
A PARALLEL SELF-MODIFYING DEFAULT REASONING SYSTEM

Jack blinker Donald Perlis Krishnan Subramanian

Department of Computer Science University of Maryland Institute
University of Maryland for Advanced Computer Studies

College Park, MD 20742

ABSTRACT

As a step in our efforts toward the study of real-time moni-
toring of the inferential process in reasoning systems, we have dev-
ised a method of representing knowledge for the purpose of default
reasoning. A meta-level implementation that permits effective
monitoring of the deductive process as it proceeds, providing infor-
mation on the state of the answer procurement process, has been
developed on the Parallel Inference System (PRISM) at the Univer-
sity of Maryland. Also described is an implementation in PRO-
LOG (and to be incorporated in the above) of a learning feature
used to calculate, for purposes of issuing default answers, the
current depth of inference for a query from that obtained from
similar queries posed earlier.

Keywords: automated (default) reasoning,
modelling, user interface technology

learning, cognitive

1. Introduction

In continuing the study of default reasoning in real-time sys-
tems [13] we have encountered the phenomenon of tentative
answers to queries, which may alter as the system continues to
search and to perform deductions. The idea underlying this is that
for queries having natural default responses when no other
response is available, it may be the case that the failure of the rea-
soning system to respond with a positive answer quickly is an indi-
cation that no such answer is likely to be forthcoming; in such a
case the default answer may be provided, even though the system
has not finished all possible lines of reasoning.

To carry out such reasoning, the deductive engine must be
monitored so that at any time it is known whether an answer has
been returned, allowing a decision as to whether to issue a default
conclusion in the absence of an answer. \Ve have implemented a
mechanism for this purpose, both in PRISM (a parallel inference
system) and in PROLOG.

We state the problem below. Then we describe the approach
adopted, and briefly the PRISM system. The implementation is
described in section 2. We give examples of application of our
methods in section 3, and in section 4 we discuss related future
work.

The problem addressed can be stated abst)ractly as follows:
Given an inference engine, we wish to monitor its behavior so that
while deductive efforts are in progress, another mechanism can
decide when (and whether) to issue default answers based on the
(so-far) failure of the original engine to find an answer. That is,
our new mechanism will be an interface between the user and the
deductive engine. However, the interface is to react in real-time to
the real-time behavior of the engine, this being the key to its
default conclusions.

This also has ties with human cognitive behavior. When
asked a question, such as ‘what is Tom’s phone number?’ we
may respond by cogitating, then saying ‘I don ‘t know’ only later
to amend this with ‘Wait! Yes, I do know, it’s 34G-9344.’ The

possibility of error is explicitly prcscnt, in such reasoning. For cer-
tain queries, it may be inappropriate to conclude the falsity simply
because it is not answered quickly, while for others it may not.

As a pract,ical matter, the interface that is to make these
decisions can be part of the deductive engine itself; but conceptu-
ally it is perhaps more easily regarded as separate. In the next sec-
tion we describe the operation of the particular mechanisms we
have developed. At the present time, we do not have a mechanical
procedure in the main system to decide \vhen to employ a default;
i.e., defaults are employed at all times if no answer is (so-far) pro-
vided by the engine.

Much of the work in default reasoning has been of a
theoretic and formal nature, e.g. [7,8,9,10,11,14,16]. We are here
concerned with issues involving the practical aspects. The primary
motivation is the study of intelligent and parallel question-
answering capabilities in computers. Our initial attempt was a sim-
ple parallel meta-interpreter, with a desire to examine and study
its functioning at modelling human answering behavior. An infer-
ence step count exhibits, in some sense, the ‘depth’ or ‘intensity’
of the reasoning involved. A dynamic feedback capability keeps
the user informed of the status of the inference process, in real
time. A simple learning feature has been implemented in PROLOG
using depth information from previous queries in the inference for
the current query. An exclusive object-level implementation would
have yielded a much less flexible system.

PRISM (PaRallel Inference SystcM), developed at the
University of Maryland, is the inference engine that we used to
exploit parallelism. It employs logic programming techniques and
affords explicit control of goals, in an evolving logic programming
environment. It is designed to run on ZhlOB, the Department’s
experimental parallel computing system [2,5,15]. Currently,
PRISM runs with a software belt that simulates the ZMOB
hardware belt.

The PRISM system is an integration of four major subsys-
tems: the Problem Solving R4achines (PShls) that manage the tree
of goals, the Intensional Database Machines (IDBs) that contain
the general axioms, the Extensional Database Machines (EDBs)
that contain fully ground function-free atoms, and the Constraint
Machine (CShl) that contains integrity constraints. A host subsys-
tem serves as the interface between the user and-PRISM, receiving
queries and relaying back answers. PRlShl supports goal types by
a notation that consists of angle brackets (for sequential, left-to-
right execution) and braces (for parallel execution) 1151.

A query posed to PRISM system can belong to one of the fol-
lowing categories: (1) A single goal, e.g. Gl or rGl> or {Gl};
(2) A list, of goals that have to be solved, strictly sequentially, e.g.
<Gl,G2,G3>; (3) A list of goals, all of which may be solved in
parallel, e.g. {Gl,G2,G3}; (4) A goal list to be solved basically
sequentially, but contains sublists solvable in parallel e.g.
<Gl,{G2,G3}> , <Gl,{GfZ,<G3,G4>}> etc.; and (5) A list of
goals that can be solved basically in parallel, but cont,ains sublists
that have to be solved sequentially, e.g.
{Gl,<GZ,{G3,G4}>} etc.

{Gl,<GS,G3>} ,

AUTOMATED REASONING / 923

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

2. System Description

The basic system centers around parallelism. The key notion
is a mechanism that provides default reasoning and comes to deci-
sions rapidly even at the expense of making mistakes, and can
revise when to make a defa.ult decision based on past performance.

Initially defaults are made as follows. Given that a predicate
letter is fully extensional, the system should conclude on lookup
either that it has the answer or no answer is possible. However,
given a predicate letter that is fully intensional, it should conclude,
after the system has gone along the shortest possible path to a
solution, either failure or success. As the system progresses it may
learn that the (final) solution on the average takes longer (or

shorter) than anticipated by the current default specification,
obtained as the depth (AID, or actual inference depth) of the and-
or tree that corresponds to the inference. After each query, the
depth is reestimated for a subsequent query that would involve the
same predicate letter. In the case of a predicate letter that is both
extensional and intensional, we ignore the extensional possibility
and calculate the depth as if it were fully intensional. In fact, we
can arbitrarily specify default depth conditions and let the system
learn the appropriate value to use. Indeed, this will be seen in
some of the experiments that we describe in section 3. One
should, however, start with reasonable values rather than arbitrary
values since, the system will converge more rapidly to the correct
default depth values.

A simple formula is used for the purpose of ‘learning’ new
default depth values:

New depth = (Old depth * N + Latest depth)/(N + 1)
where N is the number of queries (before the current one) that
involved the same predicate and latest depth is current AID. Thus
at any instant, a predicate has tagged to it a depth estimate and
the number of queries thus far posed involving it. Clearly, the
more the number of queries, the better the estimate (supposedly
indicating better learning). As PRIShl hasn’t an assert/retract
capability as yet, a sequential version has been implemented in
PROLOG. When a depth is reached an answer is returned; how-
ever, if the answer is negative (nothing found) the system contin-
ues to search for an answer in order to find any possible greater
depth it ‘should’ have gone to; this latter is the ’ latest depth’ in
the formula.

VVe employ t,wo binary predicates to represent all informa-
tion that a user wishes to supply. One identifies all facts that go
into the EDBs, while the other identifies the clauses (facts and
rules) placed in the IDBs. These correspond to the object-level
placement of knowledge, and encompass all information in the
user ’ s programs. This is used by the meta-interpreter (discussed
next) that issues the rneta-answers, while monitoring the answer-
deduction process.

2.1 Design Aspects

The basic structure of the system is shown in Fig. (1). The
knowledge base module is exclusive for all user-supplied informa-
tion, and consists of atomic clauses each of which is identified as
belonging either to the EDB or the IDB with the two predicates.

This is the only section that is directly relevant to the user, as all
meta-level activity is transparent to him.

The second module comprises the inference machinery,
responsible for the meta-interpretation activity upon the
knowledge base.

In this module, we have maintained a clear distinction between a
kernel that exclusively handles all interaction with the user-
supplied knowledge, and a layered structure that encompasses the
kernel. The latter serves to reduce any demand for an interaction
with the knowledge base to elementary level interactions, which
the kernel routines can directly act upon. Such a methodology
proves to be advantageous for experiments that need a dynamic
and evolving inferential structure, particularly in a parallel logic
programming environment.

I LAYER3 i I

Fig. (1)

A single layer is responsible for a class of queries that would
comprise one or more categories. A partition within a layer is
responsible for all queries that fall in the same category. A layer
may only make use of thC facilities available in any layer
ensconced within and those at its own level. Such a discipline
enables one to construct the entire assemblage (inside-out) in an
incremental, structured fashion.

2.2 A Modular, Multi-layered Implementation

Solving a single goal is fundamental to solving any query,
and this is the function of the kernel in the inference module.
This may be regarded as the elementary level at which any
inferencing has to begin. Solving any query, irrespective of the
number of goals involved or their nature (i.e. sequential/ parallel),
can be reduced to solving single-goals. This isolates the kernel
from interactions between the inference assembly and the
knowledge base, and proves to be beneficial when one constantly
needs to adjust the inference mechanism (to model the answering
process of a human reasoner) i.e. it can be iteratively refined till
its operation begins to exhibit the intended characteristics. Also,
this helps focus attention on a small and compact section that con-
tains but a few routines, needed to meta-interpret a single goal.

Just as important would be the way a query is reduced to
elementary level interactions. The layers that encompass the ker-
nel effect this reduction, which would then require solving single-
goals only i.e. exclusive kernel activit,y. The layer that immedi-
ately surrounds the kernel handles the cat,egories 2 and 3. That
half of this layer that handles a sequential list hands in a goal to
the kernel, and only when the kernel is through with it does it
hand in the next goal in the sequence. The other half of the layer
that is responsible for the parallel ones, i.e., category 3, causes
PRISM to spawn the requisite number of kernels to handle all the
goals in the list in parallel. The complete system is shown in Fig.

(2).
The kernel is used for solving a single goal, be it a query by

itself, or part of one. We view a goal as an ordered pair of the
predicate and the argument list. The skeleton kernel as tailored for
the answer-behavior model is presented here.

The underlying notion of default reasoning that we are
exploiting is implemented in part by the kernel, as follows: We
consider that EDB data is readily accessible for immediate
retrieval, and that IDB data may take longer to utilize. Thus if a
query is such that the system’s database would normally be
expected to contain an answer to a given query in EDB, such an
answer should be forthcoming quickly. If none so appears, the
appropriate default assumption is that the query is false. However,
this does not rule out the possibility of a later answer being found,
that is, as IDB is searched and inferences are made.

These ideas are (partially) illustrated in the following sample
axioms from the kernel:

924 / ENGINEERING

(I(1) *Solve(Pred,Arglist) <- EDB(Pred,Arglist), Report-Success().
(K2) *Solve(Pred,Arglist) <- Report-Tentative-Failure(),

lDB([Pred,Arglist] ,MatchingBody),
Analyze(Arglist,Matching-Body).

(K3) Analyze(Arglist, NIL).
(K4) Analyze(Arglist, Subgoal-List) <- Recurse(Subgoal-List).
(K5) Recurse(NIL).
(K6) Recurse([[Predl,Arglistl] IRest-Subgoals]) <-

Solve-Aux(Predl,Arglistl),
Recurse(Rest-Subgoals).

(I(7) *Solve-Aux(Pred, Arglist) <- EDB(Pred, Arglist).
(K8) *Solve-Aux(Pred,Arglist) <-

lDB([Pred, Arglist] ,MatchingBody),
Analyze(Arglist,Matching-body).

6
5 - 3

*
I l0

1. User
2. Preprocessor

3. Meta-interpreter
4. Knowledge Base
5. Dispatcher
6. Kernel
7. Inner Layer
8. Outer Layer - Inner Tier
9. Outer Layer - Outer Tier

10. The PRISM System

A. The half handling sequential queries
B. The half handling parallel queries

a. Data/Programs b. Queries
c. Response d. Internal Format

Fig. (2)

In the above clauses, ‘EDB’ and ‘IDB’ are the two predi-
cates used for providing all the user-supplied information. Since
the EDB models the short-term memory, it is searched first and
only if it fails is the IDB search taken up. The use of the asterisk
is imperative in this instance, since in our model we do not want
any attempt at the IDB until after the EDB has failed to produce
a viable answer. Further we intend to have a success/failure report
from the EDB and other status information, only for the top-level
goals in the immediate query posed and not for any subgoals. And
this necessitates the auxiliary ‘Solve-Aux’ procedure above. (The
kernel handles category (1) of the queries discussed earlier).

Thus a query P(X) will b e solved if it matches an EDB fact,
or can be inferred from the IDB. In the latter case, a tentative
failure as the default assumption is issued (i.e. if the EDB failed,
then in all likelihood the query is false), followed by reports on the
IDB search.

3. Examples

We present here two illustrations - one in PRISM and one in
PROLOG - in order to give the reader an idea of the answering
process capabilities as performed by our model. It seems to us that
within the limits of the answering behavior modelled by the meta-
interpreter, most real-life questions to a human reasoner would
fall, in the majority of the cases in the first category. Only on a
few occasions would they fall in the second (the third is different
from the second only in the nature of execution, and not in the
nature of the query per se), and rarely in the other. As most
queries are single goals (i.e. category l), the kernel captures fairly
adequately the answering process simulation, with much lesser
activity from the other layers. (The complete testing was done
using a genealogy database).

Example 1 :

The meta-answers in the following example should exhibit a
flavor of the monitoring activity performed by the system in the
process of answering the query.

Short term memory :

‘A plane is an air-vehicle. Pup is a light-weight, compact, airy
tent. Tarpaulin is tough and compact’.
Air-vehicle(Plane).
Tent(Pup).
Light-weight(Pup).
Airy(Pup).
Compact(Pup).
Compact(Tarpaulin).
Tough(Tarpaulin).

Long term memory :

‘Air-vehicles and shelters are water-proof. Anything that is port-
able and light in weight is a shelter. A tent is portable. And so is

something that is tough and compact’.

Waterqroof(X) <- Air-vehicle(X).
Watergroof(X) <- Shelter(X).
Shelter(X) <- <Portable(X), Light-weight(X) > .
Portable(X) <- Tent(X).
Portable(X) <- <Tough(X), Compact(X) > .

Query: ‘Give me something that’s a waterqroof and airy
shelter ’ .

<-<Waterqroof(X),{Shelter(X), Airy(X)}>.

[This is a sequential query with embedded parallelism. This choice
of control has been made for purposes of illustration, but can be
motivated in terms of the example by supposing we are especially
eager for something that is waterproof, after which we are equally
concerned about its being a shelter and its airiness].

The Meta-answers :

I can’t affirm “Water-proof(X)“; it is false, tentatively. (Al)
Well, here is some answer... Waterqroof(Plane). (-42 1
I can’t affirm “Shelter(Plane)“; it is false, tentatively. (A3 1
I can’t affirm “Airy(Plane)“; it is false, tentatively. (A4)
Well, here is some answer... WaterDroof(Pup). (A5 1
I can’t affirm “Shelter(Pup); it is false, tentatively. (A6 1
I can definitely say that “Shelter(Plane) is false now. (A7 1
I can definitely say that “Airy(Plane)” is false now. (A8 1
Sure, I can answer this... (A9 1
here goes... Airy(Pup). I AlO)
I got some answer you want... Shelter(Pup) (AllI
and that’s it...! Here you go!! (Al21

AUTOMATED REASONING / 925

The Answers :

! Answer obtained in 10 inference steps !

x = Pup

Query Succeeded.

Explanation:

First, the query has overall sequential control, with an
embedded sublist which has goals amenable to parallel solving.
The first goal is taken up, and passed over to the kernel. The
Short Term Memory (STM) reports failure (Al). Augmented with
the Long Term Memory (LTM), the goal succeeds, and X is bound
to “Plane” (A2). Work is begun on the sublist, with X instan-
tiated to “Plane” in both the goals, and at the same time an
attempt is made to find an alternative solution for
” Waterqroof(X)” .

Two kernels are spawned simultaneously, and the two take
up solving “Shelter(Plane)” and “Airy(Plane)“, in parallel. Both

fail in the STM, and have the failures reported (A3, A4). How-
ever, they continue to work in the LTM. Note that this would not
have been possible in a sequential environment, where a goal is not
even attempted until the preceding one succeeds. The benefit of
the parallel environment would be particularly striking when the
user has several mutually non-interdependent goals running, since
he can get the status of each and every goal independently of their
ordering in the query.

The first goal succeeds again with “Pup” for X (A5), and two
more kernels are created for the two goals in the sublist.
“Shelter(Pup)” fails in STM, and this is reported (A6). By this
time, the two original goals fail in LTM as well (A7, A8), while
“Airy(Pup)” succeeds in STM (A9). Accordingly, immediate
confirmation of the latter is issued (AlO). Eventually, the other
kernel also succeeds and reports success, affirming “Shelter(Pup)”
(All). When all the goals are thus solved (A12), the number of
inference steps for an answer (if success) (A13) and the final
answer (if any) are issued (A14), and the system reports
success/failure (A15).

Example 2:

The plots in Fig. (3) h s ow the system asymptotically stabiliz-
ing at a certain value of depth for a given predicate. That is, the
more the number of queries encountered earlier (with the same
predicate), the more representative is its estimate of the inference
required for the next query. Recall the formula for calculating the
new default depth (at which the effective search is cut off and a
negative “closed-world” default is invoked):

New depth = (Old depth * N + Latest depth)/(N + 1)

In effect, a deductive database can over time become more
familiar with itself, i.e., with its own particular configuration of
data in regard to the likelihood of determining an answer to a par-
ticular kind of query within a certain number of inferences. In
order to illustrate our idea here, we have chosen three simple
examples in which default depths approach an average value. That
is, as more queries are entered, the level of inference that is
allowed before a default answer is invoked is modified to better
represent the average level at which the actual search ended. The
database is a variant of that in example 1, in which
‘Compact(Pup)’ and ‘Compact(Tarpaulin)’ in the EDB are
replaced with ‘Light-weight(Tarpaulin)‘, and the last IDB axiom
is replaced with the following three: ‘Portable(X) <- Tough(X).‘,
’ Tent(X) Tough(X). ’ and

Watergroof(X~Shelter(X),Airy(X). ’ .
‘WSA(X) <-

Note that WSA is a new
predicate symbol.

In plot (a) we perform repeated queries of ‘Waterproof’
with an initial depth tag of 1. The plot shows that as queries are
answered, the depth tag is repeatedly reset at increased levels,
approaching an asymptotic value. This indicates that the initial
tag was too low, in that “experience’ ’ with the database has

shown the system there are answers beyond the point at which
defaults are invoked. The system gradually corrects this (in the
average case) as time goes on. In particular, the user will notice
increased cautiousness of the system (and fe\ver changes of mind).

For instance a query of Waterqroof(Plane) will initially be
answered (negatively) by default after one inference step only to
be corrected later (AID: 2). But after three further queries the
depth tag becomes > 2, and so the very Same query will now be
answered positively.

In plot (b) the query is WSA(X). The initial depth tag for
‘WSA’ is 1. We see here that performance changes over time
much as in (a).

8 r I I

a>

5

i

Fig. (3)

926 / ENGINEERING

In plot (c) the query is Airy(X), which is a purely EDB query.
The initial depth tag is set at 10, which is far too cautious. This
illustrates the-case of it not being known in advance that all the
data is EDB and that therefore all queries will terminate rapidly.
However, over time, the system adjusts the depth tag to be near 1.
Note that if new axioms were later to be added which involved
IDB for Airy, then defaults would come into play as a result of this
prior alteration of the depth tag.

01)

(12)

(13)

(14

4. Conclusions and Future Work

We have shown that real-time monitoring of query-answering
to provide default answers is feasible, at least in a limited context.
We have illustrated this with an implementation on the PRISM
parallel inference system and partially in PROLOG, using a meta-
level approach. This has focussed on the existing structure of
PRISM, which has a natural division between look-ups (EDB) and
inference steps (IDB); the meta-level allows explicit declarative
statments to be made and proven concerning these two notions.
Meta-interpretation is the main technique that we have used to
implement a flexible system that can evolve easily with changes, to
exhibit some rudimentary ‘cognitive’ or self-modifying behavior.

Future work includes several extensions of the current work.
For one thing, we want to pursue the idea of placing a query in
background mode once a new query comes in and the original one
has not yet finished executing. This would be then enhanced by
the inclusion of dynamic proof-tree generation in interactive mode,
so that the user can direct the system’s behavior as it executes.
Additional extensions will include tackling the problem of interact-
ing defaults, providing informative answers, and deciding automat-
ically when a given query is to be treated in default mode or in
normal mode.

ACKNOWLEDGEMENTS

This research was supported in part by grants from the fol-
lowing organizations: AFOSR-82-0303, ARO-DAAG-29-85-K-0177,
and the Martin Marietta Corporation.

(1)

(2)

(3)

(4

(5)

(6)

(7)

(8)

(9)

(10)

REFERENCES

Bowen,K.A. & Kowalski,R.A.,“Amalgamating Language
and Meta-language in Logic Programming” in “Logic
Programming”,eds. C1arkK.L. & Tarnlund,S.A., Academic
Press, London and N.Y., 1982.

Chakravarthy,U.S. et al., “Logic Programming on ZMOB:
A Highly Parallel Machine”, Procs. Intl’ Conference on
Parallel Processing, 1982.

Dincbas,M. & le Pape,J-P., “Meta-control of Logic Pro-
grams in METALOG”, Procs. Intl’ Conference on Fifth
Generation Systems, ICOT, 1984.

Gallaire,H. & La.sserre,C., “Meta-control for Logic Pro-
grams” in “Logic Programming” ,eds. Clark,K.L. &
Tarnlund,S.A., 1982.

Kasif,S., Kohl&M. & Minker,J., ‘PRISM - A Parallel Infer-
ence System for Problem Solving”, Procs. IJCAI, 1983.

Kowalski,R.A., ‘Logic for Problem Solving”, Elsevier Sci-
ence Publishing Co., 1979.

Lifschitz,V., “Some results on circumscription”, Workshop
on Non-monotonic Reasoning, (Mohonk) 1984.

McCarthy, J., “Circumscription: A form of Non-monotonic
Reasoning”, AI Journal v.13, 1980..

McCarthy, J., “Applications of Circumscription to Formaliz-
ing Common Sense Knowledge”, Workshop on Non-
monotonic Reasoning, 1984.

McDermott,D. & Doyle, J., “Non-monotonic Logic”, AI
Journal v.13, 1980

(15)

(16)

(17)

Minker, J. & Perlis,D., “Protected Circumscription”,
Workshop on Non-monotonic Reasoning, 1984.

h/linker, J. & Perlis,D., “Computing Protected Circumscrip-
tion”, Journal of Logic Programming v.4, 1985

Perlis,D., “Non-monotonicity and Real-time Reasoning”,
Workshop on Non-monotonic Reasoning, 1984.

Perlis,D. & Minker,M., “Completeness Results for Cir-
cumscription”, AI Journal (to appear).

PRISM Reference Manual, Dept. of Computer Science,
Univ. of Maryland, 1983

Reiter,R., “A Logic for Default Reasoning”, AI Journal
v.13, 1980

Sterling,L., “Expert System = Knowledge + Meta-
interpreter”, Weizmann Institute of Sciences, Rehovot,
Israel, 1984.

AUTOMATED REASONING / 927

