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ABSTRACT 

This paper explores VLSI synthesis and the role that traditional 
AI methods can play in solving this problem. VLSI synthesis is 
hard because interactions among decisions at different levels of 
abstraction make design choices difficult to identify and evalu- 
ate. Our knowledge engineering strategy tackles this problem 
by organizing knowledge to encourage reasoning about the 
design through multiple levels of abstraction. We divide design 
knowledge into three categories: knowledge about modules used 
to design chips; knowledge used to distinguish and select 
modules; and knowledge about how to compose new designs 
from modules. We discuss the uses of procedural and declara- 
tive knowledge in each type of knowledge, the types of 
knowledge useful in each category, and efficient representations 
for them. 

1. INTRODUCTION 

The VLSI design domain1 is well-suited to the exploration of 
design because of the large body of work on the computer 
representation and manipulation of VLSI designs. In this paper 
we present and justify one approach to the knowledge engineer- 
ing problem for VLSI. 

We base our views about VLSI knowledge engineering on our 
experience with VLSI synthesis programs, notably Fred, a chip 
planning database,2 the Design Automation Assistant a 
knowledge-based synthesis program,3 and BUD, an intelligent 
partitioner for ISPS descriptions.4 Our goal is the automatic 
design of large (100,000 transistor) systems whose quality as 
measured by performance and cost is competitive with human- 
produced designs. We view the design problem as one of succes- 
sive refinement of an algorithmic description of a processor 
guided by user-supplied constraints on cost and performance. 
The synthesis procedure implements the algorithm’s data and 
control flow as a structure built of modules and wires, and finds 
a layout that implements that structure. 

Doubtless the synthesis of high-quality designs is difficult-VLSI 
design is a composition of a large number of subproblems, many 
of which are NP-hard. Further, synthesis is in some important 
respects fundamentally different from the diagnosis problems to 
which rule-based expert systems are typically applied. Diagnos- 
tic systems try to infer behavior of a system from a partial 
description of its behavior and/or structure; synthesis systems 
try to build a good implementation from a specification, a 

process that usually requires search. In this respect the problem 
more closely resembles the problem attacked by Dendra15 
-finding candidate molecular structures for organic compounds. 
VLSI synthesis is particularly complex because decisions about 
architecture, logic design, circuit design, and layout cannot be 
fully decoupled. Lacking perfect foresight, a synthesis system 
must be able to reason across multiple levels of abstraction, 
through deduction and search, to predict or estimate the results 
of bottom-up implementations. 

A synthesis system’s ability to make tradeoffs based on bottom- 
up design information requires not only specific pieces of 
knowledge, like the size of a particular design, but an organiza- 
tion of knowledge that allows the system to extract and manipu- 
late that knowledge. As in any design system, we judge the 
value of our knowledge engineering scheme by two criteria: 
effectiveness, or whether the scheme expresses what synthesis 
needs to know; and efficiency, or how much it costs to compute 
the knowledge. The relative importance of effectiveness and 
efficiency will vary for different tasks; decisions that require the 
examination of a large number of candidate designs may be 
satisfied with simple, quickly computable information about the 
designs, while other decisions are made by detailed examination 
of a few designs. In the rest of the paper we develop a 
knowledge engineering scheme and judge it by these two cri- 
teria. 

2. HORIZONTAL AND VERTICAL REPRESENTATIONS 

The partitioning of the digital system design process into levels 
of abstraction goes back at least to Amdahl, et ~2.~ and, more 
concretely, to Bell and NewelL7 who divided digital system 
design into four levels of abstraction: processors, programs, 
logic, and circuits. Bell and Newell emphasized that their tax- 
onomy was dependent on the existing technology and general 
understanding of computer science, and was likely to change 
with time, as it did in Siewiorek, Bell, and Newell.8 A simplified 
form of their taxonomy was reflected in the SCALD CAD system 
used to design the S-l processor.g The Carnegie-Mellon Design 
Automation Project advocated a similar top-down, successive 
refinement approach for automatic designlo More recently, 
Stefik et ul.ll have updated the Bell and Newell paradigm for 
the VLSI domain. 

Gajski and Kuhn have proposed a more comprehensive model 
for understanding design methodologies. 1 2 They divide the 
universe into representations-structural, functional, and 
geometrical-each of which includes several levels of abstrac- 
tion. Walker and Thomas have expanded this model to detail 
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the various levels of abstraction in each representation.13 

We characterize the levels of abstraction model as horizontal: a 
description level categorizes all the knowledge about a particular 
phase of design, but the complete description of any particular 
design requires reasoning at several different levels. Using levels 
of abstraction as an organizing principle, as in Palladio,14 limits 
one’s ability to consider bottom-up knowledge. We have organ- 
ized our knowledge into three groups, with knowledge about 
modules organized vertically-knowledge about a module at all 
levels of abstraction is contained in the module description. Our 
methodology is more akin to that of the Caltech Silicon Struc- 
tures Project,15 which advanced the “tall thin man” paradigm as 
an embodiment of the simultaneous consideration of problems at 
multiple levels of abstraction. We believe that a vertical 
classification scheme has some distinct advantages. 

First, a vertical categorization enhances one’s ability to analyze 
tradeoffs. One radical example of the effect of low-level 
knowledge on high-level decisions is the relation between pinout 
and architecture. Fabrication, bonding, and power dissipation 
limitations set a maximum number of input/output pads avail- 
able on a chip; the resulting upper bound on the amount of com- 
munication between the chip and the world is a strong constraint 
on many architectures. A more subtle example is the relative 
cost of barrel shifters in nMOS and CMOS-the shifter’s higher 
cost in CMOS may force a different architectural implementa- 
tion for some algorithms. We must be able to make design deci- 
sions by looking deeply into the details of the available imple- 
mentation choices. 

Second, simplified models to describe a particular level of 
abstraction exclude useful and important designs. One example 
in what Stefik et al. call the CZocked Primitive Switches level is 
the precharged bus (where the parasitic capacitance of a bus 
temporarily stores a value that is picked up during a later clock 
phase). This circuit design technique violates a fundamental 
precept of strict clocking methodologies-that a wire is 
memoryless-but, when applied with the proper precautions, 
works. Further, precharged busses are commonly used and are 
often the only way to improve chip performance to an accept- 
able level. A strict clocking methodology that has been 
extended to include precharging is described by Noice et aZ.,16 
but the extensions require explicit verification of the propriety of 
the precharging circuit, complicating this once simple methodol- 
ogy. Methodologies, like those used to guarantee clocking 
correctness, simplify a problem enough to allow quick solutions 
of a wide variety of problems. But to produce high-quality 
designs, a synthesis system must be aware of the limitations of 
its methodologies and be able to collect and analyze knowledge 
to circumvent its limitations. 

Figure 1 shows that we partition our design knowledge accord- 
ing to the tasks of synthesis. Each category also uses a distinct 
knowledge representation scheme. We divide knowledge into 
three categories: knowledge about particular modules that can 
be used in a design, which we represent procedurally; knowledge 
used to distinguish implementations of a module, which we 
represent declaratively; and knowledge about the composition of 
designs from modules, which we represent both procedurally and 
declaratively. In the next three sections we will describe the 
knowledge in each of these categories and efficient 

level components 

PMS 
processors, memories, 
switches, links 

program memories, instructions, 
operators, controls 
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module knowledge 
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of module knowledge 

Figure 1. TWO CATEGORIZATIONS KNOWLEDGE 

representations for it. Our enumeration of useful knowledge is 
not meant to be complete or final, but our experience tells us 
that this taxonomy is useful. 

3. KNOWLEDGE ABOUT MODULES 

We divide knowledge about modules into two distinct topics: 
module designs themselves and methods for evaluating modules. 
(A module may be a type of component or a class of com- 
ponents, like the class of adders of width n). The design of a 
module, or of an algorithm for designing a class of modules, is a 
form of expert knowledge. The ability to compute certain 
important properties of a module’s design is an orthogonal type 
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of knowledge. The Fred database takes advantage of this ortho- 
gonality by using an object-oriented description for modules, as 
does Palladio. We build a general-purpose set of measurement 
methods to answer fundamental queries, and build on top of 
these utilities procedural descriptions of specific modules. The 
objects that describe these modules are kept in a database that 
can be searched using selection functions. 

Measurement of a module’s properties is the best understood 
topic in VLSI design. Algorithms exist to measure almost every 
conceivable property of interest. (There is little point in recast- 
ing these algorithms in declarative form.) Unfortunately, most 
synthesis systems have used simple look-up tables or crude 
built-in approximations to measure candidate designs. Tables 
are insufficient to describe parameterized module designs; built- 
in approximations make it difficult to justify decisions to later 
stages of designs, and inconsistencies may result if different 
design procedures use different approximations. We have had 
good success with evaluating candidate designs based on the 
answers to a few fundamental queries: 
l Physical properties- Measurements of the values of the 

electrical elements in the circuit. Values for transistors 
(length and width) are easy to measure. Parasitic values 
associated with layout elements (transistors, contact cuts, 
wires) require more effort. 

l Speed-Delay is the real time required to propagate logic 
signals through networks. The details of delay calculation 
differ among circuit technologies, but all require measure- 
ment of the circuit element values and calculation of delays 
based on those values. Methods for calculating delay for 
MOS technologies are described by Osterhout.17 

l Clocking-A related, but different type of knowledge 
describes the clocking behavior of the module, particularly, 
the clock phases on which the inputs and outputs are valid 
and the delay in clock cycles from an input to an output. 
Once clock signals are declared and the clocking behavior of 
primitive components is known, standard longest path algo- 
rithms can be used to compute the clocking delay from 
inputs to outputs. l 8 

l Shape-If the module’s physical extent is modeled as a set 
of rectangles, a request for the shape of a module can be 
used to derive measures such as area, aspect ratio, and 
minimum required spacing. Fred uses a simple form of com- 
pactionlg to estimate the shape of a module from its consti- 
tuent components and wires. Compaction also tells us about 
the locations of the input/output ports for the module. 

These queries are usually enough to derive the required 
knowledge about a module; in a few cases it may be necessary to 
supply special-purpose methods for calculating some parameter 
either for performance reasons or, occasionally, because the 
approximations used in the standard methods are inadequate for 
the peculiarities of a particular module. 

The complementary component of module knowledge is the 
design of the module itself. We describe module designs pro- 
cedurally rather than declaratively. There are many design 
tasks that can be done algorithmically: layout compaction,20 
transistor sizing,21 and clocking22 are examples. As with meas- 
urement procedures, there is little point in reformulating these 
algorithms declaratively. The most mundane part of the module 
design, the basic structural description of the components, wires, 

and layout elements that implement the module, could be 
described declaratively, but we choose to use a procedural 
representation for consistency and ease of use with existing 
design procedures. Another pragmatic reason for preferring 
procedural description of a module’s structure is that most 
designers know procedural languages but are unfamiliar with 
strongly declarative languages. 

4. KNOWLEDGE ABOUT MODULE SELECTION 

Some information about a module is easily changed with 
changes in its parameters; other data is static across versions of 
the module. Often, we can use static information to make an 
initial selection of modules, and look at the dynamic information 
(which generally takes longer to compute) only when making 
final, detailed design decisions. Example of simple questions 
that greatly prune the search space of modules are “Does the 
module implement the function I am interested in?“, “Is the 
module implementable in a technology compatible with my 
design?“, and “Is the floor plan of this module compatible with 
my current physical design?” The distinction between static and 
dynamic data is not always clear-cut, but we can use it to our 
advantage to speed the initial search of the module design space. 

Fred segregates static, discriminatory knowledge about modules 
into an associative database to select candidate modules for an 
implementation. An associative database that supports deduc- 
tion is powerful enough to support queries used in module selec- 
tion but simple enough to run quickly. The user and author of 
the database contents must come to an agreement on the mean- 
ing of the predicates in the database. We have found these 
categories useful in initial module selection: 
l Functionality-A description of functionality includes a 

statement of the gross function of the module (adder, shifter, 
etc.) and an enumeration of particular operating characteris- 
tics of the module. Synthesis often requires functional infor- 
mation like “Does this latch have a reset signal?” or “What 
are the feasible bit widths of this shifter?” Such knowledge 
describes how a module deviates from the ideal behavior for 
a module that implements the pure function or how it is cus- 
tomized for a particular task. 

l Signal characteristics- Modules must be compatible in the 
way they represent logical signals as electrical signals. The 
important parameters of a signal are: 
- signal level (voltages for logic 0 and 1) ; 
- signal polarity (active high or low); 
- signal duality (whether the circuit requires/produces 

both true and complement signals). 
l Technology families- The most common technological deci- 

sions concern fabrication technology and circuit family. The 
description should allow the synthesis system to distinguish 
both particular technologies and families of technologies; a 
module generator may, for instance, be able to produce 
modules for a number of CMOS technologies. Examples of 
CMOS circuit families are full complementary, pseudo- 
nMOS, domino,23 and zipper.24 The database should also 
describe the compatibility of families; for example, domino 
CMOS circuits may be used to drive fully complementary 
circuits, but not the reverse. 

All this information can be derived from the module descriptions 
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before design starts and stored in the database. Once facts 
about the modules have been coded as patterns, such as (tech- 
nology adder-l cmos2.5), the database can be searched using 
standard pattern matching techniques. A pattern like (and 
(function ?x add) (technology ?x cmos)) will return the modules 
that can do an addition and are implemented in CMOS in the 
bindings of the variable ?x to the names of the candidate 
modules. 

The associative database mechanism makes it easy to support 
two useful forms of record-keeping for design decisions. Both 
methods rely on having the database apply a standard pattern 
set that is used along with the current pattern specified by the 
designer. First, a designer can add patterns that express design 
decisions like fabrication technology. Modules not meeting the 
criteria will be filtered out by the standard patterns. Similarly, 
the synthesis program can load the standard pattern set with a 
design style description that will enforce a set of externally 
determined choices-circuit family, layout style, etc. In both 
cases the history of changes to the standard pattern set can be 
used to trace design choices. 

Most of the standard techniques described in the literature can 
be used to speed up the pattern matching search. Because the 
categories of knowledge, and therefore the first names in the 
database patterns, are static, they can be organized into rela- 
tions to speed the search. For efficiency reasons the database 
should also include ordering criteria to order the search for max- 
imum efficiency; often a few standard categories will greatly res- 
trict the search space. 

5. KNOWLEDGE ABOUT MODULE COMPOSITION 

The previous sections have described knowledge about particular 
modules; we also need knowledge about how to put together 
modules to build new designs. We categorize knowledge about 
module design into three fields: general composition rules, which 
describe the basic operations that are used to build a module 
from components; optimization transformations, which transform 
one design into another, presumably better design; and search 
rules, which help the synthesis program search the space of can- 
didate designs. Each of these types of knowledge is used 
differently, and so requires a different representation. 

Examples of general composition rules are that a wire be con- 
nected to at least one input port and one output port, or that 
wires of incompatible clock phases not be connected. Simple 
composition operations are easy to specify and frequently exe- 
cuted to build and rebuild test designs. For these reasons we 
choose to represent them as compiled functions. We use the 
composition functions to build more complex transformations on 
the design. 

Optimization transformations are more intricate. They must 
recognize a subset of the design that meets some criteria and 
then transform it into another implementation with the same 
functionality that is at least as good. The recognition criteria 
for optimizations are often structural (remove a multiplexer with 
all its inputs tied to the same signal) but may look at other pro- 
perties of the design (if a logic gate with minimum-size output 
transistors is driving a wire with a capacitance of at least 10 pF, 

replace the gate with a high-power logical equivalent). Experi- 
ence with the DAA has shown that pattern matching algorithms 
like those found in production systems such as the OPS family25 
are a good engine for driving transformations. Optimizations 
stored as patterns are easy to describe and to change; further, 
optimizations specific to a particular technology or design style 
can easily be loaded into the system. 

The representation of search heuristics is a more complicated 
issue. Some heuristics cannot easily be formulated as rules; an 
example is the cost function used by the DAA to evaluate the 
effect of coalescing functions into a module. Although the result 
of the cost analysis can be used to drive a rule, writing the cost 
function itself as rules is both cumbersome and expensive in 
computation time. As a result, the DAA evaluates the cost func- 
tion procedurally and uses the result to control rule firing. In 
general, most predicates that can be used as indicators in guid- 
ing search are sufficiently complicated that they should be calcu- 
lated with procedures- efficiency in calculating their values is of 
particular concern because of the large size of the search space. 
However, predicates can be evaluated by rules that decide how 
to modify the candidate design. Implementing the final 
decision-making process as rules gives the standard advantages 
of rule-based systems: rules can easily be changed during experi- 
mentation, and special-purpose rules can be added dynamically 
to customize the search. 

6. SYNTHESIS VERSUS ANALYSIS 

Hardware synthesis is different from the diagnosis and debug- 
ging problems explored by several investigators. Analysis uses 
knowledge to infer the functionality and performance of a cir- 
cuit, while synthesis uses knowledge to gauge the quality of an 
implementation decision. Exploration of the differences between 
the two problems helps to illustrate the limitations of rule-based 
systems in synthesis. 

Examples of analysis systems are the circuit understanding pro- 
gram of Stallman and Sussman ;26 hardware error diagnosis pro- 
grams described by Davis and Shrobe,27 and Genesereth;28 and 
a hardware design debugger described by Kelly.2g Analysis most 
closely resembles local design optimization, in that an existing 
design must be analyzed by looking for particular traits. Both 
concentrate on local analysis of the design, which can be easily 
implemented as rules. 

Synthesis, on the other hand, requires global knowledge of the 
search space, and several factors limit the utility of rule-based 
systems for global search. Figure 2 shows the design space for a 
floating-point arithmetic algorithm as generated by BUD, using 
an 
area * time” objective function for several values of n. The 
search space is unpredictable; decisions on how to change the 
design cannot be made based on simple, local criteria. Two fac- 
tors argue against using production systems to drive searches 
through such a space. One is efficiency; the size of the search 
space for an interesting design is extremely large, and the space 
may change with design decisions. Another is the difficulty of 
expressing synthesis decisions as patterns-consider the relative 
difficulties of explaining how to travel from Murray Hill NJ to 
New York using procedures (“go from the south exit, turning 
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Figure 2. THE SEARCH SPACE OF A SIMPLE DESIGN 

left at the light, continue until you find the entrance to I-78 
North.,.“) and rules that describe what to do at each intermedi- 
ate state along the path. Although local transformations may be 
carried out by rules, the global nature of the search required 
argues for procedural control of the search strategy, either by 
rule-based systems that allow control of the search process or by 
direct coding of the procedures. 

7. PLANNING-AN OPEN PROBLEM 

One important topic with which we lack direct experience is 
planning and control of design. Planning is important because 
many implementation decisions are deferred: later design pro- 
cedures must know the goals and rationale of the earlier pro- 
cedures; the assumptions and estimates made during initial 
design must be verified; and if the design is found to be unsatis- 
factory, some plan must be formed to correct the problem. 

We see two important problems in planning for synthesis. The 
first is to identify a minimal set of knowledge about design deci- 
sions required to detect errors and establish criteria for correct- 
ing them. The second problem is how to control the procedures 
used to solve design subproblems. Not all synthesis algorithms 
are well-suited to explaining their results or how to change the 
design with minimal impact on its other properties. The control 
of synthesis algorithms will probably require expert knowledge 
about those algorithms encapsulated in rule-based systems. 

8. CONCLUSIONS 

We have discussed our partitioning of concerns in VLSI design. 
We believe that it is important to encourage examination of 
design decisions deeply, particularly because the problem is so 
poorly understood. So we prefer a vertical organization of 
knowledge that emphasizes complete descriptions of modules 
that can be used in the design of a chip. 

In general, attacks on individual subproblems encountered dur- 
ing synthesis are best made by well-known algorithms. Tradi- 
tional AI methods are best suited to the local control of the com- 
position of modules and to diagnosing problems encountered 
during synthesis. The daunting problem of VLSI synthesis lies 
in balancing declarative and procedural techniques to converge 
on a quality design. 
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