot be
automatically deduced (e.g. asking for the
names of the new modules or of newly introduced
variables), the representation expert produces
the following descriptions:

Starting from the example outlined in
section 3, we will sketch the decomposition
process.

MOD camp int (c a archiv trans archiv --
rate date 1 date 2

--> interest List)-
LINK EXPORT interest List -
BODY INPUT c a archTv :

--current account archiv
trans archi : -

t?ansactions archiv
rate : number -
date 1 : date
date-2 : date

OUTPUT interest list :
CarcF c a num : c a number --

Let's consider the following top-down
design rules:

STOP
COMPUTE interest OF current account

- FROM date 1 TO date 2
-WITH ANNUAL RATE rate %

RULE 1 - WHERE

IF A module %M has a subactivity $Sl IN
and IN

The moduLe $M has a second subactivity SS2
and

A variable $V is output for %Sl
and

END
MOD END -

The same variable %V is input for SS2

THEN The module A is sequentia 1 Ly bound by
$Sl and $S2 through SV

RULE 2 -

MOD modify archiv Cc a archiv interest list -
-=>-new c a archiv)-

LINK IMPORT (interest ListASTnterest list -
FROM camp i&>

BODY INPUT c a archiv : --

IF A module SM is sequentially bound by
SSl and %S2 through SV

and

THEN The module SM produces a submodule
derived from 351

current account archiv
interest list : -

CarcF c a num : c a number
total TnFerest :-number)

OUTPUT new c a arFhiv :
-current account archiv - -

STOP

The module BM produces a submodule
derived from SS2

The variable 3V represents the
interconnection between the two

submodules.

Each module representation is translated into
an internal form, expressed as a set of facts
with the structure described in section 3.2.
These facts are matched against the patterns of
the left-hand side of the rules during the
activity of the system.
The application of RULE 1 and RULE 2 on the set
of facts derived from tKe represenTation of the

MODIFY FIELD (balance) INTO c a archiv
WITH XEW VALUE (Cc a archiv ;i- ?;aLance + - --

i';;terest List " total interest))
WHERE (JUNCTION-c a archiv .'-c a num =

interest List "C a num>
(OBTAINING new c aarchiv)

--

END
MOD END

As shown above, ESAP interprets the
approach of program transformation breaking a
complex problem into co-operating subproblems,
in such a way to allow to automatically define

total TnFerest : number> -

(USING c-a archTv AND --
trans archiv)

c a archiv (money =boLlar)
tFa;s archiv (money = dollar)
COBTATNING interest list)

1160 / ENGINEERING

the structure of the modular architecture to be
constructed. This may be vieued as an automatic
documentation of the developement process of
the software system solving the initial
problem.
At this stage, the Lower-level Actors Expert is
able to automatically establish that the module
"modify archiv" matches against a module of the
library; and thus it advises the user that the
only module “camp i nt” is to be decomposed. The
module)Icornp intrr is now functionally bound,
i.e. it defines a unique activity, with a well
precised output. Nevertheless, the
decomposition process can continue by applying
on the module domain-oriented rules, to further
reduce it to simpler subproblems.
The follouing two rules are nou applicable on
the module "camp int":

RULE 3

IF A module SM has only one subactivity 361
and

The subactivity $Sl has where conditions
on archiv %A

THEN The module 'SM produces a
submodu le reducing

the archiv $A on the basis of
the where conditions

The module 3M produces a
submodule derived from %Sl

uithout where conditions

RULE 4 -

IF A module $M has only one subactivity $Sl
and

The subactivity $51 is of kind compute
and

The object of subactivity SSI is
interest

and
The environment of subactivity $Sl
is current account -

and

THEN The module SM produces a submodule
calculating the interest of the
balances at closing date
The module SM produces a submodule
calculating the interest of the
transactions
The module $M produces a submodule to
combine the results of the tuo
submodules above

Choosing the RULE-3, ue obtain the three
follouing interconnected submodules:

MOD red act archiv Cc a archiv --> - -
red c-a-archiv)

LINK EXPORT red c a-aTcriv
BODY INPUT c a FrFhiv : --

current account archiv

OUTPUT red c a archiv :
-current account archiv - -

STOP
SELECT CC c a archiv * money = dollar) --

OBT red c a archiv) ---
END

MOD END

MOD red tr archiv (trans archiv --> - -
red trans archiv)

LINK EXPORT red traxs arcFiv
BODY INPUT trans archTv :

transactions archiv
OUTPUT red trans archiv-:

transactions archiv -
STOP
SELECT CC trans archiv n money = dollar)

OBT red-trans archiv) -
END

MOD END -

MOD camp int son (red c a archiv - -
red tFa;s-archiv rate

dxte 1 date 2 -->
interest list7

LINK IMPORT (red c a arcFiv as ---
red c a archiv ---
from red act archiv)

(red trans aTchi7 as
Ted trans archiv
from red tr archiv)

EXPORT interest list- -
BODY INPUT red c aarchiv : ---

current account archiv
red trans a?chiv : -

transactions archiv
rate : number -
date 1 : date
date-2 : date

OUTPUT interest list :
Car& c a num : c a number --

total-interest : number) -
STOP
COMPUTE interest OF current account

- FROM date 1 TO date 2
-WITH ANNUAL RATE rate %

WHERE (USING c-a archTv AND trans archiv)
(OBTAINING-interest list) -

END
MOD END -

The first tuo modules define the
where conditions' reduction in the
speci7ication and they are solvable by the
lower-leve 1 actors. The third one represents
the father-module, without the where conditions
and it needs further steps of decomposition.

Choosing, instead, RULE 4, we obtain other
three interconnected submodules:

MOD camp int of balance (c a archiv - -- --

APPLICATIONS / 116 1

trans archiv
rate zate 1 date 2
--> int 07 balances)

- - LINK EXPORT int of balances
BODY INPUT c a'-arFhiv :

--current account archiv
trans archi; : -

tFansactions archiv
rate : number -
date 1 : date
date-2 : date

OUTPUT int zf balances :
-CaTch c a num : c a number

balance Tnt : nuzbyr) -
STOP
COMPUTE interest OF balance

FROM date 1 TO date 2
WITH ANNUAL RATE raFe i! -
WHERE (USIN c a archiv --

AND trans archiv)
IN c a archiv (money = dollar> --
IN trans archiv (money = dollar>

COBTATNING int of balances) - -
END

MOD END -

MOD camp int of trans
Ttrans archiv rate date 1 date 2
--> i* of trans) - -

LINK EXPORT int zf trans
BODY INPUT trans archiv :

tyansactions archiv
rate : number -
date 1 : date
date-2 : date

OUTPUT int <f trans :
-CaFch c a num : c a number --

trans int : relati7>
STOP

-

COMPUTE interest OF transactions
FROM date 1 TO date 2
WITH ANNUAL RATE raTe X

WHERE TUSING trans archiv)
IN trans archiv-(money = dollar>

COBTATNING int of trans) - -
END

MOD END

MOD sum of interests
-Cint of balances i nt of t rans

-->-inFerest list) - -
LINK IMPORT Cint of bzlances

as Tnt of balances
from corn; int of balance)

tint of trans as i-i;t Zf trans
fro; camp int of-tr&s>

EXPORT interest list- - -

STOP

(arch c a num : c a number --
total TnFerest : number> -

MODIFY FIELD (balance int> -
INTO int OT balances

WITH NEW VALUE (- -
C-i nt-of balances n balance i nt +

int-oftrans n trans int 7)
WHERE (JuNC-i-ION

-

int of balances A c a number = --
int-oftrans a c a number)

COBTAI~IN~ interest
-7 list) -

END
MOD END -

The above decomposition implements a technique,
namely the "Direct Method", used in bank
environment, in order to compute the interests
of the current accounts. It consists first in
computing the interests of the balances at the
closing date, then in computing the interests
of the transactions and finally in adding them.
The first two modules can be further decomposed
by the system; the third one, instead, is
considered solvable by measns of the
lower-level actors.

During its activity, ESAP suggests to the user
several alternative decompositions (see Figure.
3) of the same problem, leaving the choice of
the most promising one at user's charge.

camp at1 interests

- :

I I
camp int modify archiv

:
TERMTNAL

I I I
red act archiv red tr archiv camp int son
TER??INAc TERHINKL TO BE-DECSMPOSED - -

a. RULE 3 application.

BODY INPUT int of bxlances :
-(arch c a num : c a number

balance Tnt : nuib;r)
int of trans-:

-(arch c a num : c a number
trans int : relaFi';;>

OUTPUT interest list :

1162 / ENGINEERING

camp all interests
- T

I
camp int

T

I
modify archiv

TEREINAL

I
camp int of balance I ! I

TO FE DTCO?iPOSED 1 I - -

I -------------
I I

camp int of trans sum of interests
TO BT DE??OMFOSED TERWAL - -

b. RULE 4 application. -

Fig. 3 First steps of alternative
decompositions (a. and b.).

In the above example, the aoolication of RULE 3
. r . I

allows to achieve a simplier decomposition zf
the problem, taking advantage of the
capabilities offered by the lower-level actors,
i.e. by the program synthesizer BIS and by the
program library.
The decomposition process halts when there are
not operators to further reduce the
subproblems.

Particular attention has been devoted to
the integration in ESAP environment of both
program libraries of reusable software
components and program synthesizers. This has
lead us to the conception and the develooment
of the Lower-level Actors expert.
At the present, only the BIS (Bidirectional
Synthesizer) system is at ESAP disposal. Given
a simple problem, ESAP checks for its
synthesizability by BIS, analyzing the
description in the ESAP user representation
language. The analysis is based on a knowledge
area that takes into account the properties of
ESAP representation language and of the BIS
one, first of all checking for the possibility
of translation from the former to the latter.
Determining quantitatively the complexity level
of a problem and comparing it with the solving
power of a program synthesizer is a very
difficult and challenging task. On the other
hand, it seems to us too shallow to consider a
program synthesizer ideal, i.e. actually able
to derive a program solving any problem
representable in terms of its specification
Language.
For these reasons, we adopted an intermediate
solution, consisting in qualitative reasoning
about the synthesizability of a problem by BIS:
on the basis of our experimentations with the
BIS system, we found a set of conditions to be
satisfied by a problem specification in order

to make the corresponding algorithm efficiently
implementable. Thus, the system is able to
check for the satisfaction of such a set of
conditions, in order to establish the
possibility to solve by BIS a given problem.
We consider this aspect of ESAP of conceptual
relevance, since it offers the opportunity to
deal within a unique system with different
types of knowledge representation Languages.
Intermediate know ledge areas give the
possibility to reason on the various
representation languages, providing an adeguate
interface among them and supporting an eventual
translation from one to another.

The other lower level actor for programming
in-the-small at ESAP disposal is the program
library, i.e. a collection of reusable software
components. The representation of a given user
problem of Lou complexity and a module in the
library may be isomorphic, if they have the
same description in the user representation
Language. They are alike if they have
syntactically and semantic different
representation, but if the program can be
modified to meet the user needs.
If a problem is isomorphic to or like a given
library module, it can be automatically
manufactered by ESAP. If it is not the case and
if no decomposition operators are applicable,
the code writing is leaved at user's charge.
The match against the program library may occur
after a trasformation of the user specification
into a semantically equivalent one, more
convenient for the matching process.
The.management of the program library is based
on a know ledge area, taking into account
meaning preserving transformations within ESAP
user representation language. Furthermore, this
knowledge area contains rules that define
elementary modifications that it is possible to
implement on an already existing program. The
programming in-the-small expert allows the user
to reason on programs at the abstract level of
the representation language rather than at the
concrete level of a particular programming
language.

6. CONCLUSION

The goal of the ESAP project, carried out in
the last two years, has been the development of
a prototype system for the software factory of
the future.
The realization of our system has pointed out
some interesting research areas related to ESAP
project. In particular, it is our opinion that
attention has to be devoted to the development
of a subsystem for the acquisition of new
domain knowledge and for its integration with
the existing one. This will allow ESAP to learn
new task-domain concepts, their meaning, their
properties, and how to dea 1 with problems
including such concepts (i.e., how to decompose
them).

APPLICATIONS / 1163

REFERENCES

1. Adelson, B. and Solouay, E. (1985). The
role of domain experience in softuare
design. IEEE Trans. on Software Engineering
SE-11 (11),1351-136E

2. Aiello, L. (1984). The uses of
meta-knowledge in AI systems. In T-O'Shea
CEd.)ECAI '84 Advances in Artificial
Inte Lmnce .?lsevi er, Amsterdam, NL.

3. Balzer, R. (1985). A 15 year perspective on
Automatic Programming. IEEE Trans. on
Software Engineering SE-11(11),1257-126r

4. Barstou, D. (1979). Knowledge-based program --
construction. North-Holland, Amsterdam, NL.

5. Barstou, D. (1984). A perspective on
Automatic Programming. The AI Magazine --
S(l), S-27.

6. Barstou, D. (1985). Domain-specific
Automatic Programming. IEEE Trans. on --
Software Engineering SE-11 (111, 1321-133K

7. Bartels, U., Olthoff, W. and Raulefs, P.
(1981). APE: An expert system for Automatic
Programming from abstract specifications of
data types and algorithms. Proc. 7th IJCAI,
Vancouver, BC, Canada, 1037m3.--

8. Booth, G. (1983). Software Engineering with
ADA. Addison-Wesley publ., Amsterdam, NL.

9.

10.

Caio, F., Guida, G. and Somalvico, M.
(1982). Problem Solving as a basis for
program synthesis: design and
experimentation of the BIS system. Int --
Journal on Man-Machine Studies 17, 173-188. -----
Fickas, S.F. (1985). Automating the
transformational development of Software.
IEEE Trans on Softuare Engineering SE-11
<-11),7X%=1277.

11. Green, C. (1977). A summary of the PSI
program synthesis system. Proc. 5th IJCAI, --
Cambridge, MA, 380-381.

12. Green, C. and Barstow, D. (1978). On
proaram synthesis knou ledae. Artificial
intilligence 10(3), 241-279.-

13. Green, C. et al. (1979). Results in

14.

know ledge based program synthesis.Proc. 6th
- -- IJCAI, Tokyo. Japan. 342-344.

--
-T . v

Guida, G., Guida, M., Gusmeroli, S., and
Somalvico, M. (1984). ESAP: an Expert
System for Automatic Programming. In T.
O'Shea (Ed.), ECAI ‘84: Advanced in
Artificial InZZiigeZe, Elseviec
Amsterdam, NL, 585-588.

15. Guida, M., Gusmeroli, S. and Somalvico, M.
(1985). ESAP: an intelligent assistant for
the desian of softuare systems. Proc.
Cognitiva-'85, Paris, F, 201-209. - -

16. Hayes-Roth, F., Waterman, D.A., and Lenat,
D.B. CEds.)C1983>. Building Expert Systems. --
Addison-Wesley, Reding, MA.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Kant, E. (1985). Understanding and
automating algorithm design. Proc 9th --
IJCAI. Los Angeles, CA, 1243-1253.

Laurent, J.P. (1984). Control structures in
expert systems. Technology and Science of
Informatics 3(3>, 147-162. - - -

Manna, 2. and Waldinger, R. (1979).
Synthesis: Dreams ==) Programs. IEEE Trans.
on Software Engineering SE-5(4),294-m -
Parnas, D.L. (1972). On the criteria to be
used in decomposing systems into
modules.Comm. ACM,‘1053-1058. --
Parnas, D.L. (1979). Designing software for
ease of extensions and contraction. IEEE
Trans. on Software Engineering SE-5(2),
128-138.-

Ramamoorthy, C.V. et al. (19841. Software
Engineering: problems and perspectives.
IEEE Trans. on Software Engineering,
191-2097 -

Smith, D.R. (1981). A design for an
automatic programming system. Proc. 7th
IJCAI, Vancouver, BC, Canada, 1027-1029.-

Smith, D.R., Kotik, G.B., and Westfold,
S.J. (1985). Research on Knowledge-Based
Software Environments at Kestrel Institute.
IEEE Trans. on Software Engineering --
SE-llCll>, 1278-;iT95.

Sommervil le, I. (19821.Software
Engineering. Addison-Wesley, Reding, MA.

Stevens, W-P., Myers, G-J., and
Constantine, L.L. (1974). Structured
design. IBM System Journal 13(2), 115-137. -Pm
Wegner, P. (1984). Capital intensive
software technology. IEEE Trans. on -
Software Engineering, 7-45.

1164 / ENGINEERING

