
SCAT, AN AUTOMATIC-PROGRAMMING TOOL FOR TELECOMMUNICATIONS SOFTWARE

S. Barra, 0. Ghisio, F. Manucci

CSELT - via G. Reiss Romoli, 274 - 10148 Turin (Italy)

ABSTRACT

The size, complexity and long 1 ife-time of
telecommunications software, e.g. the programs
for store program control (SPC) telephone
exchanges, call for an increased software pro-
ductivi ty and maintainability other than an
improved qua1 ity. The availability of
programming support environments based on stan-
dardized specification and programming languages
greatly improves the software development pro-
cess. Artificial Intelligence techniques are
very promising aiming at further improvements
and can provide a short-term payoff especially
within an evolutionary approach leading up to an
hybrid programming environment, i.e. a software
environment made of both conventional and
intelligent tools. The paper describes an
intelligent tool, dubbed SCAT, based on ideas
exploited by various automatic programming
systems, like CHI, Programmer’s Apprentice and
DEDALUS. SCAT is strictly related to the tele-
communications domain, thus it differs from
other systems in the domain specifity. SCAT
partly automatizes the most crucial phase in the
software development process, i.e. the tran-
sition from project’s detailed specification to
the actual software implementation. SCAT has
been tested in a few experimental software deve-
lopments and in an actual application,i.e. the
message hand1 ing system (MHS) to be made
available in the Italian public packet switching
network (ITAPAC).

1. INTRODUCTION

The most crucial phase of the software deve-
lopment process is the transition from detailed
specification of the project to the actual
implementation. A first attempt in designing and
implementing tools supporting this phase via
conventional techniques proved to be not very
promising. Thus we addressed the problem of
automatizing this phase according to the method
of knowledge engineering and the transfor-
mational approach [1] [2]. Referring to the
telecommunications field, the specification and
implementation formalisms must be the
Specification and Description Language (SDL) and
the CCITT High Leve 1 programming Language
(CHILL) recommended by CCITT, the International
Consulting Committee representing all telecom-
munications administrations. Background infor-
mation about SDL and CHILL languages is referred
to in section 2.

SCAT, SOL to CHILL Assisting Transformer, is
based on ideas exploited by PSI 131 I
Programmer’s Apprentice [4] and DEDALUS [5]
systems.

Specification acquisition phase, synthesis
phase and knowledge organization are similar to
PSI ones. In the phase of specification acquisi-
tion, a program network is built. The program
network is transformed into a complete and con-
sistent description of the program (a program
model represented via a hierarchical structure
of frames) during the synthesis phase. Finally,
the program model is translated in the target
1 anguage. A detailed description of these two
phases is given in section 3.3. The organization
of the three kinds of knowledge (knowledge about
SDL and CHILL, application domain knowledge and
incremental knowledge) is presented in section
3.2.

SCAT provides the users with an assistance
similar to that provided by Programmer’s
Apprentice system. User interaction is needed as
SCAT could ask for missing information required
in generating a working program corresponding to
a particular specification (see section 3.1).
Referring to the transformational approach
adopted in SCAT, this system could be considered
close to DEDALUS, in particular referring to the
rules stating for specification and implemen-
tation languages and the mapping between them.
Actually, transformations in SCAT are applied in
a stiff and predetermined way, instead of
depending at any time on the analysis of the
results gained in previous transformations. In
addition, as SCAT refers to SDL, i.e. a formal
1 anguage, syntax and semantics of specification
are far away from natural 1 anguage or
input/output predicates.
Information relevant to the gained experience in
using SCAT and discussions about SCAT implemen-
tation are in section 4.

2. BACKGROUND

To overcome at least some of the dif-
ficulties derived by the dimension and
complexity of telecommunications systems, CCITT
(International Telegraph and Telephone
Consultative Committee) has promoted the defini-
tion of international standards providing formal
languages to support design and implementation
of switching software.

Two 1 anguages are recommended
(Specification and Description Language) ;8] f:i
CHILL (CCITT High Level Language) [7]. The

APPLICATIONS / 831

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

former is usable by both Administrations to pro-
vide functional specifications of telecom-
munications systems and Manufacturers, to pro-
duce descriptions, i.e. standard documentation
(Fig.1). The latter is a high level programming
language, fulfilling typical requirements of the
specific telecommunication area.

SDL and CHILL languages are rigourous means
for specification and implementation activities.
However, problems still remain in the transition
from specification to implementation, owing on
one hand to the different nature of the two
languages, on the other hand to the specific
usage of SDL and CHILL.

The formality degree required at SDL and
CHILL levels is different, that is the first
allows a certain degree of informality in the
specification, while the second must obey the
strongest formalization rules.

SDL and CHILL definitions have been carried
out by their own CCITT groups, that even if
emphasizing compatibility between the languages,
designed them under different points of view.
SDL is expected to provide a mean of
specifying/describing the behavior of telecom-
munications systems : for this reason people
involved in SDL definition focused on descrip-
tion problems specific to the telecommunications
field. Conversely CHILL is a general purpose
programming language. Thus, CHILL provides syn-
tactic constructs typical of a high level
programming language, while most of them are
missing in SDL grammar.

As a matter of fact, some concepts are syn-
tactically similar but semantically different,
while others have the same semantics but are
syntactically referred to in a different way.
Then problems arise in modeling SDL semantics by
CHILL.

The best way of matching the two languages
semantics cannot be immediately identified: a
match can be per formed using a set of CHILL
constructs to reproduce a particular SDL con-
cept.

On the basis of the problems previously
outlined, an intelligent tool has been developed
at CSELT, in order to support and partially
automate some phases of software development and
maintenance (Fig.2) [a].

3. THE SCAT SYSTEM ___._~

SCAT (SDL to CHILL Assisting Transformer)
is an intelligent tool providing an assisted
transformation in the production of a complete
CHILL program corresponding to an SDL specifica-
tion.
This allows to bridge the gap between specifica-
tion and implementation levels due to the dif-
ferent informality degree of the former with
respect to the rigourous formalism of the
latter.

SCAT takes as input an SDL specification
(see top of Fig.3) in a textual form, produced
by a set of tools relevant to the specification
(graphical editor, graphical-textual translator,
syntax analyzer) and produces as output the
corresponding CHILL code (see bottom of Fig. 3).
The specification is acquired and analyzed by
the specification analyzer, then the specifica-
tion solver performs the synthesis activity,
cooperating with the user’s assistant and con-
sulting the knowledge base.
The coder produces the CHILL output that will be

processed within a conventional CHILL
programming support environment [9].

832 / ENGINEERING

prototypical frames, that is frames not yet
instantiated, and then suitably instantiating
their attributes.

The incremental knowledge is organized in a
set of frames retaining the information which
appears to be reusable during the transformation
of the same and/or other specifications of a
particular project.
Such information is used in transforming SDL
tasks into CHILL procedures and is made of CHILL
code pieces and some further information charac-
terizing it, that is parameters types, procedure
attributes, file name containing the procedure
code.
Figure 4 shows an example of task frame instance
for the SDL task MAKE ASSDCIATIDN(A,B). This
task could be transformed into a CHILL procedure
named MAKE-ASSOCIATION having A and B as present
parameters. Since this task has been previously
classif ied as “procedure with parameters”, a
procedural attachment handling present parame-
ters, is started.
The procedure “manage-proc-wi th-param” recovers
the CHILL name and the present parameters from
the SDL name; retrieves the formal parameters of
the procedure from the incremental frame,
corresponding to the MAKE ASSOCIATION task
(Fig.5) if it already exists;%signs such types
to the present parameters, suitably instan-
tiating a declarative frame.

Figure 5 shows an instance of incremental
knowledge task frame with some values useful for
the CHILL definition of MAKE-ASSOCIATION proce-
dure. This kind of information is acquired
through an user interaction phase and recorded
by the system, which exploits it again, when
needed (e.g. for the present parameters defini-
tion of the task met).

The normative knowledge is made up of about
300 rules. In particular, they are concerned
with :

- syntactic rules of SDL and CHILL languages
(decoding and coding rules);

- correspondence rules between the two languages
(equivalence rules);

- the rules performing slot instantiation and
retrieval (property rules);

- the rules checking some consistency
constraints, to be used in the updating acti-
vity (consistency rules).

An example of SCAT rules for the task concept is
shown in Fig. 6. The decoding task rule (1)
expresses that the SDL primitive at hand is a
task if this primitive consists of a keyword
TASK followed by the SDL name.
Two coding rules correspond to the task rule,
depending on what the task stands for (i.e.
abstraction or informal task (2) or assignment
(3)). The choice of the suitable coding rule
depends on the evaluation of the equivalence
rules (6) and (7). The instance and the
retrieval in the task frame for <SDL-NAME> and
<CHILL-NAME> respectively is performed by the
property rules activation (4) and (5).

3.3 Transformational Process

In the transformational process (Fig. 7),
SCAT gradually acquires the specification,
through the application of the SDL rules,
building at the same time the program model
(specification analyzer), suitably instantiating
its slots with those values at the moment
available in the specification; then, linking it
to its parent frame. Looking at those empty
slots in the program model, intended for storing
CHILL information, SCAT becomes aware of what it
needs to issue the CHILL code. Then, it fills up
such slots consulting the model itself, the
incremental knowledge and, when needed, the user
(complete mode 1 builder, user interface).
Finally, it generates the CHILL code through the
mode 1 scanning and the application of the
programming rules (coder).

As far as the updating activity is con-
cerned, SCAT allows the user to substitute a
chunk of a previously acquired specification or
to insert further pieces in it. A submodel for
the SOL piece to be added or substituted is
created and fulf i 1 led by the same components
acting in the transformation process. The sub-
model is then inserted at the right place in the
starting model ; at the same time, checks are
made throughout the whole model to identify and
solve the possible inconsistencies caused by the
updating (model modifier). The code generation
is finally performed in a completely transparent
way with respect to the carried out changes.

4. EXPERIENCE OF USE AND IMPLEMENTATION

A few experimental applications of SCAT has
been carried out and the system is presently
used in an actual application development [lo].
A communication protocol [ll] fully specified in
SDL is automatically implemented in CHILL using
SCAT system.

The detailed specification of a communication
protocol is not an easy task: its implementation
based on this specification is even more compli-
cate, requiring a good knowledge of the problem
itself. Usually the implementation of a com-
munication protocol consists of a considerable
amount of code, therefore it represents a good
test for an automatic translator.

This experience made explicit that software
productivity can be increased by a factor from 5
to 10.

SCAT system has been developed in PROLOG
1 anguage, in particular in CProlog (1.2 and 1.5
versions) and in Quintus (1.2 version), running
on VAX-11 machines (UNIX and VMS operating
systems) and SUN workstations.
Some differences of behavior, depending on the
PROLOG versions and the computer used, have to
be pointed out. Primary requirement to
translate an average-high SDL specification
(about 500 SDL lines) in the corresponding CHILL
implementation is to change the memory dimension
of CProlog. In particular CProlog stacks have to
be arranged in order to avoid an abort of the
transformation process. The transformation of
the same specification in VAX/VI% environment
and in VAX/UNIX environment’s using CProlog 1.5

APPLICATIONS ! 833

produces two different behaviors. In the VAX/VMS
stack dimensions have to be fixed in the
following manner:

- global stack : 4100K
- local stack : 4800K
- heap stack : 500K
- trial stack : 150K

In the VAX/UNIX the transformer cannot be run
because the greatest dimension of a UNIX task is
4Mb, as also occurs on Sun workstation.
The CPU time required by the transformation
of the above mentioned specification is about
30.54 sec. and the generated program is about
2,000 CHILL lines long.

5. CONCLUSIONS

SCAT system is based on some ideas exploited
by various automatic programming systems: PSI’s
synthesis phase and knowledge organization, the
assistance approach provided by Programmer’s
Apprentice, the transformational approach
adopted in DEDALUS.

Actually, SCAT does not provide new general
applicable ideas; it rather shows how some ideas
from automatic programming field can be instan-
tiated in the specific telecommunications
domain.
Such a domain is one of the largest software
application areas, thus it justifies huge
efforts in attempting to increase software pro-
ductivi ty and maintainability other than to
improve its quality.

Significant payoffs have been achieved in
SCAT development exploiting AI techniques
according to evolutionary approach which aims at
hybrid software environments.
First of all, AI techniques allow to improve the
cooperative assistance to the user and to effi-
ciently organize the knowledge required in the
transformation task.
Moreover, the joint use of frames and rules has
allowed to quickly write a first SCAT prototype,
afterwards tailored to the particular applica-
tion in a tuning activity.

The use of Prolog language has outlined its
suitability to represent and evaluate a
knowledge organized in a production rules form;
furthermore, it made it possible to realize in a
short time a first prototype of the system;
finally, it assures an easy SCAT adaptability to
others programming and specification languages.

SCAT makes easier, cheaper and more reliable
software development and maintenance, taking
care of burdensome and error-prone tasks, as
consistency and match between specification and
implementation, and leaving to the user the
responsibility for the most crucial decision
making.

REFERENCES

[l] E. Lerner “Automatic Programming” Computers
Software II IEEE 1982

[21 J. Phillips “Self-Described Programming
Environments-An application of a Theory of
Design to Programming Systems” Technical

[31

[41

[51

['31

[71

[al

191

[lOI

1111

Report SIAN-CS-84-1008, Kestrel Institute
1983
E. Kant, D. Barstow “The refinement para-
digm : the interaction of coding and effi-
ciency knowledge in program synthesis” IEEE
Transaction of Software Engineering Vol.
SE-7 n.5 1981
C.Rich “Inspection methods in Programming”
- Technical Report AI-TR-604-M.I.T. A.I.
Labs 1981
Z. Manna, R. Waldinger “Synthesis : dreams
-> programs” IEEE Transaction on Software
Engineering Vol. SE-5 n.4 1979
CCITT Recommendation 2.100 - 2.104
“Functional Specification and Description
Language (SDL) ” 8th. Plenary Assembly
Malaga-Torremolinos 1984
CCITT Recommendation 2.200 “CCITT High
Leve 1 Language (CHILL)” 8th. Plenary
Assembly Malaga-Torremolinos 1984
Barra S., Ghisio O., Modesti M. “The use of
artificial intell igence in the transfor-
mation from SDL to CHILL” II SDL users and
implementors forum Helsinki 1985
Bagnoli P. et al. “Towards a Software
Engineering environment for telecom-
munication systems based on CCITT stan-
dards” - XI International Switching
Symposium -Florence 1984
Barra S., Ghisio O., Modesti M. “Experience
and problems of applications of automatic
translation from SDL specifications into
CHILL implementations” 6th. International
Conference on Software Engineering for
Telecommunication Switching Sys terns
Eindhoven 1986
CCITT Recommendation x.411 “Message
Transfer Layer” 8th. Plenary Assembly
Malaga-Torremolinos 1984

Fig. 1 - An example of SDL
graphical form

specification in

834 / ENGINEERING

Fig. 2 - The SCAT window environment

Fig. 3 - The SCAT system

(1) TASK cSDL_name> [<comment>] ; --> <task>

(2) <call-action> --> CALL <CHILL-name>
(<present-par> (, <present-par> j*)
[*comment>] ;

(3) <assign-act
[<comment>

ion> -->

I ;

<CHILL-name>

(4) <SDL-name> --> fill-slot(SDL-NAME)

(5) <CHILL-name> --> get-slot(CHILL-NAME)

(6) <task> --> <call-action>
if tSDL_name> is “abstraction”

(7) <task> --> <assign-action>
if *SDL-name> is “assignment”

SLOT

SDL NAME

PROCEDURAL
VALUE ATTACHMENT

MAKE-ASSOCIATION
(A. 01

I IMPLEMENTED I CHILL
I I

COMMENT

LABEL

Lp’oc MANAGE-PROC-WITH PARAM (chd-name. present.parl

chlil-name recovering (chfll-name);
param-types-recover,ng (present par, types),

present.par-slots lnSfa”tlatlO” (present-par. types)

Fig. 4 - A frame example of program model

SLOT VALUE PA

NAME MAKE-ASSOC ATION

FORMAL-PAR TYPEl. TYDEZ l

KIND PROCEDUPE

I RECURSIVE NO
I

pr0c: ASSIGN-TO-PRESEtiT-PARAM (formal-par. name): -

task-‘rame-recovering (name. present-par),

assign-types (present-par. formal-par);

end.

Fig. 5 - An example of incremental know1 edge

CODING
PHI5E

PROGRAM MOOEL

I
I I

CODER

Fig. 6 - Example of rules Fig. 7 - The transformational process

APPLICATIONS / 835

