
KNOWLEDGE-BASED VALIDITY MAINTENANCE FOR PRODUCTION SYSTEMS+' 

Philip R. Schaefer 
Martin Marietta Denver Aerospace 

P.O. Box 179, M.S. 0427, Denver, CO 80201 

Isil H. Bozma 
Yale University, New Haven, CT 06520 

Randall D. Beer 
Center for Automation and Intelligent Systems Research 
Case Western Reserve University, Cleveland, OH 44106 

ABSTRACT 

In many problem domains, an action may be 
taken by an expert, which, due to new inferences 
or a changing domain situation, should be 
retracted. To this end, an effective problem 
solver will need to use some kind of 
validity-maintenance system, so that it can 
gracefully recover from invalid previous 
decisions. 

Unfortunately, the standard IF/THEN 
paradigm often used to encode expert behavior 
does not readily allow the expression and 
processing of this validity knowledge. We 
present a new extension to that rule paradigm 
which can be used to augment 
production-rule-based systems with validity 
maintenance capabilities, and demonstrate a 
straightforward algorithm for its 
interpretation. 

I INTRODUCTION 

Through effectiveness for Knowledge 
Engineering and modularity of Expert Systems 
construction, Production Rules have become a very 
popular AI paradigm (Barr and Feigenbaum, 1981). 
Their advantages as a formalism in Artificial 
Intelligence are due to several reasons. First, 
small chunks of knowledge can be incrementally 
assembled to augment the behavior of the 
intelligent system. As new knowledge is acquired, 
the system performance is upgraded incrementally 
(Winston, 1984). Second, an effective control 
strategy can handle complex domains using only 
simple rules. Although the control strategy will 
need to resolve problems arising from interacting 
or conflicting rules, achieving this is usually 
easier than dealing with the corresponding 
complications that would arise from designing and 
modifying a single, complex program encoding the 
same expertise. 

$:-This work was performed at the Center for 
Automation and Intelligent Systems Research, Case 
Western Reserve University. 

Unfortunately, several problems can arise in 
systems where a large number of rules may 
sequentially fire during the problem-solving 
process: 

-Previous inferences can become inaccurate 
-Old ,infer,ences can become inconsistent 
with the new 

-Intermediate solutions can be non-optimal 
when compared with new knowledge. 

To overcome these problems, a non-monotonic 
validity maintenance scheme is desirable (Rich, 
1983). With such a scheme, the results of rules 
which have previously fired can be retracted when 
necessary. In this way, inferences which become 
inaccurate or inconsistent as a result of new 
observations or new inferences can be gracefully 
removed from the system, allowing newer, correct 
inferences to be made. Additionally, assumptions 
which were originally made in an effort to achieve 
a feasible solution can be retracted when 
contradictions arise or when superior assumptions 
are found. 

Human experts, of course, are proficient at 
dealing with this kind of validity maintenance in 
our dynamic everyday world. People seem quite 
willing to make assumptions or conclusions before 
complete evidence is available. The important 
point, however, is that they also are able to 
correct or reject these inferences as more 
information becomes available or as the domain 
situation changes over time. Several systems 
(called "Truth Maintenance Systems," or TMSs) for 
introducing similar validity maintenance abilities 
to computer implementations have been described in 
the literature. Systems such as Doyle's (1979) 
require the AI system to maintain a single 
consistent set of inferences. A newer kind of 
validity maintenance, an "assumption-based" 
approach, keeps track of assumption sets 
supporting the various inferences, and thus allows 
multiple, possibly contradictory, inference sets 
to be developed simultaneously (de Kleer, 1984). 
In each of these systems, a network of reasons or 
assumptions behind the inferences is constructed, 
which is manipulated to maintain validity. 

918 / ENGINEERING 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



However, it is not clear exactly how the 
validity-maintenance abilities of the human expert 
can be naturally expressed in terms of such 
networks. It may be possible for the expert to 
indicate how the individual working-memory 
elements in the network are dependent on each 
other. However, the implementation-level network 
is at a considerably lower level of representation 
than the "knowledge level" expert production 
rules. It would be unsatisfactory to require the 
expert to think about the domain at both levels. 

It is clearly important, therefore, to be 
able to maintain and process validity knowledge in 
a Production System in a TMS-like fashion. Just 
as important, however, is the need to express the 
human expert's validity knowledge in a natural and 
straightforward way, to preserve the Knowledge 
Engineering advantages of the production-rule 
paradigm. 

II EXPRESSING VALIDITY MAINTENANCE KNOWLEDGE IN - 
PRODUCTION RULES 

Although a validity-maintenance mechanism is 
clearly important in many expert systems, it is 
not immediately apparent how an IF/THEN rule 
approach can capture the necessary additional 
knowledge. The usual reading of a rule in a 
production system is something like 

IF <this condition is seen> 
THEN <make this conclusion> 
(Barr and Feigenbaum, 1981, 
Weiss and Kulikowski, 1984) 

During the reasoning process, if the condition is 
observed even for an instant, the conclusion is 
asserted. Although a separate rule might be able 
to remove the conclusion, the semantics of this 
rule assumes that it will apply for all time. 
This kind of rule will unfortunately cause 
problems if the expert system is reasoning in a 
world of changing knowledge or data. If the 
following rule were fired under such an 
interpretation: 

IF <the weather appears bad> 
THEN <do not have the picnic> 

IF <the ignition switch is on> and 
<the starter makes no sound> 

THEN <there is an electrical problem>. 

When the ignition switch were turned off to 
perform some other test, the <electrical problem> 
conclusion would be forgotten. 

Occasionally, knowledge seemingly of a 
rule-based nature, may defy expression in either 
of these interpretations. For example, a meeting 
scheduler might have a rule such as 

IF <everyone can attend the meeting at time X> 
THEN <schedule the meeting at time X> 

with the condition 
"this is valid as long as 
conflicts arise for no more 
than 10% of attendees." 

In thi s case, the validity condition i s not even 
one of the antecedants of the original decisi .on. 

Usin<; either of the above two rule 
interpretations, it is probably possible to get 
the desired behavior in the IF/THEN approach by 
including clever "patches" of several additional 
rules. From a Knowledge-Engineering perspective, 
however, this i's an unsatisfactory solution. The 
modularity of the rule-based knowledge 
representation would be compromised, and rules 
which are quite straightforward for a human to 
understand would be stated to the system in a 
complex, barely comprehensible fashion. 

In each case, it is evident that a human 
expert stating such rules has a clear intention of 
the validity conditions implied. We propose that 
the IF/THEN rule paradigm be extended to allow a 
natural and conceptually "clean" expression of 
this knowledge. The proposed extension is to use, 
rather than IF/THEN constructs, an 
IF/THEN/AS-LONG-AS construct. The interpretation 
of a rule in this new form is 

IF <this condition is seen> 
THEN <make this conclusion> 
AS-LONG-AS <this validity condition 

remains true>. 

the system would not have the knowledge that the 
conclusion was no longer valid if the weather 
later became good. 

The three above examples could be written as: 

IF <the weather appears bad> 
THEN <do not have ‘the picnic> 

One alternate IF/THEN rule interpretation to AS-LONG-AS <the weather remains bad 
handle this kind of problem could be or threatening> 

IF <this condition is true> 
THEN <this conclusion is true> 

In that case, when <the weather appears bad> 
became false, the <do not have the picnic> would 
become false as well. Such an interpretation 
would also lead to problems in a dynamic knowledge 
environment. Consider the effects of the 
conclusion of the rule 

IF <the ignition switch is on> and 
<the starter makes no sound> 

THEN <there is an electrical problem> 

IF <everyone can attend the meeting 
at time X> 

THEN <schedule the meeting at time X> 
AS-LONG-AS <conflicts arise for 

<lo% of attendees>. 

AUTOMATED REASONING / 9 19 



With this construct, the Knowledge Engineer 
states an IF/THEN rule in the usual form, then 
adds the validity conditions under which the 
result remains valid. In this way, the reasoning 
and validity maintenance of the expert system will 
more closely resemble that as perceived by the 
expert when stating the rules. There is no longer 
a need to use elaborate "rule programming" to 
achieve the desired validity-maintenance behavior. 

III PROCESSING IF/THEN/AS-LONG-AS RULES 

Processing rules containing AS-LONG-AS parts 
will, of course, require some additional steps 
beyond the usual matching and chaining of standard 
IF/THEN rules. Here, we discuss algorithms that 
can be used for such processing. 

Fortunately, techniques exist today which, 
although not designed with AS-LONG-AS rules in 
mind, do provide the dependency processing such 
rules will require. 

Dependency networks, such as found in Truth 
Maintenance Systems, are one way to internally 
store the dependence of conclusions on the 
validity conditions associated with the inference 
rules. With such storage of dependency 
information, an efficient rejection of invalidated 
decisions can take place as soon as any validity 
condition is violated. Although the full 
implications of the integration of 
IF/THEN/AS-LONG-AS rules with a complete TMS, 
including the associated assumption selection, 
have not yet been studied, it has been established 
that at least the retraction portions of TMS 
mechanisms are effective for these rules. Our 
validity-maintenance algorithm, most similar to 
(Doyle, 1979), comprises three steps: 

-note the dependency relationships implied 
by an AS-LONG-AS part when a rule fires to 
find a value for an element of the working 
memory 

-check for validity of other memory 
elements when a new value is entered into 
memory. Invalidate those elements whose 
AS-LONG-AS conditions are violated 

-replace the old dependency information in 
the system when the value of an element is 
altered. 

The first step can 
following algorithm 

be implemented with the 

When an data element E is inserted into 
memory by rule R, 

1. Examine the AS-LONG-AS part of R 
2. For each working memory element E' 

associated with that AS-LONG-AS 
evaluation 
1. store E as a dependent of E', 

along with R and a list of the 
variable bindings associated 
with R at that time 

2. store E' as A-CAUSE-OF E. 

Further, if the element had a value previously, 
the system must check to see if any of its 
dependents are affected, and invalidate as 
necessary: 

1. 

2. 

For each dependent D associated with 
memory element E 
1. Examine the AS-LONG-AS part of the 

rule which depends on D, in the 
context of the variable bindings 
stored, to see if D's validity 
conditions remain true 

2. If it evaluates to "false," 
invalidate the value of D. 

For each invalidated dependent of D, 
recursively perform this invalidation 
algorithm until no more invalid working 
memory elements result. 

Additionally, it is necessary to "clean out" any 
old dependency relations that the previous value 
of E had: 

When a previously-existing element E 
is given a new value 

for each A that is A-CAUSE-OF E, 
remove E from the dependencies 
list of A. 

Using this validity-maintenance algorithm, 
effective expression and processing of validity 
knowledge can be performed, as we next 
demonstrate. 

IV AN EXAMPLE OF AS-LONG-AS PROCESSING --- 

To illustrate the effectiveness of rules in 
the IF/THEN/AS-LONG-AS construct, the following 
meeting-scheduler system is presented, which makes 
use of the kinds of validity conditions previously 
discussed. The following rules show the rules for 
initially scheduling a meeting, determining when a 
person has a conflict, and for scheduling a 
meeting around conflicts: 

rule-l: 
IF no attendee has a conflict 

at proposed time T 
THEN schedule the meeting at time T 
AS-LONG-AS <= 25% of attendees 

get conflicts 

rule-2: 
IF person P has multiple meetings 

scheduled for time T 
THEN person P has a conflict of value T 
AS-LONG-AS those multiple meetings 

remain at time T 

rule-3: 
IF meeting requested time = t 

and meeting scheduled time 
cannot = t 

THEN propose meeting for time T+l 

920 / ENGINEERING 



Figure 1 shows the initial knowledge base, with 
"forms" to be filled with the meeting and attendee 
information, just one of many possible knowledge 
representations. 

Suppose that the expert system first 
considers MEETING-l. It is desired to assign it a 
scheduled time, so rule-l and rule-3 are matched 
as providing scheduling information. In 
evaluating rule-3, the system tries to schedule 
the meeting at its requested time, lO:OO, and, 
because of rule-l, succeeds. The "scheduled time" 
element is therefore filled with the value lo:oo. 
Next, the AS-LONG-AS part of rule-l is examined. 
In so doing, the system looks at the list of 
MEETING-l attendees and looks for conflicts of 
each one. Validity-maintenance links are stored 
to record the dependency of the scheduled time on 
each of the working memory elements accessed 

during this AS-LONG-AS evaluation. In this case, 
links would be stored between the "attendees" 
element of MEETING-l and the "scheduled time" 
element. For the same reason, links would be 
stored between the MARY, ELLEN, and STAN 
"conflict" element and the "scheduled time" 
element. Example dependency links can be seen in 
Figure 2. 

Next, the system considers MEETING-2, and 
similarly stores 10:00 in its "scheduled-time" 
element, dependent on the conflicts of JOE, SUE, 
and BOB, and the "attendees" element of MEETING-2. 
Additionally, because rule-2 was used to find the 
possible conflicts of the attendees, all 
attendees' "conflicts" elements will be stored as 
dependencies of the respective meeting "scheduled 
time" elements, due to the rule-2 AS-LONG-AS part. 

Joe 

pL&Lzq 

Bob 

-1 

Sue 

meetings: meeting-2 
conflicts: ~~~~ 1 

Figure 1. The initial knowledge base for the scheduler example. 

Mary 

meetings: meeting-l 

Stan 

I meetings: meeting-l 
conflicts: 

Marv 

Ellen 

1-1 

meeting-l 

attendees: Mary Stan Ellen 
requested time: 10:00 
proposed time: 
scheduled time: 

meeting-2 

attendees: Joe Sue Bob 
requested time: 10:00 
proposed time : 
scheduled time: 

meeting-l 

I attendees: JOE Mary Stan Ellen 
requested time: 10:00 

rule-2 
proposed time: 10:00 

& scheduled time: 10:00 &- 

Joe rule-l 

meeting-2 

rule-2 attendees: Joe Sue Bob - 
requested time: 1O:OO 

Sue 

rule-l 

rule-2 rule-l AS-LONG-AS 
dependency link 

Figure 2. After the initial scheduling, JOE la placed on the 
meeting-l attendees list. This causes validity maintenance, 
which will reschedule meeting-2, as described in the text. 

AUTOMATED REASONING / 92 1 



Now, suppose that someone decides that JOE 
should attend MEETING-l as well. Correspondingly, 
MEETING-l is put on his "meetings" list and JOE is 
put on the meeting "attendees" list. Figure 2 
shows how this new knowledge affects the 
validity-maintenance network. Validity 
maintenance processing is invoked whenever a 
working-memory element upon which other elements 
depend, is modified. Therefore, because the 
"scheduled time" of meeting-l is a dependent of 
the modified "attendees" entry, its validity 
conditions, the AS-LONG-AS part of rule-l, are 
checked. The "conflicts" slots of all the 
attendees are evaluated, and in the process, JOE 
receives a "1o:oo" in his "conflict" element. 
Despite the conflict, the AS-LONG-AS part of 
rule-l remains true for MEETING-l, and its 
scheduled time remains valid. 

However, the MEETING-2 scheduled time is a 
dependent of the now-modified JOE "conflict" 
entry, so its validity condition must be checked 
as well. For MEETING-2, though, 33% of the 
attendees now have conflicts, violating the 
AS-LONG-AS part. Therefore, the 
validity-maintenance mechanism removes the 
scheduled time from MEETING-2 and its dependent, 
JOE's conflict. A new value for the scheduled 
time must be found, and in rescheduling, rule-3 
fires, giving MEETING-2 the scheduled time of 
ll:oo. At this point, everyone is happily 
scheduled without any conflicts. 

From this example, it becomes clear that even 
with simple AS-LONG-AS parts in the rules, quite 
complex validity maintenance can result. To 
encode this explicitly without IF/THEN/AS-LONG-AS 
rules would have required considerably more rule 
engineering. 

V A STUDY CASE FOR THE EXTENDED PRODUCTION RULES ----- 

We have implemented a form-filling 
production-rules-based expert system called DIFF- 
The Domain Independent Form Filler (Beer, 1986). 
The knowledge in DIFF is stored in user-defined 
forms, which contain as their values either 
knowledge provided to the system a priori or 
knowledge inferred by the system as it proceeds. 
The system is goal-driven to fill requested 
entries of specified forms, using production rules 
and the other form entry values, Many 
form-filling tasks, such as a implemented Course 
Scheduling task, similar to the example above, 
require validity maintenance on form entries. 
DIFF uses IF/THEN/AS-LONG-AS rules to accomodate 
this requirement. 

Within the form-filling paradigm of DIFF, it 
was quite straightforward to implement the 
validity maintenance algorithm described above. 
The various form entries in the system correspond 
to elements of Working Memory. Therefore, each 
time a form entry is filled, all of the form 
accesses in the AS-LONG-AS part of the rule are 
given the new entry as a dependent. A future 
change in the values of any of these form accesses 
will cause validity checking of the dependent form, 

922 / ENGINEERING 

In addition to the completed course-scheduler 
example, current work includes using DIFF for 
cardio-vascular diagnosis and tax-form consulting. 

VI CONCLUSION 

Validity Maintenance in production systems 
used in domains of changing knowledge is crucial 
if the system is to avoid the inaccuracy, 
inconsistency, and non-optimality problems of the 
basic IF/THEN formulation. To this end, in 
addition to the usual knowledge about what domain 
inferences to make, the knowledge of the context 
under which these inferences will remain true in 
the future is necessary. For 
Engineering purposes, 

Knowledge 
the validity 

should be expressible in a 
knowledge 

natural and 
The new 

compact 
way. approach of using rules in the 
IF/THEN/AS-LONG-AS form meets these requirements. 
Because of the straightforward algorithms 
available for its implementation, the 
IF/THEN/AS-LONG-AS paradigm should provide inroads 
to more practical rule-based design for complex 
domains. 

ACKNOWLEDGEMENTS 

We would like to express our thanks to the 
Director of CAISR, Professor Yoh-Han Pao, for 
support of this work, and to Professor Leon 
Sterling, for his comments on an earlier version 
of this paper. 

REFERENCES 

[l] Barr, A. and Feigenbaum, E.A., The Handbook 
of Artificial Intelligence, Vol. I, 
William Kaufmann, 1981. 

190-199, 

[2] Beer, Randall, "Interim DIFF User's Manual," 
Technical Report TR-101-86, Center for Automation 
and Intelligent Systems Research, Case Western 
Reserve University, 1986. 

[3] de Kleer, Johan, "Choices without 
Backtracking," Proceedings of the National 
Conference on Artificial 
79-85. - 

InGlligence, 1984, 

[4] Doyle, Jon, "A Truth Maintenance System," 
Artificial Intelligence, Vol. 12, 231-272, 
North-Holland, 1979. 

[S] Rich, Elaine, "Knowledge Representation Using 
Other Logics," Artificial Intelligence, 
McGraw-Hill, New York, 1983. 

[6] Hayes-Roth, F., Waterman, D.A., and Lenat, 
D.B., Building Expert Systems, Addison-Wesley, 
Reading, MA, 1983. 

[7] Weiss, S.M., and Kulikowski, C.A., Designing 
Expert Systems, Rowman and Allanheld, Totowa, NJ, 
1984. 

[8] Winston, P.H., "Rule-based Systems for 
Analysis," in Artificial Intelligence, 
Addison-Wesley, Chapter 3, 1984. 


