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ABSTRACT 

An interface to information systems that can 
automatically select, sequence, and invoke the 
sources needed to satisfy a user’s request can 
have great practical value. It can spare the user 
from the need to know what information is 
available from each of the sources, and how to 
access them. We have developed and implemented a 
graph-oriented technique for representing software 
modules and databases, along with unification and 
search algorithms that enable an interface to 
perform this automatic programming function. The 
approach works for a large class of useful 
requests, in a tractable amount of run time. The 
approach permits the logical integration of pre- 
existing batch application programs and databases. 
It may also be used in other situations requiring 
automatic selection of software functions to 
obtain information specified in a declarative 
expression. 

I INTRODUCTION 

Users of computerized informat ion systems 
often need to access multiple sources of 
information and multiple software programs in the 
course of performing a single, practical task. 
For example, a bank loan officer may need to 
access credit records, automobile book values, and 
amortization software to determine whether to 
grant a car loan. The use of multiple systems can 
burden users with the task of choosing which 
system to invoke to obtain each piece of desired 
information, and with the mechanical details of 
obtaining and combining intermediate results. A 
means is needed by which a person can access 
diverse information sources and software functions 
without being distracted by these details. 

A way to meet this need is to provide a user- 
system interface that allows a person to access 
diverse information sources as if they were a 
single, virtual information system. We have 
developed and implemented an algorithm that 
automatically selects and sequences the “servers” 
needed to respond to a request for information 
stated in server-independent terms. (We use the 
term “server )I to refer collectively to pre- 
existing batch application software as well as 
databases residing under database management 
systems. ) The output consists of a series of 
expressions sufficient to invoke the servers and 
obtain the desired information. 

II PROBLEM DEFINITION AND TERMINOLOGY 

We use the term “server-unit” to refer to each 
retrievable unit of data (e.g., each type of tuple 
in a relational database) or each invokable 
function provided by an individual server. Our 
justification for applying the same term to data 
and functions is the observation that an invokable 
function of a server can also be considered a type 
of retrievable unit of data. It may be 
represented as a virtual relation between its 
input and output arguments, Each individual 
server may provide multiple server-units. For a 
relational, database management system, a server- 
unit corresponds to each of the relations in the 
database. For an application program, a server- 
unit corresponds to each entry point of the 
program. 

We view the functions and information 
available from a set of servers as collectively 
defining the l’capabili ty space” of a single, 
virtual server (Ryan and Larson, 1986). A 
representation of this space is derived by merging 
the representations of the server-units for each 
of the actual servers. Given a means of 
representing the semantics of the information 
collectively available from the server-units, the 
user may request information in server-independent 
terms by declaratively expressing the desired 
result in terms of the capability space. 
Satisfying the request is then a matter of finding 
and sequencing a set of server-units that is a 
procedural equivalent to the user’s declarative 
expression. 

The basic problem we have addressed is as 
follows : Given a set of servers and a user’s 
request expressed in server-independent terms, how 
can server-units be automatically selected and 
invoked to satisfy the user’s request? Solving 
this problem involves solving three subproblems: 

a. The knowledge representation problem-- 
Given a collection of servers, represent the data 
and functions supported by the servers. 
Essentially, the problen is to represent the 
semantics and relationships among entities in the 
capability space, and to define server-units in 
terms of that space. 

b. The formulation problem--Given a request 
expressed in terms of the capability space, 
transform the request into an equivalent one 
expressed in terms of server-units. 
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C. The planning/execution problem--Given a 
request re-expressed in terms of server-units, 
determine a sequence in which to invoke those 
server-units that will obtain the information that 
satisfies the request. 

The focus of this paper is a solution to the 
formulation problem. We discuss the knowledge 
representation approach to the extent necessary in 
this context . The planning/execution problem is 
one of finding a sequence for invocations that is 
sufficient to yield the proper result, then 
optimizing the sequence for execution efficiency. 
The optimization step is beyond the scope of this 
paper. 

III RELATED WORK -- 

Among major approaches to automatic 
programming (e.g., construction by theorem provers 
[ Nilsson, 19801 knowledge-based program 
construction [Barstow, 19791, etc.) our work takes 
the fftransformationff approach (e.g., [Burstall and 
Darlington, 19771), in which an expression of a 
problem is successively transformed into a more 
specific form. Kim (1985) used a transformation 
approach to generate examples given a constraint 
formula expressed as a conjunction of predicates. 
In both Kim’s work and ours, the goal is to return 
sets of variable bindings which satisfy the input 
expression. Kim’s approach reduces the constraint 
formula to simpler terms for which known examples 
are stored, or from which variables’ values can be 
found by algebraic solution. The stored examples 
for individual terms are tested to find those that 
satisfy the entire constraint expression; those 
that survive the test are combined to generate the 
desired result. This approach is not well suited 
to accessing database and application programs, 
however, since it is not feasible to generate 
results by successively testing each database 
record or potential application output for 
consistency with the input expression. 

Gray and Moffat (1983) developed a method for 
transforming requests for information expressed as 
relational algebra queries into programs to access 
Codasyl databases. In their approach, multiple 
access paths are stored for each database 
relation, giving the alternative sequences in 
which the data items corresponding to the columns 
of the relation can be found. Combinations of 
access paths for the relations involved in a query 
are tested to find a combined path equivalent to 
the relational joins in the query. Our work is 
similar, in that we dynamically generate the 
necessary joins by finding the ffoverlapff of items 
involved in relations. However, Gray and Moffat 
assume that the user’s request has specified the 
particular relations to be used ; they then 
generate an efficient way to access them. In 
contrast, our work focuses on how to identify the 
particular database relations (and application 
programs) to be used, given a request expressed in 
server-independent terms. 

In general, distributed database management 
Systems (Ceri and Pelagatti, 1984) handle server- 
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independent queries by replacing each object with 
its equivalent server-specific object, using a 
list of mappings from server-independent to 
server-dependent terms. This step, sometimes 
called “query modification” (Stonebraker, 1975) is 
used to solve the formulation problem for 
distributed databases. A problem with the query 
modification approach, however, is its requirement 
that a potentially large number of mappings be 
explicitly stored. The graph-oriented searching 
and unification technique we present avoids this 
problem, and provides a way to achieve the logical 
integration of application programs and databases. 
The technique may be useful in other situations 
that require the selection of primitive functions 
to solve problems stated at a higher level. 

IV GRAPH REPRESENTATION OF SERVER-UNITS 
AND REQUESTF 

A key to our approach is that the semantics of 
both user’s requests and the information available 
from the server-units comprising the capability 
space can be expressed using graphs. We represent 
the semantic relationships among the information 
provided by server-units in structures, comparable 
to the conceptual graphs described by Sowa (1984). 
Several types of nodes exist in our graphs. 
Yoncept nodes” are one-place predicates, C(x), 
denoting that entity x is a member of the class of 
entities C. ffRole nodes f( are two-place 
predicates, R(x ,y), denoting that entity x bears 
relation R to the entity y (x and y are implicitly 
existentially quantified). The C and R predicates 
meaningful in the domain are derived from a 
hierarchically structured, slot-and-frame-based 
domain model (c.f. Brachman, 1983) which provides 
the definitions of the corresponding concepts and 
roles. 9election node9 are two-place 
predicates, S(x,c), serving to restrict the 
entities denoted by x to those for which the 
relation S between x and c holds. For example, 
the selection node EQUAL(name,ffJohnff) restricts 
name to be equal to ffJohnff. Finally, a fffunction 
node” is a multiple-place predicate specifying 
that the named functional relation holds among its 
arguments , e.g., SUM(x,y,sum). Currently, we 
restrict function nodes to simple arithmetic 
functions. 

A connected graph is formed by a collection of 
nodes such that each node shares at least one 
argument with another node. Each predicate is a 
node in the graph. Each arc connects a argument 
that is common to two nodes. A connected graph 
represents an expression that is interpreted as 
the conjunction of the predicates that are the 
nodes of the graph. Thus, the graph: 

person(x), birthday-of(x,d), date(d), 
name-of(x,n), string(n), equal(n,f’Johnff) 

denotes the set of x,d,n combinations such that x 
is a person, d is a date that is that person’s 
birthday , n is a string that is that person’s 
name, and n is equal to John. 



A server-unit is represented as a single 
predicate with an (arbitrary) predicate name, and 
a list of formal arguments. The semantics of the 
server-unit are represented by asserting that the 
server-unit predicate is equivalent to the 
appropriate graph. For example, a relation in a 
relational database between a person Is name and 
birthday is represented as follows: 

birthday-relation(n,d) <=> 
person(x), birthday-of(x,d), date(d), 
name-of(x,n), string(n) 

In general, a server-unit predicate for a 
database relation has as many arguments as there 
are columns in the relation. A program that 
computes w, the day of the week on which the date 
d falls, is represented as follows: 

day-of-week(d,w) <=> 
date(d), weekday-of(d,w), string(w) 

A server-unit predicate for an entry point of 
an application program has as many arguments as 
there are input and output arguments in that entry 
point. 

Attached to the server-unit predicate are 
properties giving the owners of the server-unit, 
its mandatory inputs, and its available outputs. 
The ffownersff property is the list of servers which 
provide the server-unit (several servers may 
provide the same information). The ffmandatory 
inputs” property identifies which of the 
predicate’s formal arguments must be bound or 
restricted before the server-unit may be 
meaningfully invoked. For database relations, 
this is nil, since no selection conditions need be 
specified, (e.g., when retrieving all tuples in 
the relation.) For a software function, the 
mandatory inputs property identifies the input 
arguments that must be supplied to the function. 
The ffavailable outputsff property identifies which 
of the predicate’s formal arguments are available 
as output from the invocation. For database 
relations, this is all columns of the relation. 
For a software function, the available outputs are 
the output arguments of the function. For 
example, the mandatory inputs property of the day- 
of-week program is the list (d), and the available 
outputs property is the list (w). 

A user Is request for information is encoded as 
an expression with a “head” and a “body. tf The 
head is a predicate with an arbitrary name, and an 
argument list specifying the arguments to be 
returned. The body of the request is a set of 
nodes forming a connected graph. For example, a 
user’s request for the day of the week on which 
“John Doe” was born may be represented as follows: 

answer(w) :- 
person(x), birthday-of(x,d), date(d), 
name-of(x,n) ,&ring(n) ,equal(n,“Johnff) 
weekday-of(d,w), string(w) 

If the argument list for the head predicate of 
the request is empty, the request is considered to 
be a fftrue/falseff question. Otherwise, it is 

considered to be a request for all possible sets 
of variable bindings that can be found that 
satisfy the semantics of the body of the request. 
The variables that are the first arguments of 
selection nodes, if any, are called the ffknown’t 
variables of the request. 

Note that although this representation is 
similar to PROLOG, the body of the request is not 
processed by a software interpreter. Rather, the 
formulation problem is to find an expression in 
terms of server-units that is equivalent to the 
body of the request. From this expression, a 
sequence of server-unit invocations is readily 
generated. The representation al lows the 
formulation problem to be solved by searching the 
set of server-unit graphs to find a set of graphs 
that collectively matches the body of the user’s 
request, exclusive of the selection nodes. The 
selection nodes are then used to supply the input 
arguments to the server-units selected through 
this matching process. 

V GRAPH UNIFICATION 

Transforming a request expressed in terms of 
the capability space into an equivalent expression 
in terms of server-units is accomplished by 
unifying server-unit graphs and the body of the 
request until the request body is completely 
%overed. If A node in the request body is 
considered covered when it is unified with a node 
from the graph for at least one server-unit. The 
request body is considered covered when all its 
non-selection nodes are covered. Once the body is 
covered, its non-selection nodes are replaced by 
the set of server-unit predicates that are 
equivalent to the server-unit graphs that have 
been unified with the request. The result is an 
expression, consisting of server-unit predicates 
and selection nodes, that is equivalent to the 
user’s request. 

When matching server-unit graphs to the body 
of a request, we do not require the entire server- 
unit graph to ffunifyff with the request body. 
Rather, we merge the server-unit graph with the 
request body only if at least one role or function 
node unifies with the request body. (This 
requirement prevents the inclusion of server-units 
that contribute nothing to coverage of 
relationships among variables in the request.) 
The additional nodes of the server-unit graph, not 
present in the request body, become available for 
unification with further server-unit graphs, as 
the algorithm proceeds in its search to cover the 
request graph. This allows the algorithm to find 
connections among server-units that are necessary 
to solve the user’s problem, but which are not 
explicit in the original request. ( “Hidden 
database joins” [Sowa, 19841 are one class of such 
necessary connections.) 

We define the unification of a server-unit 
graph to the body of a request by giving the 
conditions under which a node from a server-unit 
graph may be unified to a node in the request 
body. Nodes may only be unified to nodes of the 
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same type (concept to concept, role to role, etc.) 
that have the same predicate name. (An extension 
of this approach, allowing unification of nodes to 
superordinate nodes in a type hierarchy, is beyond 
the scope of this paper). 

Given a concept node Cl(x1) from a server-unit 
graph and a concept node C2(yl) in the request 
graph, Cl can be unified to C2 if Cl and C2 are 
the same concept name. Unification takes place 
when xl replaces all occurrences of yl in the 
request graph. We require that xl has not already 
been unified to any other concept in the server- 
unit graph in order to prevent nequivalencingff two 
distinct arguments in the request graph. 

Given a role node Rl(xl,x2) from a server-unit 
graph and a role node R2(yl,y2) in the request 
graph, Rl can be unified to R2 if Rl and R2 are 
the same role name, and for i=1,2, the concept 
node for xi in the server-unit graph may be 
unified to the concept node for yi in the request 
graph. 

Given a functional node Fl(xl,x2,...,xn) from 
a server-unit graph and a functional node 
JQ(yl,y2,..., yn) in the request graph, Fl can be 
unified to F2 if Fl and F2 are the same functional 
node and for i=1,2,...n, the concept node for xi 
in the server-unit graph may be unified to the 
concept node for yi in the request graph. 

Given a selection node Sl(xl,cl) from a 
server-unit graph and a selection node S2(yl,dl) 
in the request graph, Sl can be unified to S2 if 
S2(xl,dl) implies Sl(xl,cl) and the concept node 
for yl in the server-unit graph may be unified to 
the concept node for xl in the request graph. For 
example, LESS-THAN(xl,l5) in a server-unit graph 
may be unified with LESS-THAN(yl,lO) in a request 
graph, because the information requested is more 
restricted than the information available from the 
server. 

Once all nodes in a server-unit graph that may 
be unified with a request body are identified, the 
unification is performed by substituting the 
arguments from the request body for the arguments 
in a copy of the server-unit graph. The resulting 
server-unit graph is merged with the request body 
by ffsuperimposing If the two, and removing duplicate 
nodes. Note that there may be mu1 tiple ways to 
unify a server-unit graph and the request body, 
involving different nodes of the request body. 
This arises, for example, in requests whose 
solution involves joining a database relation to 
itself. In these cases, multiple copies of the 
server-unit graph are made and merged with the 
request. For example, a database relating a 
person’s name, employee id, and the employee id of 
his/her manager would be used twice to cover a 
request for the name of some person’s manager. 
The fact that the employee id’s are used as the 
link between an employee and his/her manager 
emerges as a result of the multiple unifications. 

VI THE FORMULATION ALGORITHM 

The overall algorithm is as follows: The 
search space of server-units is first pruned by 
eliminating server-units whose graphs contain no 
role or function nodes with predicate names in 
common with those in the request body. These 
server-units can never be selected for merging 
with the request body. Conversely, the request 
may be immediately identified as one that cannot 
be handled by the server-units if it contains one 
or more nodes not found in any of them. 

Next, a generate-and-test approach is used to 
perform a best-first search of the space of the 
power set of server-units to find a set that 
covers the request. Starting with the empty set, 
the generate portion takes the set most recently 
tested and found insufficient to cover the 
request, and generates its successors. It will 
have N successors, each created by adding to the 
set one of the server-units among the N not 
already in that set. The best set of server- 
units among all those already generated but not 
yet tested is selected as the candidate set for 
testing. The heuristic for “best” is to choose a 
set with the minimum score, defined as follows: 

H = cl * card((suj) + 
c2 * card({predicate-names(r)) 

- {predicate-names(s 

where cl and c2 are positive weighting 
coefficients, card is the cardinality function, 
{su) is the set of server-units being scored, and 
(predicate-names(r)] - (predicate-names(su)) is 
the set of nodes in the request for which nodes 
with identical names are not found in the server- 
units. This heuristic gives a better score to 
smaller sets of server-units, and sets leaving 
fewer nodes in the request body that have no 
potential covering in the set of server-units. If 
c2 is zero, the heuristic yields a breadth-first 
search of the power-set of server-units; if cl is 
zero, the search is depth-first. Because the 
cardinality of the power set of server-units is 
finite, the search will always terminate. The 
heuristic improves the search by causing small 
sets with a greater likelihood of covering the 
request body to be examined first. 

The test portion of the algorithm performs the 
unification of the candidate set with the request 
body, then tests whether all non-selection nodes 
of the request body are covered, and the server- 
units form a single, connected, acyclic dataflow 
graph that is sufficient to obtain the desired 
output. The latter condition is tested by forming 
a graph in which each server-unit predicate is a 
node. Nodes are connected by directed arcs from 
the available outputs of a server-unit to those 
server-units containing the same variables on 
their mandatory inputs list. Starting from the 
known variables and the output variables of 
server-units whose mandatory inputs are nil, a 
ffmarkff is propagated through the graph. The mark 
propagates from the mandatory input variables to 
the available output variables of a node, if and 
only if all mandatory input variables of the node 
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are marked. The mark propagates from node to node 
along the directed arcs of the graph. After all 
propagation is complete, the test succeeds if all 
mandatory input variables for each server-node are 
marked, and a mark has reached each argument found 
in the head of the request. 

For example, the request to find the day of 
the week on which John was born, after unification 
with the set of server-units comprised of 
birthday-relation and day-of-week, appears as 
follows: 

answer(w) :- 
birthday-relation(n,d), 
equal(n,ffJohnn),day-of-week(d,w) 

This formulation covers all non-selection 
nodes of the request. The mandatory inputs of 
birthday-relation are nil, and its available 
outputs are (n,d). The mandatory-inputs of day- 
of-week are (d), and its available outputs are 
(WI- A mark starting from the known variable n, 
and the outputs of the server-units whose 
mandatory inputs are nil, propagates to all 
mandatory inputs of each server-unit, and the 
desired variable, w. Thus, this set of server- 
units succeeds as a formulation of the original 
request in terms of the capability space. From 
this, invocations to the servers can be readily 
generated and sequenced. 

VII EXTENSIONS 

As described above, the graph representation 
allows expression of requests for information that 
are simple conjunctions of predicates, equivalent 
to the ffselect/project/joinff operations of 
relational algebra (Maier, 1983). It must be 
extended to enable representation of requests 
involving disjunctions, aggregations, and 
recursion. The key to handling these is to extend 
the graph representation of requests to include 
subgraphs. A subgraph is a request (head and 
body), whose head predicate appears in the body of 
another request. Disjunctions are represented by 
alternative subgraphs defining the same head 
predicate. Recursive requests are represented by 
alternative subgraphs, one of which has a body 
that directly or indirectly contains its own head 
predicate. An aggregation is represented by a 
node in the body of a request which contains the 
head predicate of a subgraph as one of its 
arguments. 

Extension of the basic formulation algorithm 
to handle subgraphs involves performing the 
unification of server-units to each subgraph of 
the overall request body. A given graph is 
considered covered if and only if its body and all 
subgraphs referenced in its body are covered. 

and requests involving aggregations. (Extensions 
for disjunctive and recursive requests are being 
designed.) The prototype accesses three separate 
databases and three application programs in the 
general domain of parts inventory and equipment 
maintenance. The databases and application 
programs run on two personal computers using 
commercially available software. 

Table 1 shows the performance of the prototype 
for some typical requests, exclusive of the time 
taken by the personal computers in retrieving or 
computing answers. Out of a total of 17 server- 
units in the capability space for these databases 
and applications, more than half may be pruned 
from the search space for a typical request. The 
best-first search frequently yields the 
formulation of the request in server-unit terms 
with a search of a small fraction of this space. 
This is because the heuristic function readily 
discriminates between server-units based on the 
relevance of their server-graphs to nodes in the 
request graph. On the Symbolics 3600, the 
formulation of requests is accomplished in the 
order of 1 to 3 seconds of processing. 

-------------------------------------------------- 
TABLE 1 

Performance of the prototype 
on several requests in a sample domain 

-------------------------------------------------- -----_-------------------------------------------- 
Request Pruned # of sets CPU time 
(English search of server- used to 
equiv.) space units formulate 

(P of sets) tested request 
-------------------------------------------------- 
Is X a widget? 

What component is 
X a part of? 

On what date was 
X replaced? 

What was X last 
serviced? 

Where can more 
parts of type X 
be obtained? 

On what day of 
the week was part 
X replaced? 

2**5 1 .345 sec. 

2-8 6 2.888 sec. 

2**6 1 1.035 sec. 

2**6 1 .725 sec. 

2**5 2 1.544 sec. 

2**7 2 1.928 sec. 

VIII IMPLEMENTATION 

A prototype has been implemented on a 
Symbolics 3600 using Zetalisp. The implementation 
handles ffselect/project/joinff types of requests, 
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IX EVALUATION 

Our approach to the formulation problem has 
two major strengths. First, it is independent of 
the domain. It can be ported to another domain 
by creating the appropriate server-unit 
representations, and the software to create an 
invocation message to a server given its server- 
unit predicate. The second strength is the wide 
variety of requests that can be handled. Not only 
can a simple request be routed to the appropriate 
server, but a request can be automatically 
partitioned into subrequests, each processed by a 
different server. 

Our current implementation has several 
shortcomings. First, the request language as 
implemented cannot yet deal with disjunctions and 
recursive requests (although it is possible to 
invoke server-units that are internally 
recursive). Second, rather than invoke a more 
efficient database query, the algorithm may choose 
to run an application program to respond to a 
true/false question, treating failure as negation. 
Finally, the input language is not useful as an 
end-user language; a more user-friendly interface 
is needed (Larson, et al., 1985). 

X CONCLUSION 

We have developed a graph-oriented technique 
for representing server capabilities. Used in 
conjunction with unification and heuristic search 
algorithms, it provides an approach to 
automatically selecting and invoking the 
appropriate servers to solve a user’s problem. 
Our implementation shows that the approach can 
formulate a set of server invocations equivalent 
to a user’s request, stated in server-independent, 
declarative terms, in a tractable amount of time. 
Included as a component of a larger user 
interface, this approach can yield the benefits of 
a uniform interface to multiple heterogeneous, 
pre-existing servers, hiding the existence of 
those servers by automatically generating 
sequences of server invocations to solve the 
user’s problem. 
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