
A GR7QH’H-oRII!X~ KI- ~REQ!XlZATION AND UNIFICATION TEIcHNIQuEm
~ICATXY SELECTING AND INVOKING So- FUNCTIONS

William F. Kaemrrer er and James A. Larson
Honeywell wuter Sciences Center

Artificial Intelligence Section
1000 Boone Avenue North

Golden Valley, Minnesota 55427

ABSTRACT

An interface to information systems that can
automatically select, sequence, and invoke the
sources needed to satisfy a user’s request can
have great practical value. It can spare the user
from the need to know what information is
available from each of the sources, and how to
access them. We have developed and implemented a
graph-oriented technique for representing software
modules and databases, along with unification and
search algorithms that enable an interface to
perform this automatic programming function. The
approach works for a large class of useful
requests, in a tractable amount of run time. The
approach permits the logical integration of pre-
existing batch application programs and databases.
It may also be used in other situations requiring
automatic selection of software functions to
obtain information specified in a declarative
expression.

I INTRODUCTION

Users of computerized informat ion systems
often need to access multiple sources of
information and multiple software programs in the
course of performing a single, practical task.
For example, a bank loan officer may need to
access credit records, automobile book values, and
amortization software to determine whether to
grant a car loan. The use of multiple systems can
burden users with the task of choosing which
system to invoke to obtain each piece of desired
information, and with the mechanical details of
obtaining and combining intermediate results. A
means is needed by which a person can access
diverse information sources and software functions
without being distracted by these details.

A way to meet this need is to provide a user-
system interface that allows a person to access
diverse information sources as if they were a
single, virtual information system. We have
developed and implemented an algorithm that
automatically selects and sequences the “servers”
needed to respond to a request for information
stated in server-independent terms. (We use the
term “server)I to refer collectively to pre-
existing batch application software as well as
databases residing under database management
systems.) The output consists of a series of
expressions sufficient to invoke the servers and
obtain the desired information.

II PROBLEM DEFINITION AND TERMINOLOGY

We use the term “server-unit” to refer to each
retrievable unit of data (e.g., each type of tuple
in a relational database) or each invokable
function provided by an individual server. Our
justification for applying the same term to data
and functions is the observation that an invokable
function of a server can also be considered a type
of retrievable unit of data. It may be
represented as a virtual relation between its
input and output arguments, Each individual
server may provide multiple server-units. For a
relational, database management system, a server-
unit corresponds to each of the relations in the
database. For an application program, a server-
unit corresponds to each entry point of the
program.

We view the functions and information
available from a set of servers as collectively
defining the l’capabili ty space” of a single,
virtual server (Ryan and Larson, 1986). A
representation of this space is derived by merging
the representations of the server-units for each
of the actual servers. Given a means of
representing the semantics of the information
collectively available from the server-units, the
user may request information in server-independent
terms by declaratively expressing the desired
result in terms of the capability space.
Satisfying the request is then a matter of finding
and sequencing a set of server-units that is a
procedural equivalent to the user’s declarative
expression.

The basic problem we have addressed is as
follows : Given a set of servers and a user’s
request expressed in server-independent terms, how
can server-units be automatically selected and
invoked to satisfy the user’s request? Solving
this problem involves solving three subproblems:

a. The knowledge representation problem--
Given a collection of servers, represent the data
and functions supported by the servers.
Essentially, the problen is to represent the
semantics and relationships among entities in the
capability space, and to define server-units in
terms of that space.

b. The formulation problem--Given a request
expressed in terms of the capability space,
transform the request into an equivalent one
expressed in terms of server-units.

APPLICATIONS / 825

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

C. The planning/execution problem--Given a
request re-expressed in terms of server-units,
determine a sequence in which to invoke those
server-units that will obtain the information that
satisfies the request.

The focus of this paper is a solution to the
formulation problem. We discuss the knowledge
representation approach to the extent necessary in
this context . The planning/execution problem is
one of finding a sequence for invocations that is
sufficient to yield the proper result, then
optimizing the sequence for execution efficiency.
The optimization step is beyond the scope of this
paper.

III RELATED WORK --

Among major approaches to automatic
programming (e.g., construction by theorem provers
[Nilsson, 19801 knowledge-based program
construction [Barstow, 19791, etc.) our work takes
the fftransformationff approach (e.g., [Burstall and
Darlington, 19771), in which an expression of a
problem is successively transformed into a more
specific form. Kim (1985) used a transformation
approach to generate examples given a constraint
formula expressed as a conjunction of predicates.
In both Kim’s work and ours, the goal is to return
sets of variable bindings which satisfy the input
expression. Kim’s approach reduces the constraint
formula to simpler terms for which known examples
are stored, or from which variables’ values can be
found by algebraic solution. The stored examples
for individual terms are tested to find those that
satisfy the entire constraint expression; those
that survive the test are combined to generate the
desired result. This approach is not well suited
to accessing database and application programs,
however, since it is not feasible to generate
results by successively testing each database
record or potential application output for
consistency with the input expression.

Gray and Moffat (1983) developed a method for
transforming requests for information expressed as
relational algebra queries into programs to access
Codasyl databases. In their approach, multiple
access paths are stored for each database
relation, giving the alternative sequences in
which the data items corresponding to the columns
of the relation can be found. Combinations of
access paths for the relations involved in a query
are tested to find a combined path equivalent to
the relational joins in the query. Our work is
similar, in that we dynamically generate the
necessary joins by finding the ffoverlapff of items
involved in relations. However, Gray and Moffat
assume that the user’s request has specified the
particular relations to be used ; they then
generate an efficient way to access them. In
contrast, our work focuses on how to identify the
particular database relations (and application
programs) to be used, given a request expressed in
server-independent terms.

In general, distributed database management
Systems (Ceri and Pelagatti, 1984) handle server-

826 / ENGINEERING

independent queries by replacing each object with
its equivalent server-specific object, using a
list of mappings from server-independent to
server-dependent terms. This step, sometimes
called “query modification” (Stonebraker, 1975) is
used to solve the formulation problem for
distributed databases. A problem with the query
modification approach, however, is its requirement
that a potentially large number of mappings be
explicitly stored. The graph-oriented searching
and unification technique we present avoids this
problem, and provides a way to achieve the logical
integration of application programs and databases.
The technique may be useful in other situations
that require the selection of primitive functions
to solve problems stated at a higher level.

IV GRAPH REPRESENTATION OF SERVER-UNITS
AND REQUESTF

A key to our approach is that the semantics of
both user’s requests and the information available
from the server-units comprising the capability
space can be expressed using graphs. We represent
the semantic relationships among the information
provided by server-units in structures, comparable
to the conceptual graphs described by Sowa (1984).
Several types of nodes exist in our graphs.
Yoncept nodes” are one-place predicates, C(x),
denoting that entity x is a member of the class of
entities C. ffRole nodes f(are two-place
predicates, R(x ,y), denoting that entity x bears
relation R to the entity y (x and y are implicitly
existentially quantified). The C and R predicates
meaningful in the domain are derived from a
hierarchically structured, slot-and-frame-based
domain model (c.f. Brachman, 1983) which provides
the definitions of the corresponding concepts and
roles. 9election node9 are two-place
predicates, S(x,c), serving to restrict the
entities denoted by x to those for which the
relation S between x and c holds. For example,
the selection node EQUAL(name,ffJohnff) restricts
name to be equal to ffJohnff. Finally, a fffunction
node” is a multiple-place predicate specifying
that the named functional relation holds among its
arguments , e.g., SUM(x,y,sum). Currently, we
restrict function nodes to simple arithmetic
functions.

A connected graph is formed by a collection of
nodes such that each node shares at least one
argument with another node. Each predicate is a
node in the graph. Each arc connects a argument
that is common to two nodes. A connected graph
represents an expression that is interpreted as
the conjunction of the predicates that are the
nodes of the graph. Thus, the graph:

person(x), birthday-of(x,d), date(d),
name-of(x,n), string(n), equal(n,f’Johnff)

denotes the set of x,d,n combinations such that x
is a person, d is a date that is that person’s
birthday , n is a string that is that person’s
name, and n is equal to John.

A server-unit is represented as a single
predicate with an (arbitrary) predicate name, and
a list of formal arguments. The semantics of the
server-unit are represented by asserting that the
server-unit predicate is equivalent to the
appropriate graph. For example, a relation in a
relational database between a person Is name and
birthday is represented as follows:

birthday-relation(n,d) <=>
person(x), birthday-of(x,d), date(d),
name-of(x,n), string(n)

In general, a server-unit predicate for a
database relation has as many arguments as there
are columns in the relation. A program that
computes w, the day of the week on which the date
d falls, is represented as follows:

day-of-week(d,w) <=>
date(d), weekday-of(d,w), string(w)

A server-unit predicate for an entry point of
an application program has as many arguments as
there are input and output arguments in that entry
point.

Attached to the server-unit predicate are
properties giving the owners of the server-unit,
its mandatory inputs, and its available outputs.
The ffownersff property is the list of servers which
provide the server-unit (several servers may
provide the same information). The ffmandatory
inputs” property identifies which of the
predicate’s formal arguments must be bound or
restricted before the server-unit may be
meaningfully invoked. For database relations,
this is nil, since no selection conditions need be
specified, (e.g., when retrieving all tuples in
the relation.) For a software function, the
mandatory inputs property identifies the input
arguments that must be supplied to the function.
The ffavailable outputsff property identifies which
of the predicate’s formal arguments are available
as output from the invocation. For database
relations, this is all columns of the relation.
For a software function, the available outputs are
the output arguments of the function. For
example, the mandatory inputs property of the day-
of-week program is the list (d), and the available
outputs property is the list (w).

A user Is request for information is encoded as
an expression with a “head” and a “body. tf The
head is a predicate with an arbitrary name, and an
argument list specifying the arguments to be
returned. The body of the request is a set of
nodes forming a connected graph. For example, a
user’s request for the day of the week on which
“John Doe” was born may be represented as follows:

answer(w) :-
person(x), birthday-of(x,d), date(d),
name-of(x,n) ,&ring(n) ,equal(n,“Johnff)
weekday-of(d,w), string(w)

If the argument list for the head predicate of
the request is empty, the request is considered to
be a fftrue/falseff question. Otherwise, it is

considered to be a request for all possible sets
of variable bindings that can be found that
satisfy the semantics of the body of the request.
The variables that are the first arguments of
selection nodes, if any, are called the ffknown’t
variables of the request.

Note that although this representation is
similar to PROLOG, the body of the request is not
processed by a software interpreter. Rather, the
formulation problem is to find an expression in
terms of server-units that is equivalent to the
body of the request. From this expression, a
sequence of server-unit invocations is readily
generated. The representation al lows the
formulation problem to be solved by searching the
set of server-unit graphs to find a set of graphs
that collectively matches the body of the user’s
request, exclusive of the selection nodes. The
selection nodes are then used to supply the input
arguments to the server-units selected through
this matching process.

V GRAPH UNIFICATION

Transforming a request expressed in terms of
the capability space into an equivalent expression
in terms of server-units is accomplished by
unifying server-unit graphs and the body of the
request until the request body is completely
%overed. If A node in the request body is
considered covered when it is unified with a node
from the graph for at least one server-unit. The
request body is considered covered when all its
non-selection nodes are covered. Once the body is
covered, its non-selection nodes are replaced by
the set of server-unit predicates that are
equivalent to the server-unit graphs that have
been unified with the request. The result is an
expression, consisting of server-unit predicates
and selection nodes, that is equivalent to the
user’s request.

When matching server-unit graphs to the body
of a request, we do not require the entire server-
unit graph to ffunifyff with the request body.
Rather, we merge the server-unit graph with the
request body only if at least one role or function
node unifies with the request body. (This
requirement prevents the inclusion of server-units
that contribute nothing to coverage of
relationships among variables in the request.)
The additional nodes of the server-unit graph, not
present in the request body, become available for
unification with further server-unit graphs, as
the algorithm proceeds in its search to cover the
request graph. This allows the algorithm to find
connections among server-units that are necessary
to solve the user’s problem, but which are not
explicit in the original request. (“Hidden
database joins” [Sowa, 19841 are one class of such
necessary connections.)

We define the unification of a server-unit
graph to the body of a request by giving the
conditions under which a node from a server-unit
graph may be unified to a node in the request
body. Nodes may only be unified to nodes of the

APPLICATIONS / 827

same type (concept to concept, role to role, etc.)
that have the same predicate name. (An extension
of this approach, allowing unification of nodes to
superordinate nodes in a type hierarchy, is beyond
the scope of this paper).

Given a concept node Cl(x1) from a server-unit
graph and a concept node C2(yl) in the request
graph, Cl can be unified to C2 if Cl and C2 are
the same concept name. Unification takes place
when xl replaces all occurrences of yl in the
request graph. We require that xl has not already
been unified to any other concept in the server-
unit graph in order to prevent nequivalencingff two
distinct arguments in the request graph.

Given a role node Rl(xl,x2) from a server-unit
graph and a role node R2(yl,y2) in the request
graph, Rl can be unified to R2 if Rl and R2 are
the same role name, and for i=1,2, the concept
node for xi in the server-unit graph may be
unified to the concept node for yi in the request
graph.

Given a functional node Fl(xl,x2,...,xn) from
a server-unit graph and a functional node
JQ(yl,y2,..., yn) in the request graph, Fl can be
unified to F2 if Fl and F2 are the same functional
node and for i=1,2,...n, the concept node for xi
in the server-unit graph may be unified to the
concept node for yi in the request graph.

Given a selection node Sl(xl,cl) from a
server-unit graph and a selection node S2(yl,dl)
in the request graph, Sl can be unified to S2 if
S2(xl,dl) implies Sl(xl,cl) and the concept node
for yl in the server-unit graph may be unified to
the concept node for xl in the request graph. For
example, LESS-THAN(xl,l5) in a server-unit graph
may be unified with LESS-THAN(yl,lO) in a request
graph, because the information requested is more
restricted than the information available from the
server.

Once all nodes in a server-unit graph that may
be unified with a request body are identified, the
unification is performed by substituting the
arguments from the request body for the arguments
in a copy of the server-unit graph. The resulting
server-unit graph is merged with the request body
by ffsuperimposing If the two, and removing duplicate
nodes. Note that there may be mu1 tiple ways to
unify a server-unit graph and the request body,
involving different nodes of the request body.
This arises, for example, in requests whose
solution involves joining a database relation to
itself. In these cases, multiple copies of the
server-unit graph are made and merged with the
request. For example, a database relating a
person’s name, employee id, and the employee id of
his/her manager would be used twice to cover a
request for the name of some person’s manager.
The fact that the employee id’s are used as the
link between an employee and his/her manager
emerges as a result of the multiple unifications.

VI THE FORMULATION ALGORITHM

The overall algorithm is as follows: The
search space of server-units is first pruned by
eliminating server-units whose graphs contain no
role or function nodes with predicate names in
common with those in the request body. These
server-units can never be selected for merging
with the request body. Conversely, the request
may be immediately identified as one that cannot
be handled by the server-units if it contains one
or more nodes not found in any of them.

Next, a generate-and-test approach is used to
perform a best-first search of the space of the
power set of server-units to find a set that
covers the request. Starting with the empty set,
the generate portion takes the set most recently
tested and found insufficient to cover the
request, and generates its successors. It will
have N successors, each created by adding to the
set one of the server-units among the N not
already in that set. The best set of server-
units among all those already generated but not
yet tested is selected as the candidate set for
testing. The heuristic for “best” is to choose a
set with the minimum score, defined as follows:

H = cl * card((suj) +
c2 * card({predicate-names(r))

- {predicate-names(s

where cl and c2 are positive weighting
coefficients, card is the cardinality function,
{su) is the set of server-units being scored, and
(predicate-names(r)] - (predicate-names(su)) is
the set of nodes in the request for which nodes
with identical names are not found in the server-
units. This heuristic gives a better score to
smaller sets of server-units, and sets leaving
fewer nodes in the request body that have no
potential covering in the set of server-units. If
c2 is zero, the heuristic yields a breadth-first
search of the power-set of server-units; if cl is
zero, the search is depth-first. Because the
cardinality of the power set of server-units is
finite, the search will always terminate. The
heuristic improves the search by causing small
sets with a greater likelihood of covering the
request body to be examined first.

The test portion of the algorithm performs the
unification of the candidate set with the request
body, then tests whether all non-selection nodes
of the request body are covered, and the server-
units form a single, connected, acyclic dataflow
graph that is sufficient to obtain the desired
output. The latter condition is tested by forming
a graph in which each server-unit predicate is a
node. Nodes are connected by directed arcs from
the available outputs of a server-unit to those
server-units containing the same variables on
their mandatory inputs list. Starting from the
known variables and the output variables of
server-units whose mandatory inputs are nil, a
ffmarkff is propagated through the graph. The mark
propagates from the mandatory input variables to
the available output variables of a node, if and
only if all mandatory input variables of the node

828 / ENGINEERING

are marked. The mark propagates from node to node
along the directed arcs of the graph. After all
propagation is complete, the test succeeds if all
mandatory input variables for each server-node are
marked, and a mark has reached each argument found
in the head of the request.

For example, the request to find the day of
the week on which John was born, after unification
with the set of server-units comprised of
birthday-relation and day-of-week, appears as
follows:

answer(w) :-
birthday-relation(n,d),
equal(n,ffJohnn),day-of-week(d,w)

This formulation covers all non-selection
nodes of the request. The mandatory inputs of
birthday-relation are nil, and its available
outputs are (n,d). The mandatory-inputs of day-
of-week are (d), and its available outputs are
(WI- A mark starting from the known variable n,
and the outputs of the server-units whose
mandatory inputs are nil, propagates to all
mandatory inputs of each server-unit, and the
desired variable, w. Thus, this set of server-
units succeeds as a formulation of the original
request in terms of the capability space. From
this, invocations to the servers can be readily
generated and sequenced.

VII EXTENSIONS

As described above, the graph representation
allows expression of requests for information that
are simple conjunctions of predicates, equivalent
to the ffselect/project/joinff operations of
relational algebra (Maier, 1983). It must be
extended to enable representation of requests
involving disjunctions, aggregations, and
recursion. The key to handling these is to extend
the graph representation of requests to include
subgraphs. A subgraph is a request (head and
body), whose head predicate appears in the body of
another request. Disjunctions are represented by
alternative subgraphs defining the same head
predicate. Recursive requests are represented by
alternative subgraphs, one of which has a body
that directly or indirectly contains its own head
predicate. An aggregation is represented by a
node in the body of a request which contains the
head predicate of a subgraph as one of its
arguments.

Extension of the basic formulation algorithm
to handle subgraphs involves performing the
unification of server-units to each subgraph of
the overall request body. A given graph is
considered covered if and only if its body and all
subgraphs referenced in its body are covered.

and requests involving aggregations. (Extensions
for disjunctive and recursive requests are being
designed.) The prototype accesses three separate
databases and three application programs in the
general domain of parts inventory and equipment
maintenance. The databases and application
programs run on two personal computers using
commercially available software.

Table 1 shows the performance of the prototype
for some typical requests, exclusive of the time
taken by the personal computers in retrieving or
computing answers. Out of a total of 17 server-
units in the capability space for these databases
and applications, more than half may be pruned
from the search space for a typical request. The
best-first search frequently yields the
formulation of the request in server-unit terms
with a search of a small fraction of this space.
This is because the heuristic function readily
discriminates between server-units based on the
relevance of their server-graphs to nodes in the
request graph. On the Symbolics 3600, the
formulation of requests is accomplished in the
order of 1 to 3 seconds of processing.

--
TABLE 1

Performance of the prototype
on several requests in a sample domain

-- -----_--
Request Pruned # of sets CPU time
(English search of server- used to
equiv.) space units formulate

(P of sets) tested request
--
Is X a widget?

What component is
X a part of?

On what date was
X replaced?

What was X last
serviced?

Where can more
parts of type X
be obtained?

On what day of
the week was part
X replaced?

2**5 1 .345 sec.

2-8 6 2.888 sec.

2**6 1 1.035 sec.

2**6 1 .725 sec.

2**5 2 1.544 sec.

2**7 2 1.928 sec.

VIII IMPLEMENTATION

A prototype has been implemented on a
Symbolics 3600 using Zetalisp. The implementation
handles ffselect/project/joinff types of requests,

APPLICATIONS / 829

IX EVALUATION

Our approach to the formulation problem has
two major strengths. First, it is independent of
the domain. It can be ported to another domain
by creating the appropriate server-unit
representations, and the software to create an
invocation message to a server given its server-
unit predicate. The second strength is the wide
variety of requests that can be handled. Not only
can a simple request be routed to the appropriate
server, but a request can be automatically
partitioned into subrequests, each processed by a
different server.

Our current implementation has several
shortcomings. First, the request language as
implemented cannot yet deal with disjunctions and
recursive requests (although it is possible to
invoke server-units that are internally
recursive). Second, rather than invoke a more
efficient database query, the algorithm may choose
to run an application program to respond to a
true/false question, treating failure as negation.
Finally, the input language is not useful as an
end-user language; a more user-friendly interface
is needed (Larson, et al., 1985).

X CONCLUSION

We have developed a graph-oriented technique
for representing server capabilities. Used in
conjunction with unification and heuristic search
algorithms, it provides an approach to
automatically selecting and invoking the
appropriate servers to solve a user’s problem.
Our implementation shows that the approach can
formulate a set of server invocations equivalent
to a user’s request, stated in server-independent,
declarative terms, in a tractable amount of time.
Included as a component of a larger user
interface, this approach can yield the benefits of
a uniform interface to multiple heterogeneous,
pre-existing servers, hiding the existence of
those servers by automatically generating
sequences of server invocations to solve the
user’s problem.

REFERENCES

[l] Barstow, D. Knowledge-based Program
Construction. North Holland, New York:
Elsevier, 1979.

L-21 Brachman, R. J., R. E. Fikes, and H. J.
Levesque . “Krypton: A Functional Approach
to Knowledge Representation. If Computer,
16:10 (1983) 67-73.

[41 Burstall, R. M. and J. Darlington. “A
Transformation System for Developing
Recursive Programs. If Journal of the - - -
Association for Computing Machinery, 24:l
NV"& 44-67.

[51 Gray, P. M. D. and D. Moffat. “Manipulating
Descriptions of Programs for Database
Access: If Proc. IJCAI-83, Karlsruhe, W.
Germany, August, 1983, pp. 21-24.

C61 Kim, M. W. EGS : “A Transformational
Approach to Automatic Example Generation.”
P&c. IJCAI-85, Los Angeles, California,
August,1985,p. 155-161.

[71 Larson, J. A., W. F. Kaemmerer, K. L. Ryan,
J. Slagle, and W. T. Wood. “ATOZ : A
Prototype Intelligent Inter face to Mu1 t iple
Information Systems. If Proceedings of the --
IFIP Working Conference, the Future of
Command Languages. Rome, Imy, September,
1985.

Ml Maier, D. The Theory of Relational
Databases . Rockvme, Maryland: Computer
Science Press, 1983.

[g] Nilsson, N. J. Principles of Artificial
Intelligence. Palo Alto, California: Tioga
Publishing, 1980.

[lo] Ryan, K. R. and J. A. Larson. “The use of
E-R Data Models in Capability Schemas.”
Technical Report, Honeywell Computer Sciences
Center, Golden Valley, Minnesota, March,
1986.

[ll] Sowa, J. F. Conceptual Structures:
Information Processing in Mind and Machine. --
Menlo Park, California: Addison-Wesley,
1984.

[12] Stonebraker, M. “Implementation of Integrity
Constraints and Views by Query Modification,”
ACM/SIGMOD International - Symposium on
Management of Data, San Jose, California,
May, 1975, pp. -8.

[31 Ceri, S. and G. Pelagatti. Distributed
Databases Princi les and Systems. New York:

-+r- McGraw-Hill, 19

830 / ENGINEERING

