
A Knowledge-Based Framework for Design 

Sanjay Mittal and Agustin Araya 

Knowledge Systems Area 

Intelligent Systems Laboratory 

Xerox Palo Alto Research Center 

3333 Coyote Hill Rd. 

Palo Alto, CA. 94304 

Abstract: 

Many design problems can be formulated as a 
process of searching a “well-defined” space of artifacts 
with similar functionality. The dimensions of such 
spaces are largely known and are constrained by 
relations obtained from the implicit functionality of the 
designed artifact. After identifying the kinds of 
knowledge that mediate the search for acceptable 
designs, a computational framework is presented that 
organizes the required knowledge as design plans. A 
problem solver is described that executes these plans. 
The problem solver extends the notion of 
dependency-directed backtracking with an advice 
mechanism. This mechanism allows information from a 
constraint failure to be used as advice in modifying a 
partial design. An expert system for designing paper 
transports inside copiers has been successfully built 
based on this framework. 

1. Introduction 

Increasing attention is being paid to the 
development of knowledge-based systems for design, 
especially of mechanical systems [Dym 1985, Gero 
19851. The expectation is that these computer systems 
can improve the quality of designs and shorten the time 
required to find satisfactory designs. 

Some of the major stages in designing a complex 
system are: i) a definition stage where precise 
functional specifications are developed from the 
requirements; ii) a generation stage where many 
satisfactory designs may be created; and iii) an 
evaluation stage where these different designs are 
compared or optimized by some criteria. These stages 
are not necessarily sequential because the latter stages 
can provide feedback to earlier ones. In this paper we 
shall be primarily concerned with the middle stage, i.e., 
the generation of designs that satisfy some functional 
specification. 

The general problem of designing artifacts that 
satisfy some arbitrary functionality is not well 
understood [Mostow 851. However, there seem to be 
many design problems where the search space has been 
largely defined by the expert designers (or can be 
obtained from them). This means that the kinds of 
dimensions of the design space are by and large known, 
i.e., the kinds of design parameters are known. 
Furthermore, the design parameters of the search space 
are constrained to produce artifacts which have the 
“same” functionality. We shall call problems with these 
two properties as being well-defined. 

In this paper we present a framework for building 
computer programs that can assist in the design of 
systems that have well-defined search spaces. The 
framework rests on the key observation that given 
such spaces, the process of generating alternative 
designs is largely a process of searching these spaces. 
This is not to suggest that the space is small, or that it 
does not vary in details, or that substantial reasoning 
may not be needed for finding satisfactory designs. On 
the contrary, the search process is guided by knowledge 
about how to define partial designs in this space and 
knowledge about how to modify a partial design when 
the constraints are violated. Furthermore, the search 
may be ordered by heuristic knowledge obtained from 
experience. 

The proposed framework organizes these different 
kinds of knowledge into design plans. These plans are 
carried out by a problem solver that can engage in 
exhaustive search if the knowledge is insufficient. The 
problem solver extends the notions of 
dependency-directed backtracking with an advice 
mechanism. This mechanism allows advice based on a 
failed constraint to reorder the generators at a prior 
decision point allowing rapid convergence in many 
cases. 

856 / ENGINEERING 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



Based on this framework we have successfully built 
an expert system called PRIDE [Mittal et. al. 19861 for 
the design of paper transports inside copiers. In this 
paper we shall focus on the ideas behind the design 
framework and not the expert system itself. We start by 
describing an example of an artifact with a well-defined 
design space. The next section makes our notion of 
design-as-search more precise. The subsequent three 
sections describe the framework itself. We conclude 
with a discussion of some of the questions raised by our 
work. 

2. Knowledge about the Artifact Being 
Designed 

We begin with a simplified example taken from the 
domain of paper handling systems inside copiers and 
duplicators. 

An example of an artifact 

A paper handling system in a copier is used to 
transport paper from an input to an output location, 
avoiding certain obstructions. One kind of paper 
transports are built from the pinch-roll technology. In 
this technology, a “baffle” is used to guide the paper 
along a certain path and “roll stations” are placed along 
this path to move the paper (see Figure 1). Roll stations 
consist of one or more pairs of rolls mounted in 
corresponding shafts. Each pair, in turn, consists of a 
driver roll, which is powered, and an idle roll, which 
spins freely. 

A typical design problem specifies the velocity and 
angle of the paper at the input and output locations of 
the transport, maximum acceptable skew of the paper 
while being transported, characteristics of the papers 
that will be transported (e.g., length, weight, etc), and 
so on. The problem is to determine the shape of the 
baffle, the number, position and kinds of roll stations, 
the properties of drivers and idlers, and many other 
properties of these and other components. 

Different kinds of knowledge 

There might be several kinds of artifacts, based on 
different technologies, that can exhibit the “same” 
functionality. For instance, paper transports can also be 
built from belt-transport technology. 

For each technology, it is necessary to know the 
kinds, and numbers, of parts (or components) and how 
those parts compose or interact to form the artifact. 
Parts might be further decomposed into other parts. 

Certain parts might have alternative decompositions 
into subparts, and it is necessary to know the conditions 
under which each alternative is more suitable. 

Parts have “relevant” properties, i.e., properties 
that can affect the functionality of the artifact. (e.g. 
width and diameter of a driver roll, which may affect 
the velocity with which the paper moves while passing 
through the station). When parts interact with other 
parts of an artifact, they can exhibit certain relevant 
behaviors (e.g., velocity of a driver, skew of the paper), 
which depend on properties and behaviors of these or 
other parts. 

Corresponding to each property, one needs to know 
what the plausible values are for that property, e.g., the 
different known diameters of a drive roll may be 10,20, 
40 mm; the width of a driver can be between 5mm and 
50mm in increments of lmm; the baffle gap can be 
between 2 and 1Omm in increments of 0.5 mm; etc. 
Certain properties of parts can only take values from a 
pre-existing set of values. This is the case when it is 
desirable to select parts from existing ones. For other 
properties it might be known how to design them 
taking into account the given specifications and the 
properties and behaviors of other parts. 

3. Design as Knowledge-guided search 

The process of designing such an artifact can be 
usefully viewed as a search of a multi-dimensional 
space of possible designs. The dimensions of such a 
space are the parameters of the artifact, i.e., the 
structural relationships between the parts and the 
properties of the individual parts. For example, in the 
case of a paper transport, some of the dimensions would 
be “input velocity of the paper coming into the 
transport “, “lengths and widths of the different kinds of 
paper”, “length of the paper path”, physical 
characteristics of each of the driver and idler roll at 
each station such as diameter, width, material, and 
velocity, etc. 

Typically such design spaces are very large and 
searching for suitable designs can be very time 
consuming. Two major factors contribute to this. First, 
significant computation may be involved in defining a 
point in the space, i.e., assigning values to the different 
parameters. Because the space is quite sparse, in that 
there are far fewer acceptable designs than the ones 
ultimately rejected, most of the search effort may be 
expended in finding solutions that will be rejected later 
on. One approach to mitigate this problem is to analyze 
partial designs as early as possible, instead of waiting 

APPLICATIONS / 857 



for the complete design. 

This brings us to the second cost, i.e., the 
computation in evaluating a design for suitability. 
Many of the analysis techniques are time-consuming 
and a design may pass one analysis only to be rejected 
later by another one. By appropriately ordering the 
generation of the design and its evaluation for 

suitability, some of the wasteful computation may be 
avoided. 

Given this complexity, experienced designers use 
knowledge of various kinds to direct their search. As 
discussed in the previous section, one obviously needs to 
have a great deal of knowledge about the artifact itself. 
Here we will discuss some of the knowledge used in 
exploring the space and directing the search. 

Ordering Knowledge. 

A simple, yet powerful piece of knowledge is 
information that creates an order in which decisions get 
made. Use of such ordering information is quite 
prevalent [Mostow 851. However, the characteristics of 
the search space which create such order are not well 
understood. The ordering knowledge may be simply 
based on the dependencies between decisions. For 
example, in our example problem, decisions about roll 
station placement depend so intrinsically on the length 
of the paper path that they have to be made later. 

A different kind of order is created by structuring 
the space hierarchically. By this we mean that instead 
of having the complete space explicitly defined, 
decisions along some dimension open up sub-spaces. 
Thus, different choices at some level could lead to very 
different sub-spaces being opened up for design. A 
simple example from paper transport domain involves 
choice of technology. Depending on the technology 
chosen such as rolls or belts, very different design 
spaces are opened up for further exploration. 

Constraints between parameters. 

The parameters of the design artifact are not 
independent. Often, they are constrained by relations. 
Some of these constraints may be derived from the 
explicit specifications of the particular design problem. 
For example, the locations and angles of the input and 
output of the paper transport constrain the shape of the 
paper path. 

A different set of constraints is derived from the 
intrinsic properties of the structure and behavior of the 
artifact being designed. All paper transports must 
satisfy some basic constraints on velocities, frictions, 

and forces acting on a moving paper, otherwise they 
will fail in their essential functionality. For example, 
the distance between two consecutive roll stations must 
be less than the smallest paper that will be transported 
by the paper handling system, otherwise for certain 
sections of the path the paper will no longer be under 
the control of any station. Both kinds of constraints 
determine the suitability of a design in terms of 
providing the desired functionality. 

The way these constraints are used is crucial in 
determining how efficiently the design process 
operates. It is well known that a generate and test 
model in which the constraints are primarily used to 
test the generated solutions will be quite inefficient. 
More powerful problem solvers such as 
dependency-directed backtracking [deKleer et al. 791 
also have some well-known deficiencies. Some of these 
deficiencies can be compensated by using appropriate 
knowledge, in terms of “ordering” information based on 
how the variables are constrained . 

We have found it useful to make a distinction 
between tight and loose coupling between a set of 
variables. In the case of tightly coupled variables, a 
search procedure that tries to assign a value to one of 
these variables and then propagate it over the 
constraints may have to back up many times before 
finding a consistent solution. However, in the case of 
loosely coupled variables, it is often possible to find a 
partial order in which the variables are decided which 
will work with relatively small amounts of 
backtracking. 

Advice for Modification. 

A major piece of knowledge that expert designers 
seem to use when the design fails some acceptability 
condition (constraint) is how to modify the design. 
Consider a dependency-directed backtracking problem 
solver in constrast. It knows enough to back up to a 
relevant decision point but does not have any way of 
deciding how to modify its decision. Good designers, on 
the other hand, not only know where the relevant prior 
decision points are but also analyse the failure to decide 
how to modify their past decisions. Being able to advise 
a prior decision point (and a problem solver in general) 
is crucial in reducing the search. In the best case, the 
advice would enable a previous decision to be modified 
in exactly the way needed to fix the current constraint 
failure. In general, the advice may only help partially. 
In the framework we have developed, and described in 
the rest of the paper, this ability to advise plays a 
central role in problem solving and is an important 

858 / ENGINEERING 



advance over most of the earlier approaches. 

4. Structuring Design Knowledge as Plans 

In the previous section we identified four major 
kinds of knowledge that are needed during the design 
process: defining the dimensions of the design space; 
choices along each dimension; constraints on these 
choices; and advice for modifying some design choice. In 
addition, there were heuristics on ordering the 
decisions, structuring the space, and ordering the 
choices for some dimension that aid in making the 
design process be more effective. These different pieces 
of knowledge can be effectively integrated into 
knowledge structures that we shall call design plans. In 
this section we introduce the different plan elements 
and describe their structure. The next section discusses 
how they are used in problem solving. 

Goals. 

Plans are organized around goals for making design 
decisions about a set of design parameters. Each goal is 
responsible for a few of these parameters, i.e., it 
represents one or more decision points from a problem 
solving viewpoint. A goal also defines some of the 
dimensions of the design space. By this we mean that 
only by scheduling a goal does the design sub-space 
defmed by that goal become ready for exploration. 

In our paper transport domain, some typical goals 
would be “Design Paper Transport”, “Design Paper 
Path”, “Design Driver Roll”, and “Design Driver 
Width”. The first of these is a top-level goal, which can 
recursively expand into a tree of sub-goals (Figure 2). 
Each of these goals defines a space of partial designs. As 
we move down the goal tree fewer dimensions are 
considered. Thus, the goal “Design Driver Width” is 
concerned with only one design parameter, whereas the 
goal “Design Driver Roll” is concerned with all 
parameters of a driver roll. The former is a sub-goal of 
the latter. Each goal explicitly specifies the design 
parameters it is responsible for. Goals also specify the 
design parameters on which they depend. For example, 
the goal “Decide number and location of roll stations” 
specifies that it depends on knowing the paper path 
length. The dependency information may be either 
statically described or dynamically determined from 
the particular design method that is being tried or both. 

Design Methods. 

Design goals have different design methods 
associated with them, which specify alternate ways to 
make decisions about the design parameters of the goal. 

These methods capture the knowledge about the 
possible values of properties of components, as well as 
knowledge about the behavior of components. The role 
of the design methods is then to generate partial 
designs. 

The knowledge about carrying out a goal may be 
available in many different forms. This diversity is 
reflected by the different kinds of methods that exist in 
our representation. One kind of methods are generators 
which specify a set, or range of values to be generated. 
They can also encode heuristics about ordering the 
values, initial guesses, etc. For example, a generator 
method for driver width is shown in figure 3. It shows 
both the range of values as well as the initial choice 
heuristic. 

Another kind of methods are calculations which 
apply some mathematical function over a set of 
previously decided parameters. A calculation may be 
viewed as a combination of a generator and an equality 
constraint. This method always produces the same 
value for the same set of its input parameter values. 
Some of the other kinds of methods are procedures 
(which embed arbitrary computations) and constrained 
generators (which can look ahead to the constraints on 
the goal to generate values). 

There is another set of method types which 
primarily provide control knowledge on the use of other 
methods. A simple example are conditional methods 
(also called rules) which allow some conditions to be 
specified on the suitability of applying a method. The 
action part of a rule must be a method. Other examples 
of such control methods are rule groups and conjunctive 
methods. An important property of control methods is 
that they make explicit the separation between two 
kinds of knowledge: one for making design choices and 
the other for selecting a suitable set of choices or 
ordering the different sets of choices. 

Sub plans. Another kind of control method is called 
a subplan. These methods specify a set of goals that 
must be carried out in order to satisfy, the higher level 
goal. The actual order in which the goals are carried out 
is specified by the input and output dependency 
descriptions attached to a goal. The subplan method is 
the only mechanism for creating goal trees. This has 
some important consequences. First, alternate plans for 
decomposing a goal into sub-goals can be easily 
represented. For example, very different sub-plans 
exist for a goal if different technologies are available for 
the implementation of the goal’s specifications. Second, 

APPLICATIONS / 859 



given that a subplan method is like any other method, 
it can be embedded inside control methods. This allows, 
for example, plan selection knowledge to be represented 
inside control methods. 

Finally, subplan methods and other more direct 
methods can be simultaneously specified for the same 
goal. In other words, a goal may be achieved in 
different ways. One way may be to decompose it into 
smaller sub-problems. Another way might be to use 
previously designed pre-packaged solutions. For 
example, the goal for “Design driver roll” may have one 
method which decomposes the goal into sub-goals: 
“design diameter”, “design width”, “decide tolerances”, 
“decide material”, etc. A driver designed in this way 
may need to be manufactured from raw stock. Another 
method may be a generator which selects from some 
standard off-the-shelf driver rolls. Typically, this latter 
method would be tried before the more general subplan 
and be so specified. 

Statically no distinction can be made between goals 
which have sub-goals and those which have direct 
methods. During the execution of the plan, however, 
some differences arise. The primary difference arises 
from the fact that a sub-goal is responsible for a subset 
of the specifications of its super-goal. In such cases, the 
most specific goal is held responsible for the shared 
design parameter during problem-solving, which is 
described in the next section. 

In addition to the method types described above, we 
also specify an abstract problem solving protocol that 
must be followed by a method. Thus, new method types 
can be created. In fact, the current set has evolved over 
the course of representing the knowIedge about paper 
transports. 

Design Constraints. 

The third major element of a plan are constraints on 
the design parameters. These constraints are attached 
to some goal. Typically, they would be associated with 
the goal for the less constrained variable, as 
heuristically determined by experts. However, they can 
be as well attached on separate goals which then 
depend on the goals for the constrained parameters. 
Notice, that much of the ordering in the plan arises 
from where the constraints are attached. This is 
because the parameters in a constraint are also used to 
order the goal during run-time scheduling. As we 
discussed in the previous section, this is very 
appropriate because much of the ordering seems to 
come from the constraints on a parameter. 

We view a constraint as an object which basically 
specifies a relation between a set of design parameters. 
These relationships may reflect the conditions on the 
underlying structure or behavior of the artifact or they 
may be derived from the specifications of an individual 
problem. In the next section we elaborate on how 
constraints are used. 

Advice for modification. 

The last major element of a design plan is advice to 
the problem solver. We have identified the need for 
many different kinds of advice. In this paper we will 
focus on only one kind of advice, namely, modify 
parameter advice.. This is the advice attached to 
constraints and activated when constraints fail. These 
advice descriptions can be obtained in two ways. For 
certain kinds of constraints one can analyze the 
expression and determine which parameters must be 
modified and how to satisfy the constraint. In many 
other cases, the experts know from experience which 
parameter may be more easily modifiable and the 
system can determine how much to change the 
parameters in order to satisfy the constraint. 

In our framework we can represent both kinds of 
advice. This implies that part of the constraint protocol 
is being able to automatically analyze the failure. Once 
a piece of advice is created, no difference is made 
between the heuristic (produced by the expert) and 
direct (produced by the system) advice. 

Some of the other kinds of advice we have found 
useful are processing advice which advises the problem 
solver itself to give up or suspend a particular 
exploration path; selection advice which causes a 
particular plan to be aborted in favor of another; and 
modify specification advice which advises the user (or 
another system) to change some problem specification. 

5. Problem Solving using the Plans 

We start by describing the basic problem solver that 
tries to carry out these design plans. Later we will 
briefly describe the more extended version which 
supports a more comprehensive design process. The 
basic problem solver comprises three major parts: i) a 
goal scheduler which uses an agenda to post goals, try 
them out, suspend them if needed, and revise them; ii) a 
dependency net which is created dynamically (this data 
structure associates a designed parameter with the goal 
which designed it and the goals which directly depend 
on it); and iii) a set of protocols which each of the plan 
elements is expected to follow. The protocols can be 
viewed as falling in two groups: initial design and 

860 / ENGINEERING 



revision. 
Notice that at the revised goal, some constraints 

Initial Design Protocol. which originally succeeded may now fail. This can 

Before a goal is run, its preconditions are checked. create new advice causing the problem solver to back up 

These are computed both from the input parameter further. Also, some new constraints may have been 

dependencies as well as direct dependency on other added which can fail. In fact the calculation methods 

goals. The latter is a heuristic way of ordering goals effectively propagate the advice backwards by this 

which reflects processing considerations. mechanism. 

The activated goal tries methods from its list of Illustration of the advice mechanism 

design methods to find the first that runs successfully. 
A method could cause a goal to suspend by surfacing 
some new dependencies. Most methods fail or succeed 
right away. Subplan methods, on the other hand, post 
new goals and suspend the higher goal. If all methods 
fail, then the goal fails. Notice, that if the goal was 
embedded in a subplan method, and all but the top goal 
are, this failure propagates to the method and up. 

Once a method succeeds, the constraints are tried. If 
all constraints are satisfied, the goal succeeds. If a 
constraint fails, however, the problem solver (often 
working with the user) will either relax the constraint 
or try to satisfy it by revising the partial design. 

Revise Design Protocol. 

In order to revise the design the problem solver has 
to: i) determine what design parameter(s) to modify, ii) 
determine which goal to backtrack to, and iii) try to 
effect the change. The first piece of information comes 
from the advice attached to constraints. Given the 
advice, the dependency net is examined to determine 
the goal which can handle the advice. This goal is then 
activated in a “revise” state. 

The revised goal adds the advice as a new 
constraint. It then asks the previously executed method 
to revise itself if it can. Different methods handle advice 
differently. A generator tries to generate a different 
value which conforms to the advice. A calculation, on 
the other hand, can revise itself only by creating a new 
piece of advice which may cause the problem solver to 
backup further. If the original method fails, then the 
goal searches among its other methods for the first 
method that succeeds. If none of the methods succeed 
then the advice has failed and control returns to the 
original point of failure. Often there are other pieces of 
advice that can be tried. If a method does succeed in 
producing a value then the constraints are checked 
again. If the constraints are satisfied then the advice 
has succeeded and design will proceed, eventually 
reaching the goal which originally failed and 
continuing beyond if the advice was appropriate. 

We shall illustrate how the advice mechanism 
works with the help of a simple example. Consider the 
following two constraints on three variables X, y, and z. 

x+y+z>lO (Cl) 

x+y+z<20 Ka 

Furthermore, let us assume that independent of these 
constraints, we also know the sets from which each of 
the three variables can take values. 

x: {1,3,5} (4) 

Y: {2,4,6’ 8) r (5) 

z: (1 . . 100) (6) 

One way to represent this problem in our framework 
is to have separate goals for x, y, and z. Let us call them 
Gx, Gy, and Gz. Each of these goals will have a single 
method, which is a generator incorporating the choice 
sets in (4) - (6) respectively. Let us name the methods 
Mx, My, and Mz. Also assume that there is no 
knowledge about initial guesses for these variables in 
the generators. Constraints Cl and C2 can be either 
attached to one of these goals or a fourth one. Let us say 
we adopt the latter representation and call the goal 
with the constraints Gc.. [A discussion of the differences 
between the two choices are beyond the scope of this 
paper.1 

In the initial design phase, the goals Gx, Gy, and Gz 
will be trivially satisfied (because no constraints are 
attached to them) by making the following choices. 

x=l;y=2;andz=l 

However, goal Gc will fail because while C2 is satisfied, 
Cl is not. Constraint Cl can generate many different 
advice for modification: 

xt,>7 (Al) 

YL=+ UW 

zf,>7 (A3) 

x 7 & y ‘/’ (A4), etc. 

The advice Al means “increase x such that it is greater 
than 7”. In this example, we will only consider advice 

APPLICATIONS / 861 



that tries to change one variable at a time. The advice 
Al when sent to the problem solver will cause goal Gx 
to try to revise itself. However, the method Mx at Gx 
cannot find a value for x that is greater than 7, so this 
advice will fail. Goal Gc will then send advice A2, which 
also fails. Next A3 is tried which succeeds in modifying 
z to 8 and now the constraints are satisfied. 

Notice that the revision of z will cause all goals 
dependent on z to be “undone” and retried. Also, even 
though we started with arbitrary values for the three 
variables, we were able to quickly find a solution. The 
generators keep track of the choices they have made, so 
the same value will not be generated again in the same 
context (see section 6 for more on the context 
mechanism). 

Suppose we were to impose a new constraint on z at 
this point: 

z>lO (C3) 

This constraint will fail creating an advice, 

z?, >lO (A5) 

This advice will cause the value of z to change to 11. 
The change in z will undo goal Gc which will recheck its 
constraints. The constraints Cl and C2 are still 
satisfied, so this new solution will be accepted. Notice, 
that if wanted to preserve the previous solution, this 
new constraint would be imposed in a subcontext, 
allowing both solutions to be explored further. 

Example of design revision from Pride 

Let us consider another example which is drawn 
from the paper transport domain. After the shape of the 
path to be followed by the paper has been defined, it is 
necessary to determine the number of roll stations and 
their locations. The placement of the stations has to 
satisfy various kinds of constraints [Mittal and Stefik 
861. 

In the design phase, a heuristic is used to propose 
the number of stations. Using this information, a 
method is applied which determines ranges of 
placements of stations such that the relevant 
constraints are satisfied. If it turns out that no such 
placement exist because for any placements there are 
constraints that are not satisfied, then a redesign 
episode takes place. A piece of advice is generated 
indicating, for instance, that the number of roll stations 
should be increased. This requires undoing the previous 
decision (and all the decisions that depended on it) and 
making a new decision using the advice. This is 
illustrated in figure 4. 

Discussion. 

Some important properties of our problem solver are 
novel and crucial to its success. Our problem solver 
augments a weak-method, i.e., dependency-directed 
backtracking, with an advice mechanism. In other 
words, the dependencies between design parameters 
are used in determining a relevant decision point to 
back up to. Furthermore, the failed constraint(s) is 
analyzed to determine a piece of advice for the revised 
decision. Thus the problem solver is not only capable of 
searching its entire design space but still does so 
intelligently and directed by advice from failures. 
Moreover, this general search method is integrated in a 
framework which is knowledge-rich. This means that if 
knowledge exists about ordering goals or making 
plausible choices, it can be profitably used. Recourse is 
made to the general method only where sufficient 
knowledge does not exist or is incomplete. 

Finally, notice that our approach avoids another 
typical shortcoming of purely knowledge-based 
approaches which rely on heuristically determined 
order between goals. In our scheme even if two goals 
were ordered the wrong way, the advice mechanism 
would produce the correct result in one round of 
revision. This is because the advice mechanism allows 
constraints imposed later in design to be propagated 
back as advice. The same mechanism can also be used 
to do a rough design followed by a more precise design. 

Limitation. 

Even though the problem solver we have described 
can perform arbitrary search, it will clearly be too 
inefficient in some cases. One such situation arises in 
cases of tightly coupled variables. That is, if there is a 
set of variables which are so inter-constrained that no 
local propagation of values or advice will suffice to 
efficiently find a consistent solution, then one might 
want to look for other problem solving methods for that 
subproblem. For example, in the paper transport 
design, the roll placement problem has this property. It 
is important to emphasize that these special problem 
solvers can still be embedded in our overall framework 
by embedding them inside design methods. The 
example discussed earlier illustrated this point. This 
implies that the overal problem solving may still 
proceed as a process of solving loosely-coupled 
sub-problems with some backtracking, with the 
tightly -coupled decisions localized as a single 
decision-point, but still capable of being revised from the 
outside. 

862 / ENGINEERING 



6. Extended Problem Solver 

We briefly describe two other components of the 
problem solver that play a major role in supporting the 
overall design process but are not essential in 
understanding how the problem solver works. 

Multiple design contexts. 

We provide a facility for maintaining multiple 
design contexts [Mittal et. al. 19861. A design context 
contains a complete description of the artifact being 
designed, a complete description of the state of the 
design plan corresponding to that design, and the state 
of the problem solver. 

The advising mechanism makes use of the multiple 
contexts mechanism. Specifically, when the design 
problem solver processes an advice, it can do so in a 
separate context. This ensures that if a specific advice 
fails to revise the design satisfactorily, the system can 
back up to the context in which the advice was 
originated and continue with a different advice. 

The ability to create multiple partial designs and 
keep them distinct is crucial in exploring different 
choices simultaneously. For example, at certain choice 
points, one can explore the different choices 
simultaneously by creating a sub-context for each 
choice. We have chosen not to do so because of the size of 
the design space, i.e., the number of choice points and 
choices at each point are far too many. Ultimately, 
some incorporation of ATMS [deKleer 19861 ideas may 
be worthwhile. 

User control of the search. 

Pragmatically, the user and the automated problem 
solver have to work together. This is because of the 
complementary nature of their strengths. Most 
automated problem solvers can tirelessly search a 
design space, manage the dependencies, selectively 
undo parts of the design, and consistently check the 
constraints. However, they rarely have enough 
knowledge to avoid unnecessary work. Human problem 
solvers, including experts, are rarely systematic in the 
above activities, but often have knowledge that lets 
them avoid or minimize the search. It seems natural, 
therefore, that there be a way for the human user to 
steer the problem solver in more suitable regions of the 
search space. 

We provide many entry points for a user to interact 
with the problem solver. The advice mechanism turns 
out be quite suitable for many such interactions. Thus, 
a user can easily enter a piece of advice. This means 

that the user can choose to advise arbitrary goals and 
thereby affect the course of design. 

Another natural place is in the selection of advice. A 
failed constraint typically has alternative advices on 
how to satisfy it. However, it is often hard for the 
system to decide which advice is more likely to succeed. 
We allow the user to not only change the order of the 
advice but also change its content in some cases. 

There are many situations where the design 
methods are incomplete in their description of the 
design space. In such situations, it is natural for the 
user to be able to make a design decision and let the 
system do the rest. In fact it is possible for the user to 
not only make the decision but also handle the ensuing 
advice from a constraint failure at some subsequent 
goal. On a very pragmatic basis, these ‘hooks’, along 
with the multiple context facility, allow a user to work 
with the system in exploring a design space and looking 
at alternatives quite rapidly. 

7. Discussion and Conclusions 

The framework described in this paper has been 
successfully used to build a knowledge-based system, 
called Pride, for designing paper transports inside 
copiers and duplicators [Mittal et. al. 19861. A prototype 
version of Pride has been ready and in field test for over 
a year now. It has been tested on real design problems 
from previous and ongoing copier projects. It has been 
successful in not only producing acceptable designs but 
also in analyzing designs produced by engineers and 
identifying shortcomings in their designs. 

The notion of plans for representing design 
knowledge was independently developed by Brown and 
Chandrasekaran [Brown and Chandrasekaran 19851. 
Our framework, however, is more general in many 
ways. First, we impose fewer restrictions on the kinds of 
artifacts we can handle. Second, we provide a problem 
solver that can search the design space more 
thoroughly. Finally, our multiple contexts mechanism 
allows different design alternatives to be 
simultaneously explored. 

Many interesting research issues are still 
unresolved in the work we have presented. For 
example, we have not explored the limitations of the 
advice mechanism. In particular, we have not looked at 
the general case where many constraints can 
simultaneously fail and the problem caused by 
conflicting advice. Another area of investigation is a 
categorization of constraint types and the constraint 
satisfaction methods that may be most suitable for each 

APPLICATIONS / 863 



type. 
Another interesting issue we are investigating is 

the relationship between the structure and function of 
the artifact on one hand and the design plans on the 
other. This seems to be important both from the point of 
view of acquiring additional knowledge as well as 
generating the design plans more automatically. 

As was indicated in the introduction, the proposed 
framework supports the “generation of alternative 
designs” stage of the overall design process. We are 
trying to extend the framework to cover the other 
stages also. In particular, we want to study the 
processes involved in the comparison of designs 
according to a set of criteria. Also, we want to extend 
the advice mechanism to support the feedback processes 
between the different stages. 

Acknowledgements 

Mittal, S., C. L. Dym, and M. Morjaria. “PRIDE: An 
Expert System for the Design of Paper Handling 
Systems.” To appear in Computer (Spl. Issue on Expert 
Systems for Engineering Applications). July, 1986. 

Mittal, S., and M. J. Stefik. “Constraint Compaction: 
Managing Computational Resources for Efficient 
Search.” Technical memo, Xerox Palo Alto Research 
Center, Palo Alto, CA, April, 1986. 

Mittal, S., D. G. Bobrow, and K. Kahn. “Virtual Copies: 
At the boundary between classes and instances.” To 
appear in Proc. ACM Conf. on Object-Oriented 
Programming Languages, Systems and Applications 
(OOPSLA). Portland, Oregon, September, 1986. 

Mostow, J. “Towards Better Models of the Design 
Process.” AI Magazine, Spring 1985. 

The Pride project is a joint effort between Xerox 
PARC and Xerox RBG (Reprographics Business 
Group). Mahesh Morjaria, George Roller and many 
other engineers at RBG have collaborated on this 
project from the start. Felix Frayman has contributed 
many ideas and programming effort to the project. 
Mark Stefik has supported the work both as the 
manager of Knowledge Systems Area at PARC and as a 
research colleague. Daniel Bobrow, Felix Frayman, 
Ken Kahn, Mark Stefik, and the referees provided 
invaluable feedback on earlier drafts of the paper. 

References 

Brown, D. C., and B. Chandrasekaran. “Expert Systems 
for a Class of Mechanical Design Activity”. In J. Gero, 
ed., Knowledge Engineering in Computer-Aided Design. 
North Holland, Amsterdam, 1985. 

Dym, C. L., (ed). Applications of Knowledge-Based 
Systems to Engineering Analysis and Design. ASME, 
New York, 1985. 

Gero, J., kd). Knowledge Engineering in 
Computer-Aided Design. North Holland, Amsterdam, 
1985. 

de Kleer, J., J. Doyle, G. L. Steele, and G. J. Sussman. 
“Explicit Control of Reasoning”. In P. H. Winston and 
R. H. Brown, eds., Artificial Intelligence: An MIT 
Perspective, MIT Press, Cambridge, 1979. 

de Kleer, J. “An Assumption-based TMS”. Artificial 
Intelligence 28:2 (1986) 127-162. 

a) Side view of paper path 
and roll stations 

Driver 

I-- 1 

- >Shaft 

t Idler t 

b) Front view of roll station 

FIG 1: Views of a Paper Handling System 

864 / ENGINEERING 



Design Paper 
Transport 

Decide Number & 
Design Paper Path m m w m Location of Stations m I w I m m m m m I a mL 

Design Station 
- m m. 

I F For each Station: 

Decide Number of Generate Range of 
Stations Locations 

Generate Location Design Driver Design Idler 

, 

goal - subgoal relation 

I m I I. goal on right depends on goal on left 

Fig 2: Part of goal tree for Paper Handling Systems 

Idler width generator 

parameter : Idler width 
minvalue : 10mm 
maxvalue : 100mm 
step : lmm 
initial value : if driver width known 

then 2 * driver width 
else 40mm 

Fig 3: Generator for Idler Width 

3) 
Advice 
parameter: # of roll 
station 

change: increase by 
one 

1) 

Goal: decide # of roll 
stations 

Method: divide length of 
path by smallest paper 
length 

. 

I D 

Goal: generate range of locations 
that satisfy contraints 

Method: contraints compaction 
algorithm 

Constraint 1: maximum 
separation between neighboring 
rolls < smallest paper length - K 

Fig 4: Advice Example 

APPLICATIONS / 865 


