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ABSTRACT 

As a step in our efforts toward the study of real-time moni- 
toring of the inferential process in reasoning systems, we have dev- 
ised a method of representing knowledge for the purpose of default 
reasoning. A meta-level implementation that permits effective 
monitoring of the deductive process as it proceeds, providing infor- 
mation on the state of the answer procurement process, has been 
developed on the Parallel Inference System (PRISM) at the Univer- 
sity of Maryland. Also described is an implementation in PRO- 
LOG (and to be incorporated in the above) of a learning feature 
used to calculate, for purposes of issuing default answers, the 
current depth of inference for a query from that obtained from 
similar queries posed earlier. 

Keywords: automated (default) reasoning, 
modelling, user interface technology 

learning, cognitive 

1. Introduction 

In continuing the study of default reasoning in real-time sys- 
tems [13] we have encountered the phenomenon of tentative 
answers to queries, which may alter as the system continues to 
search and to perform deductions. The idea underlying this is that 
for queries having natural default responses when no other 
response is available, it may be the case that the failure of the rea- 
soning system to respond with a positive answer quickly is an indi- 
cation that no such answer is likely to be forthcoming; in such a 
case the default answer may be provided, even though the system 
has not finished all possible lines of reasoning. 

To carry out such reasoning, the deductive engine must be 
monitored so that at any time it is known whether an answer has 
been returned, allowing a decision as to whether to issue a default 
conclusion in the absence of an answer. \Ve have implemented a 
mechanism for this purpose, both in PRISM (a parallel inference 
system) and in PROLOG. 

We state the problem below. Then we describe the approach 
adopted, and briefly the PRISM system. The implementation is 
described in section 2. We give examples of application of our 
methods in section 3, and in section 4 we discuss related future 
work. 

The problem addressed can be stated abst)ractly as follows: 
Given an inference engine, we wish to monitor its behavior so that 
while deductive efforts are in progress, another mechanism can 
decide when (and whether) to issue default answers based on the 
(so-far) failure of the original engine to find an answer. That is, 
our new mechanism will be an interface between the user and the 
deductive engine. However, the interface is to react in real-time to 
the real-time behavior of the engine, this being the key to its 
default conclusions. 

This also has ties with human cognitive behavior. When 
asked a question, such as ‘what is Tom’s phone number?’ we 
may respond by cogitating, then saying ‘I don ‘t know’ only later 
to amend this with ‘Wait! Yes, I do know, it’s 34G-9344.’ The 

possibility of error is explicitly prcscnt, in such reasoning. For cer- 
tain queries, it may be inappropriate to conclude the falsity simply 
because it is not answered quickly, while for others it may not. 

As a pract,ical matter, the interface that is to make these 
decisions can be part of the deductive engine itself; but conceptu- 
ally it is perhaps more easily regarded as separate. In the next sec- 
tion we describe the operation of the particular mechanisms we 
have developed. At the present time, we do not have a mechanical 
procedure in the main system to decide \vhen to employ a default; 
i.e., defaults are employed at all times if no answer is (so-far) pro- 
vided by the engine. 

Much of the work in default reasoning has been of a 
theoretic and formal nature, e.g. [7,8,9,10,11,14,16]. We are here 
concerned with issues involving the practical aspects. The primary 
motivation is the study of intelligent and parallel question- 
answering capabilities in computers. Our initial attempt was a sim- 
ple parallel meta-interpreter, with a desire to examine and study 
its functioning at modelling human answering behavior. An infer- 
ence step count exhibits, in some sense, the ‘depth’ or ‘intensity’ 
of the reasoning involved. A dynamic feedback capability keeps 
the user informed of the status of the inference process, in real 
time. A simple learning feature has been implemented in PROLOG 
using depth information from previous queries in the inference for 
the current query. An exclusive object-level implementation would 
have yielded a much less flexible system. 

PRISM (PaRallel Inference SystcM), developed at the 
University of Maryland, is the inference engine that we used to 
exploit parallelism. It employs logic programming techniques and 
affords explicit control of goals, in an evolving logic programming 
environment. It is designed to run on ZhlOB, the Department’s 
experimental parallel computing system [2,5,15]. Currently, 
PRISM runs with a software belt that simulates the ZMOB 
hardware belt. 

The PRISM system is an integration of four major subsys- 
tems: the Problem Solving R4achines (PShls) that manage the tree 
of goals, the Intensional Database Machines (IDBs) that contain 
the general axioms, the Extensional Database Machines (EDBs) 
that contain fully ground function-free atoms, and the Constraint 
Machine (CShl) that contains integrity constraints. A host subsys- 
tem serves as the interface between the user and-PRISM, receiving 
queries and relaying back answers. PRlShl supports goal types by 
a notation that consists of angle brackets (for sequential, left-to- 
right execution) and braces (for parallel execution) 1151. 

A query posed to PRISM system can belong to one of the fol- 
lowing categories: (1) A single goal, e.g. Gl or rGl> or {Gl}; 
(2) A list, of goals that have to be solved, strictly sequentially, e.g. 
<Gl,G2,G3>; (3) A list of goals, all of which may be solved in 
parallel, e.g. {Gl,G2,G3}; (4) A goal list to be solved basically 
sequentially, but contains sublists solvable in parallel e.g. 
<Gl,{G2,G3}> , <Gl,{GfZ,<G3,G4>}> etc.; and (5) A list of 
goals that can be solved basically in parallel, but cont,ains sublists 
that have to be solved sequentially, e.g. 
{Gl,<GZ,{G3,G4}>} etc. 

{Gl,<GS,G3>} , 
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2. System Description 

The basic system centers around parallelism. The key notion 
is a mechanism that provides default reasoning and comes to deci- 
sions rapidly even at the expense of making mistakes, and can 
revise when to make a defa.ult decision based on past performance. 

Initially defaults are made as follows. Given that a predicate 
letter is fully extensional, the system should conclude on lookup 
either that it has the answer or no answer is possible. However, 
given a predicate letter that is fully intensional, it should conclude, 
after the system has gone along the shortest possible path to a 
solution, either failure or success. As the system progresses it may 
learn that the (final) solution on the average takes longer (or 

shorter) than anticipated by the current default specification, 
obtained as the depth (AID, or actual inference depth) of the and- 
or tree that corresponds to the inference. After each query, the 
depth is reestimated for a subsequent query that would involve the 
same predicate letter. In the case of a predicate letter that is both 
extensional and intensional, we ignore the extensional possibility 
and calculate the depth as if it were fully intensional. In fact, we 
can arbitrarily specify default depth conditions and let the system 
learn the appropriate value to use. Indeed, this will be seen in 
some of the experiments that we describe in section 3. One 
should, however, start with reasonable values rather than arbitrary 
values since, the system will converge more rapidly to the correct 
default depth values. 

A simple formula is used for the purpose of ‘learning’ new 
default depth values: 

New depth = (Old depth * N + Latest depth)/(N + 1) 
where N is the number of queries (before the current one) that 
involved the same predicate and latest depth is current AID. Thus 
at any instant, a predicate has tagged to it a depth estimate and 
the number of queries thus far posed involving it. Clearly, the 
more the number of queries, the better the estimate (supposedly 
indicating better learning). As PRIShl hasn’t an assert/retract 
capability as yet, a sequential version has been implemented in 
PROLOG. When a depth is reached an answer is returned; how- 
ever, if the answer is negative (nothing found) the system contin- 
ues to search for an answer in order to find any possible greater 
depth it ‘should’ have gone to; this latter is the ’ latest depth’ in 
the formula. 

VVe employ t,wo binary predicates to represent all informa- 
tion that a user wishes to supply. One identifies all facts that go 
into the EDBs, while the other identifies the clauses (facts and 
rules) placed in the IDBs. These correspond to the object-level 
placement of knowledge, and encompass all information in the 
user ’ s programs. This is used by the meta-interpreter (discussed 
next) that issues the rneta-answers, while monitoring the answer- 
deduction process. 

2.1 Design Aspects 

The basic structure of the system is shown in Fig. (1). The 
knowledge base module is exclusive for all user-supplied informa- 
tion, and consists of atomic clauses each of which is identified as 
belonging either to the EDB or the IDB with the two predicates. 

This is the only section that is directly relevant to the user, as all 
meta-level activity is transparent to him. 

The second module comprises the inference machinery, 
responsible for the meta-interpretation activity upon the 
knowledge base. 

In this module, we have maintained a clear distinction between a 
kernel that exclusively handles all interaction with the user- 
supplied knowledge, and a layered structure that encompasses the 
kernel. The latter serves to reduce any demand for an interaction 
with the knowledge base to elementary level interactions, which 
the kernel routines can directly act upon. Such a methodology 
proves to be advantageous for experiments that need a dynamic 
and evolving inferential structure, particularly in a parallel logic 
programming environment. 

I LAYER3 i I 

Fig. (1) 

A single layer is responsible for a class of queries that would 
comprise one or more categories. A partition within a layer is 
responsible for all queries that fall in the same category. A layer 
may only make use of thC facilities available in any layer 
ensconced within and those at its own level. Such a discipline 
enables one to construct the entire assemblage (inside-out) in an 
incremental, structured fashion. 

2.2 A Modular, Multi-layered Implementation 

Solving a single goal is fundamental to solving any query, 
and this is the function of the kernel in the inference module. 
This may be regarded as the elementary level at which any 
inferencing has to begin. Solving any query, irrespective of the 
number of goals involved or their nature (i.e. sequential/ parallel), 
can be reduced to solving single-goals. This isolates the kernel 
from interactions between the inference assembly and the 
knowledge base, and proves to be beneficial when one constantly 
needs to adjust the inference mechanism (to model the answering 
process of a human reasoner) i.e. it can be iteratively refined till 
its operation begins to exhibit the intended characteristics. Also, 
this helps focus attention on a small and compact section that con- 
tains but a few routines, needed to meta-interpret a single goal. 

Just as important would be the way a query is reduced to 
elementary level interactions. The layers that encompass the ker- 
nel effect this reduction, which would then require solving single- 
goals only i.e. exclusive kernel activit,y. The layer that immedi- 
ately surrounds the kernel handles the cat,egories 2 and 3. That 
half of this layer that handles a sequential list hands in a goal to 
the kernel, and only when the kernel is through with it does it 
hand in the next goal in the sequence. The other half of the layer 
that is responsible for the parallel ones, i.e., category 3, causes 
PRISM to spawn the requisite number of kernels to handle all the 
goals in the list in parallel. The complete system is shown in Fig. 

(2). 
The kernel is used for solving a single goal, be it a query by 

itself, or part of one. We view a goal as an ordered pair of the 
predicate and the argument list. The skeleton kernel as tailored for 
the answer-behavior model is presented here. 

The underlying notion of default reasoning that we are 
exploiting is implemented in part by the kernel, as follows: We 
consider that EDB data is readily accessible for immediate 
retrieval, and that IDB data may take longer to utilize. Thus if a 
query is such that the system’s database would normally be 
expected to contain an answer to a given query in EDB, such an 
answer should be forthcoming quickly. If none so appears, the 
appropriate default assumption is that the query is false. However, 
this does not rule out the possibility of a later answer being found, 
that is, as IDB is searched and inferences are made. 

These ideas are (partially) illustrated in the following sample 
axioms from the kernel: 
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(I(1) *Solve(Pred,Arglist) <- EDB(Pred,Arglist), Report-Success(). 
(K2) *Solve(Pred,Arglist) <- Report-Tentative-Failure(), 

lDB( [Pred,Arglist] ,MatchingBody), 
Analyze(Arglist,Matching-Body). 

(K3) Analyze(Arglist, NIL). 
(K4) Analyze(Arglist, Subgoal-List) <- Recurse(Subgoal-List). 
(K5) Recurse(NIL). 
(K6) Recurse( [[Predl,Arglistl] IRest-Subgoals]) <- 

Solve-Aux(Predl,Arglistl), 
Recurse(Rest-Subgoals). 

(I(7) *Solve-Aux(Pred, Arglist) <- EDB(Pred, Arglist). 
(K8) *Solve-Aux(Pred,Arglist) <- 

lDB( [Pred, Arglist] ,MatchingBody), 
Analyze(Arglist,Matching-body). 

6 
5 - 3 

* 
I l0 

1. User 
2. Preprocessor 

3. Meta-interpreter 
4. Knowledge Base 
5. Dispatcher 
6. Kernel 
7. Inner Layer 
8. Outer Layer - Inner Tier 
9. Outer Layer - Outer Tier 

10. The PRISM System 

A. The half handling sequential queries 
B. The half handling parallel queries 

a. Data/Programs b. Queries 
c. Response d. Internal Format 

Fig. (2) 

In the above clauses, ‘EDB’ and ‘IDB’ are the two predi- 
cates used for providing all the user-supplied information. Since 
the EDB models the short-term memory, it is searched first and 
only if it fails is the IDB search taken up. The use of the asterisk 
is imperative in this instance, since in our model we do not want 
any attempt at the IDB until after the EDB has failed to produce 
a viable answer. Further we intend to have a success/failure report 
from the EDB and other status information, only for the top-level 
goals in the immediate query posed and not for any subgoals. And 
this necessitates the auxiliary ‘Solve-Aux’ procedure above. (The 
kernel handles category (1) of the queries discussed earlier). 

Thus a query P(X) will b e solved if it matches an EDB fact, 
or can be inferred from the IDB. In the latter case, a tentative 
failure as the default assumption is issued (i.e. if the EDB failed, 
then in all likelihood the query is false), followed by reports on the 
IDB search. 

3. Examples 

We present here two illustrations - one in PRISM and one in 
PROLOG - in order to give the reader an idea of the answering 
process capabilities as performed by our model. It seems to us that 
within the limits of the answering behavior modelled by the meta- 
interpreter, most real-life questions to a human reasoner would 
fall, in the majority of the cases in the first category. Only on a 
few occasions would they fall in the second (the third is different 
from the second only in the nature of execution, and not in the 
nature of the query per se), and rarely in the other. As most 
queries are single goals (i.e. category l), the kernel captures fairly 
adequately the answering process simulation, with much lesser 
activity from the other layers. (The complete testing was done 
using a genealogy database). 

Example 1 : 

The meta-answers in the following example should exhibit a 
flavor of the monitoring activity performed by the system in the 
process of answering the query. 

Short term memory : 

‘A plane is an air-vehicle. Pup is a light-weight, compact, airy 
tent. Tarpaulin is tough and compact’. 
Air-vehicle(Plane). 
Tent(Pup). 
Light-weight(Pup). 
Airy(Pup). 
Compact(Pup). 
Compact(Tarpaulin). 
Tough(Tarpaulin). 

Long term memory : 

‘Air-vehicles and shelters are water-proof. Anything that is port- 
able and light in weight is a shelter. A tent is portable. And so is 

something that is tough and compact’. 

Waterqroof(X) <- Air-vehicle(X). 
Watergroof(X) <- Shelter(X). 
Shelter(X) <- <Portable(X), Light-weight(X) > . 
Portable(X) <- Tent(X). 
Portable(X) <- <Tough(X), Compact(X) > . 

Query: ‘Give me something that’s a waterqroof and airy 
shelter ’ . 

<-<Waterqroof(X),{Shelter(X), Airy(X)}>. 

[This is a sequential query with embedded parallelism. This choice 
of control has been made for purposes of illustration, but can be 
motivated in terms of the example by supposing we are especially 
eager for something that is waterproof, after which we are equally 
concerned about its being a shelter and its airiness]. 

The Meta-answers : 

I can’t affirm “Water-proof(X)“; it is false, tentatively. ( Al ) 
Well, here is some answer... Waterqroof(Plane). ( -42 1 
I can’t affirm “Shelter(Plane)“; it is false, tentatively. ( A3 1 
I can’t affirm “Airy(Plane)“; it is false, tentatively. ( A4 ) 
Well, here is some answer... WaterDroof(Pup). ( A5 1 
I can’t affirm “Shelter(Pup); it is false, tentatively. ( A6 1 
I can definitely say that “Shelter(Plane) is false now. ( A7 1 
I can definitely say that “Airy(Plane)” is false now. ( A8 1 
Sure, I can answer this... ( A9 1 
here goes... Airy(Pup). I AlO) 
I got some answer you want... Shelter(Pup) ( AllI 
and that’s it...! Here you go!! ( Al21 
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The Answers : 

! Answer obtained in 10 inference steps ! 

x = Pup 

Query Succeeded. 

Explanation: 

First, the query has overall sequential control, with an 
embedded sublist which has goals amenable to parallel solving. 
The first goal is taken up, and passed over to the kernel. The 
Short Term Memory (STM) reports failure (Al). Augmented with 
the Long Term Memory (LTM), the goal succeeds, and X is bound 
to “Plane” (A2). Work is begun on the sublist, with X instan- 
tiated to “Plane” in both the goals, and at the same time an 
attempt is made to find an alternative solution for 
” Waterqroof(X)” . 

Two kernels are spawned simultaneously, and the two take 
up solving “Shelter(Plane)” and “Airy(Plane)“, in parallel. Both 

fail in the STM, and have the failures reported (A3, A4). How- 
ever, they continue to work in the LTM. Note that this would not 
have been possible in a sequential environment, where a goal is not 
even attempted until the preceding one succeeds. The benefit of 
the parallel environment would be particularly striking when the 
user has several mutually non-interdependent goals running, since 
he can get the status of each and every goal independently of their 
ordering in the query. 

The first goal succeeds again with “Pup” for X (A5), and two 
more kernels are created for the two goals in the sublist. 
“Shelter(Pup)” fails in STM, and this is reported (A6). By this 
time, the two original goals fail in LTM as well (A7, A8), while 
“Airy(Pup)” succeeds in STM (A9). Accordingly, immediate 
confirmation of the latter is issued (AlO). Eventually, the other 
kernel also succeeds and reports success, affirming “Shelter(Pup)” 
(All). When all the goals are thus solved (A12), the number of 
inference steps for an answer (if success) (A13) and the final 
answer (if any) are issued (A14), and the system reports 
success/failure (A15). 

Example 2: 

The plots in Fig. (3) h s ow the system asymptotically stabiliz- 
ing at a certain value of depth for a given predicate. That is, the 
more the number of queries encountered earlier (with the same 
predicate), the more representative is its estimate of the inference 
required for the next query. Recall the formula for calculating the 
new default depth (at which the effective search is cut off and a 
negative “closed-world” default is invoked): 

New depth = (Old depth * N + Latest depth)/(N + 1) 

In effect, a deductive database can over time become more 
familiar with itself, i.e., with its own particular configuration of 
data in regard to the likelihood of determining an answer to a par- 
ticular kind of query within a certain number of inferences. In 
order to illustrate our idea here, we have chosen three simple 
examples in which default depths approach an average value. That 
is, as more queries are entered, the level of inference that is 
allowed before a default answer is invoked is modified to better 
represent the average level at which the actual search ended. The 
database is a variant of that in example 1, in which 
‘Compact(Pup)’ and ‘Compact(Tarpaulin)’ in the EDB are 
replaced with ‘Light-weight(Tarpaulin)‘, and the last IDB axiom 
is replaced with the following three: ‘Portable(X) <- Tough(X).‘, 
’ Tent(X) Tough(X). ’ and 

Watergroof(X~Shelter(X),Airy(X). ’ . 
‘WSA(X) <- 

Note that WSA is a new 
predicate symbol. 

In plot (a) we perform repeated queries of ‘Waterproof’ 
with an initial depth tag of 1. The plot shows that as queries are 
answered, the depth tag is repeatedly reset at increased levels, 
approaching an asymptotic value. This indicates that the initial 
tag was too low, in that “experience’ ’ with the database has 

shown the system there are answers beyond the point at which 
defaults are invoked. The system gradually corrects this (in the 
average case) as time goes on. In particular, the user will notice 
increased cautiousness of the system (and fe\ver changes of mind). 

For instance a query of Waterqroof(Plane) will initially be 
answered (negatively) by default after one inference step only to 
be corrected later (AID: 2). But after three further queries the 
depth tag becomes > 2, and so the very Same query will now be 
answered positively. 

In plot (b) the query is WSA(X). The initial depth tag for 
‘WSA’ is 1. We see here that performance changes over time 
much as in (a). 

8 r I I 

a> 

5 

i 

Fig. (3) 
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In plot (c) the query is Airy(X), which is a purely EDB query. 
The initial depth tag is set at 10, which is far too cautious. This 
illustrates the-case of it not being known in advance that all the 
data is EDB and that therefore all queries will terminate rapidly. 
However, over time, the system adjusts the depth tag to be near 1. 
Note that if new axioms were later to be added which involved 
IDB for Airy, then defaults would come into play as a result of this 
prior alteration of the depth tag. 

01) 

(12) 

(13) 

(14 

4. Conclusions and Future Work 

We have shown that real-time monitoring of query-answering 
to provide default answers is feasible, at least in a limited context. 
We have illustrated this with an implementation on the PRISM 
parallel inference system and partially in PROLOG, using a meta- 
level approach. This has focussed on the existing structure of 
PRISM, which has a natural division between look-ups (EDB) and 
inference steps (IDB); the meta-level allows explicit declarative 
statments to be made and proven concerning these two notions. 
Meta-interpretation is the main technique that we have used to 
implement a flexible system that can evolve easily with changes, to 
exhibit some rudimentary ‘cognitive’ or self-modifying behavior. 

Future work includes several extensions of the current work. 
For one thing, we want to pursue the idea of placing a query in 
background mode once a new query comes in and the original one 
has not yet finished executing. This would be then enhanced by 
the inclusion of dynamic proof-tree generation in interactive mode, 
so that the user can direct the system’s behavior as it executes. 
Additional extensions will include tackling the problem of interact- 
ing defaults, providing informative answers, and deciding automat- 
ically when a given query is to be treated in default mode or in 
normal mode. 
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