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Abstract 

Evidential reasoning is a body of techniques that supports 
automated reasoning from evidence. It is based upon the 
Dempster-Shafer theory of belief functions. Both the formal 
basis and a framework for the implementation of automated 
reasoning systems based upon these techniques are presented. 
The formal and practical approaches are divided into four parts 
(1) specifying a set of distinct propositional spaces, each of 
which delimits a set of possible world situations (2) specifying 
the interrelationships among these propositional spaces (3) rep- 
resenting bodies of evidence as belief distributions over these 
propositional spaces and (4) establishing paths for the bodies of 
evidence to move through these propositional spaces by means 
of evidential operations, eventually converging on spaces where 
the target questions can be answered. 

I Introduction 

For the past several years, we have been addressing perceptual 
problems that bridge the gap between low-level sensing and 
high-level reasoning [Low82,GLF81,LG83b,LG83a,LSG86,Wes86]. 
Problems that fall into this gap are often characterized by mul- 
tiple evidential sources of real-time data, which must be prop- 

framework for reasoning with perceptual data that forms the 
basis for evidential-reasoning1 systems. 

The information required to understand the current state of 
the world comes from multiple sources: real-time sensor data, 
previously stored general knowledge, and current contextual 
information. Sensors typically provide evidence in support of 
certain conclusions. Evidence is characteristically uncertain: 
it allows for multiple possible explanations; it is incomplete: 
the source rarely has a full view of the situation ; and it may 
be completely or partially incorrect. The quality and the ease 
with which situational information may be extracted from a 
synthesis of current sensor data and prestored knowledge is a 
function both of how strongly the characteristics of the sensed 
data focus on appropriate intermediate conclusions and on the 
strength and effectiveness of the relations between those con- 
clusions and situation events. 

‘This research was sponsored in part by the U.S. Navy Space and Naval 
Warfare Systems Command and the Defense Advanced Research Project 
Agency under contract N00039-83-K-0656 and by the U.S. Army Signal 
Warfare Center under contract DAAL02-85-C-0082. 

Given its characteristics, evidence is not readily represented 
either by logical formalisms or by classical probabilistic esti- 
mates. Because of this, developers of automated systems that 
must reason from evidence have frequently turned to informal, 
heuristic methods for handling uncertain information. The 
“probabilities” produced by these informal approaches often 
cause difficulties in interpretation. The lack of a formally con- 
sistent method can cause problems in extending the capabili- 
ties of such systems effectively. Our work in evidential reason- 
ing was motivated by these shortcomings. Our theory is based 
on the Shafer-Dempster theory of evidence [Dem68,Sha76,Sha86] 
and aims to overcome some of the difficulties in reasoning from 
evidence by providing a natural representation for evidential 
information, a formal basis for drawing conclusions from evi- 
dence, and a representation for belief. 

In evidential reasoning, a knowledge source (KS) is allowed 
to express probabalistic opinions about the (partial) truth or 
falsity of statements composed of subsets of propositions from 
a space of distinct, exhaustive possibilities (called the frame of 
discernment). The theory allows a KS to assign belief to the 
individual propositions in the space or to disjunctions of these 
propositions or both. When it assigns belief to a disjunction, a 
KS is explicitly stating that it does not have enough informa- 
tion to distribute this belief more precisely. This condition has 
the attractive feature of enabling a KS to distribute its belief 
to statements whose granularity is appropriate to its state of 
knowledge. Also, the statements to which belief is assigned 
are not required to be distinct from one another. The distri- 
bution of beliefs over a frame of discernment is called a body 
of evidence. 

Evidential reasoning provides a formal method, Dempster’s 
Rule of Combination, for fusing (i.e., pooling) two bodies of 
evidence. The result is a new body of evidence representing 
the consensus of the two original bodies of evidence, which 
may in turn be combined with other evidence. Because belief 
may be associated directly with a disjunction of propositions, 
the probability in any selected proposition is typically under- 
constrained. This necessitates an interval measure of belief, 
because belief associated with a disjunction may, based upon 
additional information, devolve entirely upon any one of the 
disjuncts. Thus, an interval associated with a proposition im- 
plies that the true probability associated with that proposition 
must fall somewhere in the interval. A side-effect of applying 
Dempster’s rule is a measure of conflict between the two bodies 
of evidence that provides a means for detecting possible gross 
errors in the information. 

‘Ewidentid reamning is a term coined by SRI International [LG82] to 
denote the body of techniques specifically designed for manipulating and 
reasoning from evidential information as characterized in this paper. 
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Current expert-systems technology is most effective when 
domain knowledge can be modeled as a set of loosely intercon- 
netted concepts (i.e., propositions) [DK77]; this loose intercon- 
nection justifies an incremental approach to updating beliefs. 
In most of our work, there is the potential for strong intercon- 
nectivity among beliefs in propositions. We, therefore, focus 
on a body of evidence as a primitive, meaningful collection 
of interrelated (dependent) beliefs; updating the belief in one 
proposition affects the entire body of evidence (other work has 
addressed the concept of a body of evidence in a production- 
rule formalism [Kon79,LB82] by creating special entities). 

Evidential reasoning provides options for the representa- 
tion of information: independent opinions are expressed by 
multiple (independent) bodies of evidence; dependent opinions 
(in which belief in one proposition depends on that of another) 
can either be expressed by a single body of evidence or by a net- 
work that describes the interrelationships among several bodies 
of evidence. These networks of bodies of evidence capture the 
geneology of each body (similar in spirit to those of [Coh85]) 
and are used in a manner similar to data-flow models [WA841 
updating interrelated beliefs (i.e., for belief revision [Doy81]). 

Shafer theory of 
In this paper we assume some familiarity with the Dempster- 

beliefs, although the appropriate equations 
from this theory are included. We begin with a discussion 
of the formal approach to the problem of reasoning from ev- 
idence and then progress to a description of the implementa- 
tion approach, including an example. We close with a short 
description of the system that we have developed for applying 
evidential reasoning. 

this frame; e.g., 

Other propositions related to locating this vessel can be 
similarly represented as subsets of @A (i.e., as elements of the 
power set of @A, denoted 2O-J). Once this has been accom- 
plished, logical questions can be posed and resolved in terms 
of the frame. Given two propositions, A; and Aj, the follow- 
ing logical operations and relation can be resolved through the 
associated set operations and relation: 

-+A; c @A-A; 

A;AAj _ &nAj 

Ai V Aj _ Ai U Ai 

A; + Aj _ Ai C Aj . 

If other aspects of ships are of interest besides their loca- 
tion, then additional frames of discernment might be defined. 
For example, the activities of these ships might be of inter- 
est. If so, an additional frame OB might be defined to include 
elements corresponding to refueling, loading cargo, unloading 
cargo, being enroute, and the like. Propositional statements 
pertaining to a ship’s activity can then be defined relative to 

QB = {Wz,. . A} 

Bj C @B . 

So far, propositional statements pertaining to a ship’s loca- 
tion or pertaining to its activity can be addressed separately, 
but they cannot be jointly considered. To do this, one must 

2 Formal Approach 
first define a compatibility relation between the two frames. A 

compatibility relation simply describes which elements from 
the two frames can be true simultaneously. For example, a 

2.1 Framing the Problem 

The first step in applying evidential reasoning to a given prob- 
lem is to delimit a propositional space of possible situations. 
Within the theory of belief functions, this propositional space 
is called the frame of discernment. It is so named because all 
bodies of evidence are expressed relative to this surrounding 
framework, and it is through this framework that the inter- 
action of the evidence is discerned. A frame of discernment 
delimits a set of possible situations, exactly one of which is 
true at any one time. For example, the problem to be ad- 
dressed is that of locating a ship. In this case, the frame of 
discernment consists of the set of all possible locations for that 
vessel, This might be represented by a set @A in which each 
element ai corresponds to a possible location: 

ship located at a loading dock might be loading or unloading 
cargo, but is not refueling, or enroute. In other words, be- 
ing located at a loading dock is only compatible with one of 
two activities, loading or unloading. Thus, the compatibility 
relation between frames @A and 08 is a subset of the cross 
product of the two frames. A pair (ai, bj) is included if and 
only if they can be true simultaneously. There is at least one 
pair (ai, bj) included for each ai in @A (the analogue is true 
for each bj): 

@A,B s @A x @B . 

Using the compatibility relation F~A,B we can define a com- 
patibdity mapping CA+,B for translating propositional state- 
ments expressed relative to eA to statements relative to eB. 
If a statement Ak is true, then the statement CA++B(A~) is also 
true: 

Once a frame of discernment has been established, propo- 
sitional statements can be represented by disjunctions of el- 
ements from the frame corresponding to those situations for 
which the statements are true. For example, the proposition 
Ai might correspond to the statement that the vessel is located 
in port, in which case 4 would be represented by the subset of 
elements from @A that correspond to possible locations within 
port facilities: 

Ai C eA e 

CA-B : 2 0 A ++ 2@B 

CA-B (Ak) = {bjl(ai,bj) E OA,B,~~ E Ak} . 

Instead of translating propositional statements between these 
two frames via CA-B and CB,+A, we might chgose to trans- 
late these statements to a common frame that captures all of 
the information. This common frame is identical to the com- 
patibility relation @A,B. Frame 63~ (and analogously Qg ) is 
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trivially related to frame OA,B via the 
relation and compatibility mappings: 

following compatibility 

@A&-V) = {(ai, (Ui,bj))l(Ui,bj) E @A,B) 

CA~(A,B)(Ak) = ((Uj,bj)l(U;,(Ui,bj)) E @A,(A,B)+i E Ak) 

= {(Ui,bj)j(U;,bi) E @A,B,Ui E Ak} 

C(A,B)-A(Xk) = {U;j(%,bj) E @A,B,(Ui,bj) E xk> * 

Clearly, as more aspects of these ships become of interest, 
the number and complexity of the frames and compatibility 
mappings increases. However, there is a trade-off between the 
complexity of individual frames and the complexity of the net- 
work of compatibility mappings connecting them. We might 
define a single (complex) frame that encompasses all aspects of 
interest or, alternatively, define a (complex) network of frames 
that includes a distinct frame for each aspect of interest. Of 
course, these may not be equivalent. For example, consider the 
following frame: 

@4,&C = {(Ul,bl,cl),(U2,b2),(U2,b2,CZ)) . 

If this frame properly captures the relationship among frames 
@A, Og, and Qc, then cl is the only element from 0~ com- 
patible with al from @A. However, if we maintain these as 
three separate frames connected by compatibility mappings, 
CA-B, CB-A, CB++C, and CC,+B, both ~1 and ~2 are compati- 
ble with al because al is compatible with br, and br is compat- 
ible with both cl and ~2; i.e., CB,+C(CA++B({U~})) = {cr,cz}. 
However, if al is true, then it follows that either cl or c2 is 
true. Thus, the reasoning based on a well-formed gallery of in- 
terconnected frames is sound but not necessarily complete. A 
gallery is well formed if there exists a single all encompassing 
frame whose answers are always included in the answers based 
upon the gallery. 

In dynamic environments, compatibility relations can be 
used to reason over time. If $Ar represents the possible states 
of the world at time one and 0~2 represents the possible states 
at time two, then a compatibility relation, OA~,A~, can cap- 
ture the possible state transitions. For example, @Ar and e.42 
might both represent the possible locations of a ship (i.e., they 
are identical to @A as previously defined), then @,Q,A2 could 
represent the constraints on that ship’s movement. A pair of 
locations (ui, ui) would be included in @Al,,42 if a ship located 
at a; on Day 1 (i.e., time) could reach aj by Day 2. If we 
assume that the possible movements of a ship are constrained 
in the same way over any two day period, then the compatibil- 
ity mapping associated with this compatibility relation can be 
reapplied as many times as necessary to constrain the possible 
locations of a ship across an arbitrary number of days. 

2.2 Analyzing the Evidence 

Once a gallery has been established, the available evidence 
can be analyzed. The goal of this analysis is to establish a 
line of reasoning, based upon both the possibilistic informa- 
tion in the gallery and the probabilistic information from the 
evidence that determines the most likely answers to some ques- 
tions. The gallery delimits the space of possible situations, and 

the evidential information establishes the likelihoods of these 
possibilities. Within an analysis, bodies of evidence are ex- 
pressed relative to frames in the gallery, and paths are estab- 
lished for the bodies of evidence to move through the frames via 
the compatibility mappings. An analysis also specifies if other 
evidential operations are to be performed, including whether 
multiple bodies of evidence are to be combined when they ar- 
rive at common frames. Finally, an analysis specifies which 
frame and ultimate bodies of evidence are to be used to an- 
swer each target question. Thus, an analysis specifies a means 
of arguing from multiple bodies of evidence towards a partic- 
ular (probabilistic) conclusion. An analysis, in an evidential 
context, is the analogue of a proof tree in a logical context. 

To begin, each body of evidence is expressed relative to a 
frame in the gallery. Each is represented as a mass distribution 
(e.g., mu) over propositional statements discerned by a frame 
(e.g., @A): 

mA : 2 @A 
- WI 

c ‘-U(k) = 1 

Ais@, 
mA(8) = 0 . 

Intuitively, mass is attributed to the most precise propo- 
sitions a body of evidence supports. If a portion of mass is 
attributed to a proposition Ai, it represents a minimal com- 
mitment to that proposition and all the propositions it implies. 
Additional mass attributed to a proposition Aj that is compat- 
ible with Ai, but does not imply it (i.e., 0 # A; II Aj # Aj), 
represents a potential commitment: mass that neither sup- 
ports nor denies that proposition at present but might later 
move either way based upon additional information. 

To interpret this body of evidence relative to the question 
Aj, we calculate its support and plausibility to derive its evi- 
dential interval as follows: 

S@(Aj) = c MA(k) 
AicAj 

PZs(Aj) = 1 - Spt(@A - Aj) 

[Spt(Aj), f’ls(Aj)] C [O,l] * 

The lower bound of an evidential interval indicates the de- 
gree to which the evidence supports the proposition, while the 
upper bound indicates the degree to which the evidence fails 
to refute the proposition, i.e., the degree to which it remains 
plausible. This evidential interval, for the most part, corre- 
sponds to bounds on the probability of Aj. Thus, complete ig- 
norance is represented by an evidential interval of [O.O, 1.01 and 
a precise probability assignment is represented by the “inter- 
val” collapsed about that point (e.g., [0.7,0.7]). Other degrees 
of ignorance are captured by evidential intervals with widths 
other than 0 or 1 (e.g., [0.6,0.8],[0.0,0.5],[0.9,1.0]). 

If a body of evidence is to be interpreted relative to a ques- 
tion expressed over a different frame from the one over which 
the evidence is expressed, a path of compatibility relations con- 
necting the two frames is required. The mass distribution ex- 
pressing the body of evidence is then repeatedly translatedfrom 
frame to frame, via compatibility mappings, until it reaches the 
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ultimate frame of the question. In translating mA from frame 
@A to frame OB via compatibility mapping CA-B, the fol- 
lowing computation is applied to derive the translated mass 
distribution mg: 

mB(Bj) = c mA(k) 
CA-B (Ai)=Bj 

Intuitively, if we (partially) believe Ai, and A; implies Bj, 
then we should have the same (partial) belief in Bj. This same 
method is applied to move mass distributions among frames 
that represent states of the world at different times. However, 
when this is the case, the operation is called projection. 

Once two mass distributions mfi and rni representing in- 
dependent opinions are expressed relative to the same frame of 
discernment, they can be fused (i.e., combined) using Demp- 
ster’s Rule of Combination. Dempster’s rule pools mass dis- 
tributions to produce a new mass distribution ml that repre- 
sents the consensus of the original disparate opinions. That is, 
Dempster’s rule produces a new mass distribution that leans 
towards points of agreement between the original opinions and 
away from points of disagreement. Dempster’s rule is defined 
as follows: 

mi(Ak) = (1 - !c)-’ c mi(Ai)mi(Aj) 
AinAj=Ak 

k = c mi(Ai)d(Aj) # 1 - 
AinAj=@ 

Since Dempster’s rule is both commutative and associa- 
tive, multiple (independent) bodies of evidence can be com- 
bined in any order without affecting the result. If the initial 
bodies of evidence are independent, then the derivative bodies 
of evidence are independent as long as they share no common 
ancestors. Thus, in the course of constructing an analysis, at- 
tention must be paid to the way that evidence is propagated 
and combined to guarantee the independence of the evidence 
at each combination. 

Other evidential operations can also be included in an anal- 
ysis. One frequently used operation is discounting. This op- 
eration adjusts a mass distribution to reflect its source’s cred- 
ibility (expressed as a discount rate r E [0, 11). If a source is 
completely reliable (r = 0)) d iscounting has no effect; if it is 
completely unreliable (r = 1)) discounting strips away all ap- 
parent information content; otherwise, discounting lowers the 
apparent information content in proportion to the source’s un- 
reliability: 

m2(Ai) = (1 - +-b&k), Ai # @A 
r i- (1 - r)mA(@A), otherwise . 

Other evidential operations include summarization and gist- 
ing (among others). Summarization eliminates extraneous de- 
tails from a mass distribution by collecting all of the extremely 
small amounts of mass attributed to propositions and attribut- 
ing the sum to the disjunction of those propositions. Gisting 
produces the “central” Boolean-valued statement that captures 
the essence of a mass distribution. This is particularly useful 
when explaining lines of reasoning. 

3 Implementation Approach 

In implementing this formal approach, we have found that the 
gallery, frames, compatibility relations, and analyses can all 
be represented straightforwardly as graphs consisting of nodes 
connected by directed edges. This has led us to use Grasper 
IITM [ Low86,Low78], a programming language extension to 
LISP that introduces graphs as a primitive data type. A graph 
in Grasper II consists of a set of labeled subgraphs. Each sub- 
graph consists of a set of labeled nodes and a set of labeled, di- 
rected edges that connect pairs of nodes. Each node, edge, and 
subgraph have values that can be used as general repositories 
for information. Once the graphical representations have been 
established for the gallery, frames, compatibility relations, and 
analyses, the remainder of the formal approach is easily imple- 
mented. 

The first step is to define the gallery. If the problem is to 
reason about the locations and activities of ships, we might 
include two frames: a LOCATIONS frame and an ACTIVI- 
TIES frame. These are each represented as nodes in a sub- 
graph called the SHIP-GALLERY (Figure 1). In addition, 
the gallery might include three compatibility relations repre- 
sented as edges. One compatibility relation, LOCATIONS- 
ACTIVITIES, relates locations to activities and is represented 
by an edge from LOCATIONS to ACTIVITIES. The two other 
compatibility relations, DELTA-LOCATIONS and DELTA- 
ACTIVITIES, describe how a ship’s location and activity on 
one day are related to the next day’s. Each of these is repre- 
sented by an edge that begins and ends at the same node. 

The next step is to define the frames in the gallery. Each 
of these is represented by a subgraph sharing the same name 
as a node from the gallery. Each such subgraph includes a 
node for each element of the frame and may include addi- 
tional nodes representing aliases, i.e., named disjunctions of 
elements. Each of these additional nodes have edges pointing 
to elements of the frame (or other aliases) that make up the 
disjunction. The LOCATIONS frame (Figure 2) includes six 
elements (ZONEl, ZONEZ, ZONE3, CHANNEL, LOADING- 
DOCK, REFUELING-DOCK) and three aliases (IN-PORT, 
DOCKED, AT-SEA). The ACTIVITIES frame (Figure 3) in- 
cludes five elements (ENROUTE, TUG-ESCORT, UNLOAD- 
ING, LOADING, REFUELING). 

Each compatibility relation in the gallery is represented as 
a subgraph that includes the nodes from the frames that they 
relate with edges connecting compatible elements. For exam- 
ple, in the LOCATIONS-ACTIVITIES compatibility relation 
(Figure 4)) ZONEl, ZONE2, and ZONE3 -are all connected 
to ENROUTE (becuase these zones represent areas at sea), 
CHANNEL is connected to TUG-ESCORT (because a ship 
entering or leaving the port at the end of this channel would 
be under tugboat control), LOADING-DOCK is connected to 
both LOADING and UNLOADING (because either activity 
is consistent with being at that dock), and REFUELING- 
DOCK is connected to REFUELING. DELTA-LOCATIONS 
and DELTA-ACTIVITIES (Figures 5 and 6) relate frames to 
themselves. They represent possible state transitions in their 
respective frames over any two day period. Edges connect com- 
patible elements from one day to the next. DELTA-LOCATIONS 
indicates that the zones are linearly ordered and that a ship 
must pass through the channel to get to either the loading or 
refueling docks. It also indicates that a ship will only remain 
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at the refueling dock or in the channel for one day at a time 
but may remain anywhere else for any number of days. In 
DELTA-ACTIVIES it can be seen that a ship must progress 
through TUG-ESCORT from ENROUTE before proceeding to 
REFUELING or UNLOADING and that REFUELING and 
TUG-ESCORT are one day activities. Further, a ship must 
go through LOADING after UNLOADING before returning 
to TUG-ESCORT. 

After the gallery and its supporting frames and compati- 
bility relations have been established, evidential analyses can 
be constructed. These analyses are represented as data-flow 
graphs where the data and the operations are evidential. Fig- 
ure 7 is one such analysis. Here primitive bodies of evidence 
are represented by elliptical nodes and derivative bodies of 
evidence are represented by circular nodes. Diamond-shaped 
nodes represent interpretations of bodies of evidence. The val- 
ues of these nodes are used as repositories for the information 
(i.e., data) that they represent (Figure 8). For bodies of evi- 
dence this includes a frame of discernment (including the day 
to which the evidence pertains), a mass distribution, and other 
supporting information. Edges pointing to a derivative node 
are labeled with the evidential operation that is applied to the 
bodies of evidence, at the other ends of the edges, to derive 
the body of evidence represented by this node. 

In the analysis of a ship in Figure 7, there are three primi- 
tive bodies of evidence. REPORT1 locates the ship on Day 1 
saying that there is a 70 percent chance that it can be found in 
the CHANNEL and a 30 percent chance that it is in ZONEl; 
REPORT2 says that the ship was IN-PORT on Day 2; and 
REPORT3 indicates that the ship was LOADING cargo on 
Day 3. REPORT1 is taken at face value, but REPORT2 and 
REPORT3 have been discounted by 20 percent and 40 percent, 
respectively, to derive D2 and D3, reflecting doubt in the cred- 
ibility of these reports. REPORT1 has been projected forward 
by one day to derive Pl 2 and then has been fused with D2 
to derive a consensus for Day 2, F12. D3 has been projected 
backwards in time by one day to derive P3 and then has been 
translated from the ACTIVITIES frame to the LOCATIONS 
frame. Finally, this result, T3, has been fused with F12 to 
derive a consensus, based on all three reports, about the ship’s 
location on Day 2. 

The interpretation nodes in this analysis track the evi- 
dential intervals for some key propositions. 11 is based soley 
on REPORT1 and indicates that there is precisely a 70 per- 
cent chance of the ship being IN-PORT[0.7,0.7] and no chance 
of it being DOCKED [O.O,O.O]on Day 1. IPl indicates that, 
based soley upon REPORTl, after one day has ellapsed, noth- 
ing is known about whether the ship is IN-PORT [O.O, 1.01, 
but that it may now be DOCKED [O.O, .7.0]. If REPORT2 
is included after being discounted, IF12 indicates that there is 
strong reason to believe that the ship is IN-PORT [0.8,1.0], but 
there is conflicting information concerning whether or not it is 
DOCKED [0.56,0.7]. IT3 indicates that based soley upon RE- 
PORT3, after having been discounted, projected backwards a 
day, and translated to the LOCATION frame, that there is 0.6 
support and 1.0 plausibility for both IN-PORT and DOCKED. 
Finally, when all three reports are considered, IF123 indicates 

2Note that the distribution at REPORT1 is a Bayesian distribution 
(i.e., a distribution over exclusive elements), but application of the pro- 
jection operation results in a non-Bayesian distribution at PI. 
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strong belief that the ship is IN-PORT [0.9,1.0] on Day 2 
and a reasonably strong belief, though mixed, that it is also 
DOCKED [0.78,0.85]. 

4 Evidential-Reasoning Systems 

TO support the construction, modification, and interrogation 
of evidential analyses, we have developed GisterTM. Gister 

supports an interactive, menu-driven, graphical interface that 
allows these structures to be easily manipulated. The user 
simply selects from a menu to add an evidential operation to 
an analysis, to modify operation parameters (e.g., discount 
rates), or to change any portion of a gallery including its frames 
and compatibility relations. In response, Gister updates the 
analyses. 

All of the figures in this paper are actual screen images from 
Gister. Figure 7 includes the menus for working with analyses. 
On the left side of the screen is a menu of nouns. The user 
determines with what class of objects he wishes to work and 
selects the appropriate noun from the menu. Once a noun has 
been selected, a menu of verbs appears on the right side of 
the screen. A selection from this menu invokes the operation 
corresponding to the selected verb on the previously selected 
noun. The user then designates the appropriate nodes, edges, 
and the like for the selected operation. 

Unlike other expert systems, Gister is designed as a tool for 
the domain expert. With this tool, an expert can quickly and 
flexibly develop a line of reasoning specific to a given domain 
situation. This differs markedly from other expert systems in 
which a single line of reasoning is developed by an expert and 
then is instantiated over different situations by nonexperts. 

This approach has been successfully applied to Naval in- 
telligence problems. New work is focusing on adapting this 
technology to multisource data fusion for the Army. 

5 Summary 

Evidential reasoning has already been successfully applied to 
problems in several domains. However, the addition of the 
compatability relation to the theory of beliefs, the formaliza- 
tion and development of new evidential operators, and the use 
of graphical representations have greatly improved the overall 
usefulness and accessibility of these techniques. 
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MRSSFUN: (((cHRNNEL) 8.7) ((ZONEI) 8.3)) 

;:PE: PROJECTION 
DELTA-T: 1. 
FOD: (LOCATIONS 2.1 
HRssFun: (((REFUELING-DOCK LOADING-DOCK ZONEI) 8.7) ((20~E2 CHRNNEL ZONEI) 8.3)) 
Fxit I7 I 

REPORT2 
TYPE: EUIDENCE 
FoD: (LOCRTIONS 2.1 
~~RSSFUN: (((CHRNNEL LORDING-DOCK REFUELING-DOCK) 1.e)) 
Exit ll 

02 
TYPE: DISCOUNT 
DISCOUNT-RRTE: 28. 
FOD: (LOCRTIONS 2.) 
BRSSFUN: (((CHRNNEL LORDING-DOCK REFUELING-DOCK) e.8) ((REFUELING-DOCK ZONE2 CHRNNEL LORDING-DOCK ZONE1 ZONEB) 6.2)) 
Erie l-l 

F12 
TYPE: FUSION 
FoD: (LOCRTIONS 2.) 
MRSSFUN: ((LORDIiiGIDOCK REFUELING-DOCK) 8.56) 

((CHRNNEL) ~.24BB8981) 
((REFUELING-DOCK LoRDING-DOCK ZONEI) 8.14) 
((ZONE2 CHANNEL EONEl) 8.86888@882)) 

CONFLICT: @.a 
rr,+ n 

DISCOUNT-RATE: 48. 
FOD: (ACTIVITIES 3.1 
RASSFUN: (((LORDING) 0.6) ((TUG-ESCORT UNLOADING ENROUTE LOADING REFUELING) 8.4)) 

IDELTR-T: -I. I 

3 
:YPE: TRRNSLRTION 
THETA: LOCATIONS 
FOD: (LOCRTIONS 2.) 
~RSSFUN: (((LORDING-DOCK) 8.6) ((20~~3 20~~2 ZONEI LORDING-DOCK REFUELING-DOCK CHRNNEL) 8.4)) 
Exit n I 

((ZONEI LOADING-DOCK REFUELING-DOCK) 8.86829268) 
((zotiE2 zonEi CHRN~EL) 8.829268293)) 

Figure 8: Data from ANALYSISl. 
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