
Knowledge Engineering Issues in VLSI Synthesis

w. H. wolf
T. J. Kowalski

hf. C. McFarland, S.J.

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper explores VLSI synthesis and the role that traditional
AI methods can play in solving this problem. VLSI synthesis is
hard because interactions among decisions at different levels of
abstraction make design choices difficult to identify and evalu-
ate. Our knowledge engineering strategy tackles this problem
by organizing knowledge to encourage reasoning about the
design through multiple levels of abstraction. We divide design
knowledge into three categories: knowledge about modules used
to design chips; knowledge used to distinguish and select
modules; and knowledge about how to compose new designs
from modules. We discuss the uses of procedural and declara-
tive knowledge in each type of knowledge, the types of
knowledge useful in each category, and efficient representations
for them.

1. INTRODUCTION

The VLSI design domain1 is well-suited to the exploration of
design because of the large body of work on the computer
representation and manipulation of VLSI designs. In this paper
we present and justify one approach to the knowledge engineer-
ing problem for VLSI.

We base our views about VLSI knowledge engineering on our
experience with VLSI synthesis programs, notably Fred, a chip
planning database,2 the Design Automation Assistant a
knowledge-based synthesis program,3 and BUD, an intelligent
partitioner for ISPS descriptions.4 Our goal is the automatic
design of large (100,000 transistor) systems whose quality as
measured by performance and cost is competitive with human-
produced designs. We view the design problem as one of succes-
sive refinement of an algorithmic description of a processor
guided by user-supplied constraints on cost and performance.
The synthesis procedure implements the algorithm’s data and
control flow as a structure built of modules and wires, and finds
a layout that implements that structure.

Doubtless the synthesis of high-quality designs is difficult-VLSI
design is a composition of a large number of subproblems, many
of which are NP-hard. Further, synthesis is in some important
respects fundamentally different from the diagnosis problems to
which rule-based expert systems are typically applied. Diagnos-
tic systems try to infer behavior of a system from a partial
description of its behavior and/or structure; synthesis systems
try to build a good implementation from a specification, a

process that usually requires search. In this respect the problem
more closely resembles the problem attacked by Dendra15
-finding candidate molecular structures for organic compounds.
VLSI synthesis is particularly complex because decisions about
architecture, logic design, circuit design, and layout cannot be
fully decoupled. Lacking perfect foresight, a synthesis system
must be able to reason across multiple levels of abstraction,
through deduction and search, to predict or estimate the results
of bottom-up implementations.

A synthesis system’s ability to make tradeoffs based on bottom-
up design information requires not only specific pieces of
knowledge, like the size of a particular design, but an organiza-
tion of knowledge that allows the system to extract and manipu-
late that knowledge. As in any design system, we judge the
value of our knowledge engineering scheme by two criteria:
effectiveness, or whether the scheme expresses what synthesis
needs to know; and efficiency, or how much it costs to compute
the knowledge. The relative importance of effectiveness and
efficiency will vary for different tasks; decisions that require the
examination of a large number of candidate designs may be
satisfied with simple, quickly computable information about the
designs, while other decisions are made by detailed examination
of a few designs. In the rest of the paper we develop a
knowledge engineering scheme and judge it by these two cri-
teria.

2. HORIZONTAL AND VERTICAL REPRESENTATIONS

The partitioning of the digital system design process into levels
of abstraction goes back at least to Amdahl, et ~2.~ and, more
concretely, to Bell and NewelL7 who divided digital system
design into four levels of abstraction: processors, programs,
logic, and circuits. Bell and Newell emphasized that their tax-
onomy was dependent on the existing technology and general
understanding of computer science, and was likely to change
with time, as it did in Siewiorek, Bell, and Newell.8 A simplified
form of their taxonomy was reflected in the SCALD CAD system
used to design the S-l processor.g The Carnegie-Mellon Design
Automation Project advocated a similar top-down, successive
refinement approach for automatic designlo More recently,
Stefik et ul.ll have updated the Bell and Newell paradigm for
the VLSI domain.

Gajski and Kuhn have proposed a more comprehensive model
for understanding design methodologies. 1 2 They divide the
universe into representations-structural, functional, and
geometrical-each of which includes several levels of abstrac-
tion. Walker and Thomas have expanded this model to detail

866 / ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

the various levels of abstraction in each representation.13

We characterize the levels of abstraction model as horizontal: a
description level categorizes all the knowledge about a particular
phase of design, but the complete description of any particular
design requires reasoning at several different levels. Using levels
of abstraction as an organizing principle, as in Palladio,14 limits
one’s ability to consider bottom-up knowledge. We have organ-
ized our knowledge into three groups, with knowledge about
modules organized vertically-knowledge about a module at all
levels of abstraction is contained in the module description. Our
methodology is more akin to that of the Caltech Silicon Struc-
tures Project,15 which advanced the “tall thin man” paradigm as
an embodiment of the simultaneous consideration of problems at
multiple levels of abstraction. We believe that a vertical
classification scheme has some distinct advantages.

First, a vertical categorization enhances one’s ability to analyze
tradeoffs. One radical example of the effect of low-level
knowledge on high-level decisions is the relation between pinout
and architecture. Fabrication, bonding, and power dissipation
limitations set a maximum number of input/output pads avail-
able on a chip; the resulting upper bound on the amount of com-
munication between the chip and the world is a strong constraint
on many architectures. A more subtle example is the relative
cost of barrel shifters in nMOS and CMOS-the shifter’s higher
cost in CMOS may force a different architectural implementa-
tion for some algorithms. We must be able to make design deci-
sions by looking deeply into the details of the available imple-
mentation choices.

Second, simplified models to describe a particular level of
abstraction exclude useful and important designs. One example
in what Stefik et al. call the CZocked Primitive Switches level is
the precharged bus (where the parasitic capacitance of a bus
temporarily stores a value that is picked up during a later clock
phase). This circuit design technique violates a fundamental
precept of strict clocking methodologies-that a wire is
memoryless-but, when applied with the proper precautions,
works. Further, precharged busses are commonly used and are
often the only way to improve chip performance to an accept-
able level. A strict clocking methodology that has been
extended to include precharging is described by Noice et aZ.,16
but the extensions require explicit verification of the propriety of
the precharging circuit, complicating this once simple methodol-
ogy. Methodologies, like those used to guarantee clocking
correctness, simplify a problem enough to allow quick solutions
of a wide variety of problems. But to produce high-quality
designs, a synthesis system must be aware of the limitations of
its methodologies and be able to collect and analyze knowledge
to circumvent its limitations.

Figure 1 shows that we partition our design knowledge accord-
ing to the tasks of synthesis. Each category also uses a distinct
knowledge representation scheme. We divide knowledge into
three categories: knowledge about particular modules that can
be used in a design, which we represent procedurally; knowledge
used to distinguish implementations of a module, which we
represent declaratively; and knowledge about the composition of
designs from modules, which we represent both procedurally and
declaratively. In the next three sections we will describe the
knowledge in each of these categories and efficient

level components

PMS
processors, memories,
switches, links

program memories, instructions,
operators, controls

horizontal categories
(from Bell and Newell)

module knowledge

vertical categorization
of module knowledge

Figure 1. TWO CATEGORIZATIONS KNOWLEDGE

representations for it. Our enumeration of useful knowledge is
not meant to be complete or final, but our experience tells us
that this taxonomy is useful.

3. KNOWLEDGE ABOUT MODULES

We divide knowledge about modules into two distinct topics:
module designs themselves and methods for evaluating modules.
(A module may be a type of component or a class of com-
ponents, like the class of adders of width n). The design of a
module, or of an algorithm for designing a class of modules, is a
form of expert knowledge. The ability to compute certain
important properties of a module’s design is an orthogonal type

APPLICATIONS / 867

of knowledge. The Fred database takes advantage of this ortho-
gonality by using an object-oriented description for modules, as
does Palladio. We build a general-purpose set of measurement
methods to answer fundamental queries, and build on top of
these utilities procedural descriptions of specific modules. The
objects that describe these modules are kept in a database that
can be searched using selection functions.

Measurement of a module’s properties is the best understood
topic in VLSI design. Algorithms exist to measure almost every
conceivable property of interest. (There is little point in recast-
ing these algorithms in declarative form.) Unfortunately, most
synthesis systems have used simple look-up tables or crude
built-in approximations to measure candidate designs. Tables
are insufficient to describe parameterized module designs; built-
in approximations make it difficult to justify decisions to later
stages of designs, and inconsistencies may result if different
design procedures use different approximations. We have had
good success with evaluating candidate designs based on the
answers to a few fundamental queries:
l Physical properties- Measurements of the values of the

electrical elements in the circuit. Values for transistors
(length and width) are easy to measure. Parasitic values
associated with layout elements (transistors, contact cuts,
wires) require more effort.

l Speed-Delay is the real time required to propagate logic
signals through networks. The details of delay calculation
differ among circuit technologies, but all require measure-
ment of the circuit element values and calculation of delays
based on those values. Methods for calculating delay for
MOS technologies are described by Osterhout.17

l Clocking-A related, but different type of knowledge
describes the clocking behavior of the module, particularly,
the clock phases on which the inputs and outputs are valid
and the delay in clock cycles from an input to an output.
Once clock signals are declared and the clocking behavior of
primitive components is known, standard longest path algo-
rithms can be used to compute the clocking delay from
inputs to outputs. l 8

l Shape-If the module’s physical extent is modeled as a set
of rectangles, a request for the shape of a module can be
used to derive measures such as area, aspect ratio, and
minimum required spacing. Fred uses a simple form of com-
pactionlg to estimate the shape of a module from its consti-
tuent components and wires. Compaction also tells us about
the locations of the input/output ports for the module.

These queries are usually enough to derive the required
knowledge about a module; in a few cases it may be necessary to
supply special-purpose methods for calculating some parameter
either for performance reasons or, occasionally, because the
approximations used in the standard methods are inadequate for
the peculiarities of a particular module.

The complementary component of module knowledge is the
design of the module itself. We describe module designs pro-
cedurally rather than declaratively. There are many design
tasks that can be done algorithmically: layout compaction,20
transistor sizing,21 and clocking22 are examples. As with meas-
urement procedures, there is little point in reformulating these
algorithms declaratively. The most mundane part of the module
design, the basic structural description of the components, wires,

and layout elements that implement the module, could be
described declaratively, but we choose to use a procedural
representation for consistency and ease of use with existing
design procedures. Another pragmatic reason for preferring
procedural description of a module’s structure is that most
designers know procedural languages but are unfamiliar with
strongly declarative languages.

4. KNOWLEDGE ABOUT MODULE SELECTION

Some information about a module is easily changed with
changes in its parameters; other data is static across versions of
the module. Often, we can use static information to make an
initial selection of modules, and look at the dynamic information
(which generally takes longer to compute) only when making
final, detailed design decisions. Example of simple questions
that greatly prune the search space of modules are “Does the
module implement the function I am interested in?“, “Is the
module implementable in a technology compatible with my
design?“, and “Is the floor plan of this module compatible with
my current physical design?” The distinction between static and
dynamic data is not always clear-cut, but we can use it to our
advantage to speed the initial search of the module design space.

Fred segregates static, discriminatory knowledge about modules
into an associative database to select candidate modules for an
implementation. An associative database that supports deduc-
tion is powerful enough to support queries used in module selec-
tion but simple enough to run quickly. The user and author of
the database contents must come to an agreement on the mean-
ing of the predicates in the database. We have found these
categories useful in initial module selection:
l Functionality-A description of functionality includes a

statement of the gross function of the module (adder, shifter,
etc.) and an enumeration of particular operating characteris-
tics of the module. Synthesis often requires functional infor-
mation like “Does this latch have a reset signal?” or “What
are the feasible bit widths of this shifter?” Such knowledge
describes how a module deviates from the ideal behavior for
a module that implements the pure function or how it is cus-
tomized for a particular task.

l Signal characteristics- Modules must be compatible in the
way they represent logical signals as electrical signals. The
important parameters of a signal are:
- signal level (voltages for logic 0 and 1) ;
- signal polarity (active high or low);
- signal duality (whether the circuit requires/produces

both true and complement signals).
l Technology families- The most common technological deci-

sions concern fabrication technology and circuit family. The
description should allow the synthesis system to distinguish
both particular technologies and families of technologies; a
module generator may, for instance, be able to produce
modules for a number of CMOS technologies. Examples of
CMOS circuit families are full complementary, pseudo-
nMOS, domino,23 and zipper.24 The database should also
describe the compatibility of families; for example, domino
CMOS circuits may be used to drive fully complementary
circuits, but not the reverse.

All this information can be derived from the module descriptions

868 / ENGINEERING

before design starts and stored in the database. Once facts
about the modules have been coded as patterns, such as (tech-
nology adder-l cmos2.5), the database can be searched using
standard pattern matching techniques. A pattern like (and
(function ?x add) (technology ?x cmos)) will return the modules
that can do an addition and are implemented in CMOS in the
bindings of the variable ?x to the names of the candidate
modules.

The associative database mechanism makes it easy to support
two useful forms of record-keeping for design decisions. Both
methods rely on having the database apply a standard pattern
set that is used along with the current pattern specified by the
designer. First, a designer can add patterns that express design
decisions like fabrication technology. Modules not meeting the
criteria will be filtered out by the standard patterns. Similarly,
the synthesis program can load the standard pattern set with a
design style description that will enforce a set of externally
determined choices-circuit family, layout style, etc. In both
cases the history of changes to the standard pattern set can be
used to trace design choices.

Most of the standard techniques described in the literature can
be used to speed up the pattern matching search. Because the
categories of knowledge, and therefore the first names in the
database patterns, are static, they can be organized into rela-
tions to speed the search. For efficiency reasons the database
should also include ordering criteria to order the search for max-
imum efficiency; often a few standard categories will greatly res-
trict the search space.

5. KNOWLEDGE ABOUT MODULE COMPOSITION

The previous sections have described knowledge about particular
modules; we also need knowledge about how to put together
modules to build new designs. We categorize knowledge about
module design into three fields: general composition rules, which
describe the basic operations that are used to build a module
from components; optimization transformations, which transform
one design into another, presumably better design; and search
rules, which help the synthesis program search the space of can-
didate designs. Each of these types of knowledge is used
differently, and so requires a different representation.

Examples of general composition rules are that a wire be con-
nected to at least one input port and one output port, or that
wires of incompatible clock phases not be connected. Simple
composition operations are easy to specify and frequently exe-
cuted to build and rebuild test designs. For these reasons we
choose to represent them as compiled functions. We use the
composition functions to build more complex transformations on
the design.

Optimization transformations are more intricate. They must
recognize a subset of the design that meets some criteria and
then transform it into another implementation with the same
functionality that is at least as good. The recognition criteria
for optimizations are often structural (remove a multiplexer with
all its inputs tied to the same signal) but may look at other pro-
perties of the design (if a logic gate with minimum-size output
transistors is driving a wire with a capacitance of at least 10 pF,

replace the gate with a high-power logical equivalent). Experi-
ence with the DAA has shown that pattern matching algorithms
like those found in production systems such as the OPS family25
are a good engine for driving transformations. Optimizations
stored as patterns are easy to describe and to change; further,
optimizations specific to a particular technology or design style
can easily be loaded into the system.

The representation of search heuristics is a more complicated
issue. Some heuristics cannot easily be formulated as rules; an
example is the cost function used by the DAA to evaluate the
effect of coalescing functions into a module. Although the result
of the cost analysis can be used to drive a rule, writing the cost
function itself as rules is both cumbersome and expensive in
computation time. As a result, the DAA evaluates the cost func-
tion procedurally and uses the result to control rule firing. In
general, most predicates that can be used as indicators in guid-
ing search are sufficiently complicated that they should be calcu-
lated with procedures- efficiency in calculating their values is of
particular concern because of the large size of the search space.
However, predicates can be evaluated by rules that decide how
to modify the candidate design. Implementing the final
decision-making process as rules gives the standard advantages
of rule-based systems: rules can easily be changed during experi-
mentation, and special-purpose rules can be added dynamically
to customize the search.

6. SYNTHESIS VERSUS ANALYSIS

Hardware synthesis is different from the diagnosis and debug-
ging problems explored by several investigators. Analysis uses
knowledge to infer the functionality and performance of a cir-
cuit, while synthesis uses knowledge to gauge the quality of an
implementation decision. Exploration of the differences between
the two problems helps to illustrate the limitations of rule-based
systems in synthesis.

Examples of analysis systems are the circuit understanding pro-
gram of Stallman and Sussman ;26 hardware error diagnosis pro-
grams described by Davis and Shrobe,27 and Genesereth;28 and
a hardware design debugger described by Kelly.2g Analysis most
closely resembles local design optimization, in that an existing
design must be analyzed by looking for particular traits. Both
concentrate on local analysis of the design, which can be easily
implemented as rules.

Synthesis, on the other hand, requires global knowledge of the
search space, and several factors limit the utility of rule-based
systems for global search. Figure 2 shows the design space for a
floating-point arithmetic algorithm as generated by BUD, using
an
area * time” objective function for several values of n. The
search space is unpredictable; decisions on how to change the
design cannot be made based on simple, local criteria. Two fac-
tors argue against using production systems to drive searches
through such a space. One is efficiency; the size of the search
space for an interesting design is extremely large, and the space
may change with design decisions. Another is the difficulty of
expressing synthesis decisions as patterns-consider the relative
difficulties of explaining how to travel from Murray Hill NJ to
New York using procedures (“go from the south exit, turning

APPLICATIONS / 869

Normalized
AT-N

0 5 10 15
Step

Figure 2. THE SEARCH SPACE OF A SIMPLE DESIGN

left at the light, continue until you find the entrance to I-78
North.,.“) and rules that describe what to do at each intermedi-
ate state along the path. Although local transformations may be
carried out by rules, the global nature of the search required
argues for procedural control of the search strategy, either by
rule-based systems that allow control of the search process or by
direct coding of the procedures.

7. PLANNING-AN OPEN PROBLEM

One important topic with which we lack direct experience is
planning and control of design. Planning is important because
many implementation decisions are deferred: later design pro-
cedures must know the goals and rationale of the earlier pro-
cedures; the assumptions and estimates made during initial
design must be verified; and if the design is found to be unsatis-
factory, some plan must be formed to correct the problem.

We see two important problems in planning for synthesis. The
first is to identify a minimal set of knowledge about design deci-
sions required to detect errors and establish criteria for correct-
ing them. The second problem is how to control the procedures
used to solve design subproblems. Not all synthesis algorithms
are well-suited to explaining their results or how to change the
design with minimal impact on its other properties. The control
of synthesis algorithms will probably require expert knowledge
about those algorithms encapsulated in rule-based systems.

8. CONCLUSIONS

We have discussed our partitioning of concerns in VLSI design.
We believe that it is important to encourage examination of
design decisions deeply, particularly because the problem is so
poorly understood. So we prefer a vertical organization of
knowledge that emphasizes complete descriptions of modules
that can be used in the design of a chip.

In general, attacks on individual subproblems encountered dur-
ing synthesis are best made by well-known algorithms. Tradi-
tional AI methods are best suited to the local control of the com-
position of modules and to diagnosing problems encountered
during synthesis. The daunting problem of VLSI synthesis lies
in balancing declarative and procedural techniques to converge
on a quality design.

REFERENCES

I1 1 Carver Mead and Lynn Conway, Introduction to VLSZ Sys-
tems, Addison-Wesley, Reading, Massachusetts (1980).

[21 Wayne Wolf, “An Object-Oriented, Procedural Database
for VLSI Chip Planning,” Proceedings, 23rd Design Auto-
mation Conference, ACM/IEEE, (June, 1986).

131 Thaddeus J. Kowalski, An Artificial Intelligence Approach
to VLSI Design, Kluwer Academic Publishers, Hingham
MA (1985).

141 Michael McFarland, “Using Bottom-Up Design Techniques
in the Synthesis of Digital Hardware from Abstract
Behavioral Descriptions,” Proceedings, 23rd Design Au to -
mation Conference, ACM/IEEE, (June, 1986).

151 Bruce G. Buchanan and Edward A. Feigenbaum, “Dendral
and Meta-Dendral: Their Applications Dimension,”
Artificial Intelligence 11(1,2) pp. 5-24 (1978).

161 G. M. Amdahl , G. A. Blaauw , and F. P. Brooks, Jr.,
“Architecture of the IBM System/360,” IBM Journal of
Research and Development 8(2) pp. 87- 101 (April, 1964).

171 C. Gordon Bell and Allen Newell, Computer Structures:
Readings and Examples, McGraw-Hill, New York (197 1).

[81 Daniel P. Siewiorek, C. Gordon Bell , and Allen Newell,
Computer Structures: Principles and Examples, McGraw-
Hill, New York (1982).

[91 Thomas M. McWilliams and Lawrence C. Widdoes, Jr.,
“SCALD: Structured Computer-Aided Logic Design,” 25th
Design Automation Conference, pp. 271-277 IEEE Com-
puter Society Press, (1977).

[lOI Stephen W. Director , Alice C. Parker , Daniel P.
Siewiorek , and Donald E. Thomas, Jr., “A Design Metho-
dology and Computer Aids for Digital VLSI Systems,” IEEE
Transactions on Circuits and Systems CAS-28(7) pp. 634-
645 (July, 1981).

[111 Mark Stefik, Daniel G. Bobrow, Alan Bell, Harold Brown,
Lynn Conway, and Christoper Tong, “The Partitioning of
Concerns in Digital System Design,” Proceedings, 1982
Conference on Advanced Research in VLSI, MIT, pp. 43-52
Artech House, (January, 1983).

[12] Daniel D. Gajski and Robert H. Kuhn, “Guest Editor’s
Introduction: New VLSI Tools,” Computer 16(12) pp. 11-14
(December, 1983).

870 / ENGINEERING

1131 Robert A. Walker and Donald E. Thomas, “A Model of
Design Representation and Synthesis,” 22nd ACM/IEEE
Design Automation Conference, pp. 453-459 IEEE Com-
puter Society Press, (June, 1985).

1141 Harold Brown, Christopher Tong, and Gordon Foyster,
“Palladio: An Exploratory Environment for Circuit
Design,” Computer, pp. 41-56 IEEE Computer Society,
(December, 1983).

1151 Stephen Trimberger , James A. Rowson , Charles R. Lang ,
and John P. Gray, “A Structured Design Methodology and
Associated Software Tools,” IEEE Transactions on Circuits
and Systems CAS-28(7) pp. 618-634 (July, 1981).

[161 David Noice, Rob Mathews, and John Newkirk, “A Clock-
ing Discipline for Two-Phase Digital Systems,” Proceed-
ings, International Conference on Circuits and Computers,
pp. 108-l 11 IEEE Computer Society, (1982).

1171 John K. Osterhout, “Crystal: A Timing Analyzer for nMOS
VLSI Circuits,” Proceedings, Third Caltech Conference on
VLSI, pp. 57-69 Rockville MD, (1983).

1181 Kurt Mehlhorn, Data Structures and Algorithms 2: Graph
Algorithms and NP-Completeness, Springer-Verlag, Berlin
(1984).

[191 M. W. Bales, Layout Rule Spacing of Symbolic Integrated
Circuit Artwork, Masters thesis, University of California,
Berkeley (May 4, 1982).

1201 Wayne Wolf, Two-Dimensional Compaction Strategies,
PhD thesis, Stanford University (March 1984).

1211 J. P. Fishburn and A. E. Dunlop, “TILOS: A Posynomial
Programming Approach to Transistor Sizing,” Proceedings,
ICCAD-85, pp. 326-328 IEEE Computer Society,
(November, 1985).

[221 Nohbyung Park and Alice Parker, “Synthesis of Optimal
Clocking Schemes,” Proceedings, 22nd Design Automation
Conference, pp. 489-495 IEEE Computer Society, (June,
1985).

1231 R. H. Krambeck, C. M. Lee, and H. F. S. Law, “High-
Speed Compact Circuits with CMOS," IEEE Journal of
Solid-State Circuits SC-17(3) pp. 614-619 IEEE Circuits
and Systems Society, (June, 1982).

1241 Charles M. Lee and Ellen W. Szeto, “Zipper CMOS," IEEE
Circuits and Devices Magazine 2(3) pp. lo-17 (May,
1986).

1251 Lee Brownston, Robert Farrell, Elaine Kant, and Nancy
Martin, Programming Expert Systems in OPSS, Addison-
Wesley, Reading, Massachusetts (1985).

1271 Randall Davis and Howard Shrobe, “Representing Struc-
ture and Behavior of Digital Hardware,” Computer 16(10)
pp. 75-82 (October, 1983).

[281 Michael R. Genesereth, “The Use of Design Descriptions in
Automated Diagnosis,” pp. 41 l-436 in Qualitative Reason-
ing About Physical Systems, ed. Daniel G. Bobrow, MIT
Press, Cambridge MA (1985).

1291 Van E. Kelly, The Critter System -An Artificial Intelli-
gence Approach to Digital Circuit Design Critiquing, PhD
thesis, Rutgers University (January, 1985).

[261 Richard M. Stallman and Gerald J. Sussman, “Forward
Reasoning and Dependency-Directed Backtracking in a
System for Computer-Aided Circuit Analysis,” Artificial
Intelligence 9(2) pp. 135-196 (October, 1977).

APPLICATIONS / 871

