
Towards Explicit Integration of Knowledge in Expert Systems:

An Analysis of MYCIN’s Therapy Select&n Algorithm

Jack Mostow’
Computer Science Department

Rutgers University
Hill Center - Busch Campus

New Brunswick, New Jersey 08903

Abstract

The knowledge integration problem arises in rule-based
expert systems when two or more recommendations made
by right-hand sides of rules must be combined. Current
expert systems address this problem either by engineering
the rule set to avoid it, or by using a single integration
technique built into the interpreter, e.g., certainty factor
combination. We argue that multiple techniques are
needed and that their use -- and underlying assumptions --
should be made explicit. We identify some of the
techniques used in MYCIN’s therapy selection algorithm to
integrate the diverse goals it attempts to satisfy, and
suggest how knowledge of such techniques could be used to
support construction, explanation, and maintenance of
expert systems.

1. Introduction
As expert systems develop and proliferate, researchers

have increasingly noticed the serious problems caused by
confounding various different kinds of knowledge in an
expert system’s knowledge base. In particular, [Clancey
83a] focusses on control knowledge, showing how problem-
solving strategies are (a% best) clumsily encoded in rules,
making the rule base difficult to understand and extend.
In a sense, the control problem has to do with the
relations among the left hand sides of different “if
<condition> then <action>” rules -- that is, with deciding
which of several apparently relevant rules to fire in a given
situation. In contrast, the integration pro61em has to do
with the relations among the tight hand sides of rules --
that is, with combining multiple recommendations made by
different rules in the same situation. This problem
pervades expert systems but tends to get swept under the
rug. In this paper we shall try to bring it out in the
open and shed some light on it.

Most expert system designers use two basic approaches to
integrate the recommendations made by the right hand
sides of rules: either they try to finesse the problem by
manually compiling it out of the rule set, or they rely on
a’ single uniform integration mechanism. As we shall see,
both approaches leave implicit the knowledge and
assumptions underlying the integration process. This opens
the door to various abuses: leaving knowledge and
assumptions implicit makes them easier to violate without
noticing.

*
Much of the work described here was performed at the University of

Southern California’s Information Sciences Institute, where it wa8 supported
in part under DARPA Grant #MDA 903-81-C-0335.

Bill Swartout
USC Information Sciences Institute

4676 Admiralty Way
Marina de1 Rey, California 90292

The compiling out approach engineers the rule set so as
to avoid the need for integrating recommendations at
runtime. For example, consider the problem of assessing
the likelihood that a patient has some disease D, for which
there are two symptoms, A and B. Suppose that either
symptom by itself suggests the disease with moderate
likelihood (40% or 50%), but the two together are very
strong evidence (95%). To compile out the problem of
integrating the evidence, we might define three rules:

If A and not B then conclude (D, 0.4) .
If B and not A then conclude(D, 0.6).
If A and B then conclude(D, 0.96).

While this approach could get the estimates right, it has
the unfortunate side effect of introducing dependencies
among the rules and of making them less understandable.
For example, if just symptom A appears and the system is
asked to explain its level of belief in disease D, it might
give an explanation like the following:

“Since A is present and B is not present, there
is moderate evidence that the diseaee is D.=

This explanation misleadingly suggests that the absence
of B is actually evidence in favor of D. The fact that this
rule was carefully constructed along with the other two so
as to compile out the integration problem is not available
to the system for explanation purposes, since it was never
more than an intention in the mind of the rule base
mthor. Engineering implicit knowledge into the rule base
makes it difficult to understand and extend. For example,
suppose that a third symptom, C, provides additional
evidence for disease D; adding this knowledge would
require splitting each rule listed above into two rules, one
for when C is present and and one for when it isn’t.

The usual alternative to compiling out the integration
problem into the rule base is to build a uniform
integration mechanism into the rule interpreter for
combining recommendations at runtime. For example,
MYCIN dynamically computes a ‘certainty factor” for the
recommendation made by the right hand side of a rule,
based on the rule’s’ inferential strength, the certainty
factors associated with the conditions satisfying its left
hand side, and the connectives (like AND and OR) relating
those conditions. When two or more rules produce the
same recommendation with different certainty factors,
MYCIN integrates them by means of a numerical formula.
The appropriateness of any such formula depends on
certain assumptions. For example, suppose both of the
following rules are satisfied:

If A then conclude (D, 0.4).
If B then conclude (D, 0.6).

928 / ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

If A and B represent independent evidence for D, then the
result of combining these two measures using the certainty
factor mechanism may be correct, but if B is a special
case of A, then that result will be wrong and it may be
necessary to revert to the ad hoc “compiling out” approach
described earlier.

As this example illustrates, a uniform integration
mechanism is based on certain implicit assumptions; in
cases where these assumptions are violated, it becomes
necessary to program around the mechanism, producing
artifacts in the rule base that degrade the quality of the
explanations generated by the system.

In summary, most expert systems represent their
integration mechanisms procedurally, whether in the rule
interpreter or compiled into the rules. In either case, the
reasoning that goes into integration is not perspicuously
represented and hence is unavailable to the system for
explanation purposes. Rather than hide knowledge
integration in the design of the rule base or its interpreter,
we argue that it should be made explicit so that it can be
reasoned about and explained to the user.

One strategy toward this end is to encode integration
mechanisms as meta-rules, i.e., rules for interpreting and
combining other rules. This strategy has received some
attention [Davis 77, Clancey 83b]. However, it is not clear
that standard rule-based architectures are well-suited to
representing and applying integration mechanisms. We are
not saying that rule-based architectures (which would be
more explicit) could not in principle support integration,
just that in practice, system builders have not seemed to
find it convenient to use rules to reason about integration.

An alternative approach to expert system construction
that makes integration knowledge explicit was first adopted
in the XPLAIN system [Swartout 831 and is undergoing
further development in the Explainable Expert Systems
project [Neches et al 851. The approach is based on the
observation that usually (sometimes only) the person who
created an expert system can give a very good explanation
of how it works. Our approach for capturing the
knowledge normally lost during expert system construction
is to use an automatic program writer to create the expert
system from an initial knowledge base. This knowledge
base contains both abstract knowledge about the domain
and general knowledge about expert system construction,
including integration knowledge. As the writer creates the
system, it records its reasoning in a development history.
Explanation routines use this history to produce
explanations of the design rationale incorporated in the
constructed system. These explanations are valuable both
to end-users interested in understanding the system and to
system builders interested in modifying or extending it.

This approach promises other benefits in addition to
improved explanations. Because integration knowledge is
explicitly separated out, it does not become confounded
with problem-solving knowledge as occurred in the example
with MYCIN certainty factors above. It allows greater
flexibility, because several different techniques for
integration can be represented in the system’s knowledge
base, with each one used only when it is appropriate.
Finally, the explicit separation makes the system more
modular and easier to extend. For more details on this
approach, see [Neches et al 851.

This paper presents some general knowledge integration
techniques we have identified and shows how they were
incorporated in the therapy selection algorithm used by
MYCIN [Buchanan & Shortliffe 841 to prescribe drugs after
it had diagnosed which organisms were likely infecting the
patient. We found this algorithm to be a rich source of
such techniques, since it integrates a set of diverse and
conflicting criteria in selecting the best therapy. In fact,
the interactions among these criteria made it impractical to
implement therapy selection using MYCIN-style rules alone,
so a somewhat ad hoc procedure [Shortliffe 841 was used.
Because the knowledge for therapy was implicitly encoded
in a procedure, explanations of therapy decisions could not
be given and the code proved difficult to maintain. A
subsequent reimplementation by William Clancey [Clancey
841 factored out most of the medical knowledge embedded
in the procedure into sets of rules pertaining to various
therapeutic factors like drug sensitivity and contra-
indications. The reimplemented therapy selection algorithm
was considerably more general and invoked these rules to
evaluate individual therapeutic factors based on knowledge
about specific drugs, organisms, or patients; however, the
algorithm itself was responsible for integrating these factors
into therapy recommendations. The algorithm makes a
good case study because its design is dominated by
knowledge integration concerns, rather than medical or
computational details.

2. Specification of the therapy selection problem
The therapy selection problem is easy to specify

informally -- given a diagnosis (one or more organisms
suspected of infecting the patient), choose the therapy (set
of drugs) that best satisfies the following medical goals:

1. Maximize drug sensitivity.

2. Maximize drug efficacy.

3. Continue prior therapy.

4. Minimize number of drugs.

5. Give priority to covering likelier organisms.

6. Maximize
covered.

number of

7. Don’t
class.

give two drugs from the same general

suspected organisms

8. Avoid contraindications for the patient.

Suppose we implemented these goals as rules, e.g.:

Rule for goal 4:
If therapy x uses fewer drugs than therapy y,
then prefer therapy x over therapy y.

Rule for goal 6:
If therapy x covers fewer suspected organieme
than therapy y,

then prefer therapy y over therapy x.

Therapy selection would require integrating the
recommendations made by the rules’ right-hand sides. For
instance, if therapy A has fewer drugs than therapy B, but
covers fewer organisms, the rules would conflict.

AUTOMATED REASONING / 929

Integrating goals requires knowledge about their relative
importance. The informal specification above is ill-defined
because it omits this knowledge, i.e., it doesn’t specify
which therapy is “best” where the goals conflict. What’s
medically ‘best” (i.e., for the patient, the physician, the
hospital, and society at large) depends on information not
available with certainty at therapy selection time, e.g., the
actual effectiveness of the therapy, whether the benefits of
the therapy will turn out to compensate for its side effects,
and so forth. That is, this ideal sense of “best” is
non-operational [Mostow 811, and we must settle for a
heuristic approximation. Indeed, the operational definition
of ‘best” is determined by the decisions made in the
course of designing the therapy selection
algorithm [S wartout & Balzer 821.

The design of MYCIN ‘s therapy selection algorithm was
also influenced by computational concerns and restrictions
on the design process itself. A comprehensive analysis of
the algorithm would explicitly model these aspects as well,
but is outside the scope of this paper.

3. MYCIN’s therapy selection algorithm
We now describe in brief how MYCIN performs the

therapy selection task informally specified in the previous
section. MYCIN’s (revised) therapy algorithm begins by
considering in turn each of the organisms classified by the
diagnosis component as most likely. For each organism, it
uses rules to assess each known drug as a first, second, or
third choice based on the organism’s apparent sensitivity to
that drug. For example, a typical rule is

If the organism growing from the culture
appears resistant to the drug,

then classify the drug as a third choice.

Since MYCIN uses rules to handle part of the sensitivity
criterion, the reasons why a drug is classified as a first,
second or third choice are accessible and MYCIN can
explain them. However, the reasons for partitioning the
drugs into three categories (and why three is an
appropriate number of partitions) are implicitly built into
the algorithm and MYCIN doesn’t explain them.

Once the drugs have been classified, MY GIN proposes
various combinations of them as possible recommendations.
This is done by a series of fixed “instructions” that
express how many of each category of drug to select (see
Figure 3- 1).

Number of 1st Number of 2nd Number of 3rd
choice drugs: choice drugs: choice drugs:

1. 1 0 0

a. 2 0 0
3. 1 1 0

4. 1 0 1
6. 0 1 0

Figure 3-l: MYCIN’s Table of Therapy “Instructions”

MYCIN goes through the instructions in order until an
acceptable therapy is found. For example, the third
instruction specifies that one first choiCe drug and one
second choice drug should be selected. Thus the table of
instructions integrates the goals of minimizing the number
of drugs to administer and selecting the most effective
drugs.

950 / ENGINEERING

The proposed set of drugs is then subjected to three tests
to determine whether or not it is acceptable. First,
coverage is tested to see whether the proposed drugs cover
for all of the most likely organisms. Then the set of
proposed drugs is examined to ensure that all the drugs
prescribed are in different drug classes. Drugs in the same
class work via the same mechanisms so prescribing a
second drug from the same class will not increase the
overall effectiveness of therapy. Finally, MYCIN checks for
patient-specific contraindications. Since all three tests are
performed by sets of rules, MYCIN can explain them, e.g.,
explain the rejection of a given therapy by describing
which test it failed and why.

While some of MYCIN’s therapeutic expertise is explicit,
its overall therapy selection strategy and its knowledge
about how to integrate the various therapy goals are
encoded procedurally (and implicitly). In Section 5 we will
show how such knowledge could be made explicit. But
first we discuss how the therapy goals themselves are
formulated.

4. Representations of goals
Our analysis of MYCIN’s therapy selection algorithm

suggests that many of the crucial decisions in its design
dealt with how to formulate (or reformulate) the therapy
goals listed in Section 2. A goal like “maximize drug
effectivenessn can be represented in several ways. The
choice of representation determines what kind of
information about the goal can be encoded, how much
space it takes to do so, what inferences can be drawn from
the representation, and how much time they take. For
example, information about drug effectiveness might be
expressed as:

l A set of axioms describing which drugs are
more effective than others and by how much.
This representation can encode arbitrary kinds
of information, but drawing inferences from it
requires a theorem-prover.

l A partial ordering represented as a boolean
connection matrix or as an acyclic graph with a
drug at each node. This representation encodes
no information about the magnitude of
differences in drug effectiveness. The matrix
representation allows two drugs to be compared
in constant time but requires quadratic space;
the graph representation is smaller but slower.

.A “preference” ordering, which is like a
partial ordering but allows distinct elements to
be considered equivalent .* * A preference
ordering on drugs can be represented as a graph
with an equivalence class of drugs at each node,
rather than a single drug.

l A linear ordering represented as an array of
drugs in decreasing order of effectiveness. This
representation takes linear space and allows two
drugs to be compared in constant time.

**
Formally, a preference ordering is a reflexive, transitive binary relation;

unlike a partial ordering, it need not be anti-symmetric.

However, it imposes a preference between any
two drugs.

l A metric represented as a table showing a
numerical effectiveness score for each drug, or as
a procedure or set of rules for computing a
drug effectiveness score from other data (e.g.
sensitivity and efficacy). Comparing two scores
takes constant time. This representation assigns
numerical magnitudes to all differences in
effectiveness.

l A partition of the set of drugs into symbolic
categories corresponding to different levels of
effectiveness. This representation suppresses
differences among elements of the same category.
Relationships among the categories themselves
can be encoded using any of the representations
described here.

l A yes-or-no predicate that tells whether a
given drug is effective. This representation
converts the optimization problem of choosing
the most effective drug to the satisficing
problem of choosing a drug that is good enough.

These representations are not equivalent: they differ in the
kind of information they can express. For example, a
partial ordering or preference can represent incomplete
knowledge about which of two drugs is more effective,
while a metric cannot. However, they represent no
information about the magnitude of the difference in
effectiveness, while a metric does.

The different representations also vary in their
computational costs; generally speaking, a simple
representation like a metric is cheaper to store and use
than a more precise representation like a preference graph.
In general there is a tradeoff between the expressive power
and computational efficiency of knowledge representations
when it comes to integrating knowledge. Consider the
problem of integrating two therapy goals. Representing
each one as a set of axioms allows us to express arbitrary
knowledge about it, but requires a correspondingly
sophisticated inference mechanism to combine the goals, or
to compare how well various therapies satisfy each goal.
It is much simpler to represent each goal as a metric, even
though this representation has less expressive power. The
metrics can then be combined by a weighted sum or other
numerical formula. It is even simpler to represent each
goal as a constraint -- a predicate that a therapy must
satisfy to be considered acceptable. The constraints can be
combined simply by conjoining them; that is, a therapy
achieves the combined goals if it satisfies both constraints.
Faced with the task of integrating diverse goals like the
therapeutic criteria listed in Section 2, expert system
designers often formulate (or reformulate) them into simple
representations such as linear orderings, metrics, or
constraints.

5. Partial derivation of the algorithm
We now rederive portions of the therapy selection

algorithm described in Section 3 by (re-)formulating and
integrating the eight medical goals listed in Section 2.
Reformulation and integration techniques are highlighted,

e.g., EXTEND, and defined as they are introduced. A
forthcoming extended version of this paper will present a
more complete derivation and list of techniques.

5.1. Combine effectiveness with number of drugs
MYCIN’s table of “instructions,” described in Section 3,

integrates the goals of fewer and more effective drugs.
How can this mechanism be explained?

1. Decide how to represent each goal.

2. Extend the preference for effective individual
drugs into a preference among therapies (sets of
drugs).

3. Combine the two
single ordering.

preferences on therapies into a

First we must represent the goals to be integrated. The
number of drugs defines a linear ordering, call it

< fewer ’ on therapies. Individual drug effectiveness is

represented as a metric on a scale of 100-1000.

To make the table of instructions small enough to
construct and store, MYCIN’s designers elected to
PARTITION the drug effectiveness metric into three
categories: “first choice,” “second choice,” and “third
choice.’

Definition: A preference ordering is CONDENSEd by
defining a many-to-one function F such that F(x) < F(y)
implies x < y. F(x) can be thought of as an abstraction
of x. In particular, a metric M(x) is PARTITIONed into
the linearly ordered categories 1, N+l by splitting
the range of the metric into the N-t1 intervals defined by
N breakpoints given as parameters:

PARTITION(tr, . . . t,): M(x) --+ F(x),

where F is defined as X(x) (i 1 ti-r I M(x) < ti), t, 5

Mb) < tN+p and + means “is reformulated as.”

In the case at hand, M is MYCIN’S drug effectiveness
metric, which ranges from to = 1000 (most effective) down

to t, = 100 (1 east effective), there are N = 2 breakpoints,

t, = 700 and t, = 700, and F(x) is the classification of
drug x as a lst, 2nd, or 3rd choice. The PARTITIoNed
ordering 1 < 2 < 3 (note that < means ‘is more
effective than”) is small enough to combine with the
preference for fewer drugs by using an ordered table of
5nstructions”; at runtime MYCIN assigns each drug to one
of these categories based on its score, and uses the table
to generate therapies in (roughly) best-first order. If the
effectiveness metric was not PARTITIONed, the table would
be much too big to store, and would have imposed an
unreasonable informational burden on the table’s designers
by requiring them to make distinctions between therapies
based on minute differences in drug effectiveness.

In general, CONDENSE assumes that the function F
captures all the information required to compare x and y
with respect to <. In practice, this assumption is
typically violated to some extent, i.e., the original
preference is distorted in order ‘to condense it. Also,
notice that F(x) < F(y) usually -- but not always --

AUTOMATED REASONING / 93 1

implies a significant difference between M(x) and M(y).
Exceptions occur when x and y lie close to the breakpoint
separating two categories. For example, the difference
between drugs in categories 1 and 2 is usually significant,
but not when both are rated close to 700.

Next we EXTEND the ordering on
preference ordering on therapies.

drug categories into a

Definition:
EXTENDed in to

An ordering on individual items can
an ordering on bags of items as follows:

1. {x} < {y} iff x < y.

2. If X < Y and X’ I Y’, then X+X’ < Y+Y’,

be

example,

:‘:, <better

it specifies { 1,l) cbetter { 2) and

{2,2}, but leaves implicit the supporting

assumption that ‘a first choice drug is worth a lot more
than a second choice drug” [Clancey, personal
communication, January 2, 19851. This assumption is
nowhere represented in MYCIN, and as we saw in the
discussion of PARTITION, it is not always true. When it is
violated, anomalies can arise. For example, MYCIN would
propose a combination of two drugs rated 701 before
proposing a single drug rated 699, even though the former
are really not “worth a lot more.” While such anomalies
may be infrequent and unimportant enough for the expert
system designer to tolerate them, a robust expert system
ought to recognize when they occur.

where + denotes bag union.

For example 1<2 implies 0) < (21 and

{l,l~ < WI.
We combine the preference cfewer for fewer drugs with

the preference ceffective for more effective therapy*** by

CONJOINing them.

It should be noted that MYC’IN preserves some
distinctions among drugs in the same category by
generating them in order of decreasing effectiveness scores,
so as to help generate therapies in best-first order. This
feature doesn’t prevent the anomaly just described, but
would make MYCIN propose the drug rated 699 before
another “second choice” drug that wasn’t rated as highly.

Definition: The result of CONJOINing two preferences,

<P and cQ , is the preference <P&q ’ where:

1. If P and Q both say that x is at least as good
as y, so does P&Q: x <,,q y iff x 5, y and
xc -Q Y-

2. If in addition one of them says that x is
preferable, so does P&Q: x <psrq y iff (x 5, y

and x < Q y, or (x <p y and x sQ y)

The table of instructions shown in Figure 3-l is largely
specified by the preference ordering cfewerLeilective . For

examp1eV {l) <fewer&effective {lT1) <fewer&effective {lT2)
< fewer&effective 0,3).

In general, CONJOINing preferences doesn’t specify what to
do when they conflict, since it makes no assumptions about
their relative importance. For instanceY <fewer&effective
imposes no ordering between {l,l} and {2}, or between
{2,2} and {1,3}.

This partial ordering is next LINEARrZEd into a total
ordering which we’ll call cbetter .

Definition: Any partial ordering cp can be embedded

into a linear ordering <L . (Unless <p is total, it will

have more than one possible linear embedding.) The
LINEARIZEd ordering has the property that x cp y =>

x CL Y- The converse does not always hold, i.e., x <L y

In general, a LINEARIZEd ordering is ambiguous as a
representation of the original preference, since X<Y
doesn’t tell whether x is really preferable to y, or if x just
happens to precede y as an artifact of how the preference
was LINEARIZEd.

Suggestion: An attractive way to LINEARIZE a partial
ordering would be to explicitly specify the assumptions
that the resulting linear ordering should satisfy. A
theorem-proving engine would use these assumptions to fill
in the ordering relation and identify cases where the
assumptions fail to imply an ordering. The designer could
provide additional rules to cover such cases, and the
process could continue interactively until the ordering was
complete. If feasible, this approach would be better than
constructing a table by hand because it would make
explicit the assumptions left implicit in such tables, making
it possible to distinguish preferences based on genuine
domain knowledge from those based only on general
principles or computational expedience.

5.2. Combine coverage preferences
The therapy goals listed in Section 2 include maximizing

the number of organisms covered and giving priority to
those the patient is likelier to have. Let’s see how these
two goals are integrated:

1. Classify organisms as “most likely” or “less
likely.”

need not imply x cp y; cp might specify no ordering
relation between x and y, in which case x cL y is an

artifact of the particular embedding cL . That is, an

alternative linear embedding, cL, , might not satisfy

x CL’ y.

2. Relax the coverage goal by ignoring “less likely”
organisms.

3. Reformulate the coverage goal as the constraint
that all the “most likely” organisms be covered.

MYCIN’s LINEARIZEd sequence of ‘instructions”
incorporates some implicit assumptions about the relative
importance of therapy effectiveness and number of drugs.

1.1
Note that A ceffective B means therapy A in more effective than

therapy B, i.e., preferable with respect to effectiveness.

Organism likelihood is PARTITIONed into only two
categories, “most likely” and “less likely.” Assuming that
the “most likely” organisms are much more likely than the
“less likely” organisms, the importance of treating the
“most likelyn organisms DOMINATES the importance of
treating the “less likely” organisms.

932 / ENGINEERING

Definition: Letting one preference -- call it <primary --

DOMINATE another preference -- call it csecondary -- means

using <secondary only to resolve ties with respect to

< The resulting preference <primar,,.secondary is
primary * 1

defined by

X< primary Y Or Cx =primary y and ’ <secondary Y).

As Section 4 pointed out, reformulating a goal as a
constraint makes it possible to test whether a given choice
satisfies the goal without having to compare it against
alternative choices. Thus converting a preference into a
constraint reduces an optimization problem (choose the
most preferred element) to a satisficing problem (choose an
acceptable element). The latter problem can be solved
more efficiently, since it is easier to generate candidates
one by one, test each one separately, and accept the first
one that passes, than it is to generate all the (possibly
infinitely many) candidates, compare them, and pick the
best one.

Definition: A preference can simply be IGNOREd. For
example, ignoring -Csecondary rkduces < primary;secondary to

< primary ' This particular case of IGNORE is appropriate

if ties with respect to cprimary are too rare to worry

about, or if violating <secondary in the event of such a

tie wouldn’t do much harm.
6. Applications

Explicit knowledge about the integration techniques used
to construct an expert system could be exploited in several

ways, which we illustrate by means of hypothetical
examples of behavior.

It is unlikely for two therapies to be equally effective on
the likeliest organisms but different on the less likely ones,
so it is reasonable to ignore the less likely organisms
altogether. A possible rationale for this compromise is a
tradeoff between breadth and effectiveness of coverage,
based on the assumption that broad-spectrum drugs are
less effective than highly specific drugs. “You could
generate all of the recommendations in the equivalence
class and pick the one covering the most less likely
organisms, but this will probably result in choosing drugs
that are lower for most likely organisms (within the
rankings). For example, choosing a 950 drug for an
organism is preferable to choosing a 750 drug, (both are
first rank), even if you pick up a less likely organism”
[Clancey, personal communication, January 2, 19851. This
is a good example of a design decision rationale of the
form “Errors of type X are unlikely to occur and wouldn’t
do much harm anyway.” Here an “error” would consist of
proposing one therapy before another one that covers the
more likely organisms just as well and also covers for less
likely organisms. The net effect of the PARTITION,
DOMINATE, and IGNORE steps is to CONDENSE the preference
for maximal coverage by ignoring the less likely organisms.

Notice violated assumptions. If the system can test
the assumptions on which an integration technique is
based, it may be able to detect flaws in its own reasoning.
Therapy A, which coneists of two l&-choice

drugs, is rated higher than therapy B, which

consists of one lst-choice and one and-choice

drug, based on the assumption that lst-choice
are much better than and-choice drugs.

However, one of the let-choice drugs in therapy A
ie rated very - close to the and-choice drug in

therapy B, 80 this assumption is questionable

here.
Detect artifacts. If the system can distinguish genuine

domain knowledge from the accidental artifacts of
reformulation techniques like METRICIZE or LINEARIZE, it
may be able to alert the user to spurious preferences in its
recommendations.
Therapy X is rated higher than therapy Y because

the combination of one let-choice drug and one

Brd-choice drug comes before the combination of
two and-choice drugs in the table of inetructione. The CoNDENsEd preference compares therapies based on

the number of “most likely” organisms covered. This
preference is now reformulated into a constraint by
THRESHOLDin&

However, that might be an accident of how the

table was conetructed, rather than a genuine

medical preference.
Support maintenance by inferring constraints and

goals. To some extent it is possible to guess rationales
for how knowledge has been integrated in an expert
system. In the absence of explicit rationales, these guesses

may still serve to expose constraints and goals left
implicit. For example, the following inferences might be
made based on the knowledge that MYCIN’s table of
instructions is a LINEARIZEd form of the preference formed
by CONJOINing the preference for fewer drugs with the
CONDENSEd preference for more effective therapy:
From the fact that an explicit table ie used to

Definition: A metric M(x) can be converted to a
constraint by the THRESHOLD transformation

THRESHOLD(tmin): M(x) --+ X(x) (M(x) 2 tmin),

where the threshold value tmin is a parameter of the

THRESHOLD transformation. (Variations on this
transformation use >, <, or 5 in place of 2, and tmax in

place of tmin.)

In the case at hand, x is a candidate therapy, the metric
M is the number of “most likely” organisms covered by
therapy x, and tmin is defined to be the total number of

organisms considered “most likely.” That is, an acceptable
therapy must cover all the most likely organisms.

decide tradeoffs between maximiziing therapy

effectiveness and minimizing the number of drugs,
it appears that the eimpler approach of computing

not considered accurate enough a weighted sum was
to do t'he job.

This reformulation incorporates the assumption that all
the most likely organisms can and must be covered. The

implicit rationale for this assumption has to do with the
risks of failing to treat for a likely condition.

It appear6 that 3 effectiveness rank6 are

coneidered eufficient to discriminate among

different drugs, at least for the purpose of

deciding tradeoffs between therapy effectiveneee
and number of drugs.
en'ough.

Perhaps 3 ranks were not .t**
Such as being sued for malpractice.

AUTOMATED REASONING / 933

Maximizing therapy effectiveness appears more

important than minimizing the number of drugs, in
the senae that increasing therapy effectiveness by
1 rank is considered more desirable than reducing

the number of drugs by 1.
This sort of information might be useful to an expert

system maintainer who needed to revise the knowledge
base.

Support expert system construction. If
reformulation and integration techniques like those
described in Section 5 are mechanized, they might
eventually be used to help automate expert system
construction and documentation.

. . . I detect a conflict between
maximizing therapy effectiveness and minimizing

the number of drugs. Which of the following

the goals of

relationships holds between the two goals?

1. One goal is absolutely less important than the
other. Only use it to resolve ties with respect
to the more important one. [=> uee DOMINATE]

a. One goal is absolutely less important than the
other, and no ties are expected. [=> use IGNORE]

3. The relative importance of the two goals can
be adequately expressed aa coeff
weighted cum. [=> utse WEIGHTED SUM]

icients in a

4. The importance of the two goals is relative
and cannot be adequately expreeeed am
in a weighted sum. [=> use TABULARIZE]

coeff icients

[User selects option 4; system tries integrating
preferences in a table.]

There are too many combinatione of drug
effectiveness ecores to list them in a table. I
would like to use a coarser measure of
effectiveness [i.e., CONDENSE it] . An ideal
therapy would consist of one drug rated 1000. How
much lower could one drug be rated and still be
better than any therapy coneisting of two drugs?

[User says 700; system PARTITIONs effectiveness
into 300-point subranges.]

Automating the knowledge integration process would
make it easy to record the design choices, techniques, and
assumptions used. Once captured, this information would
be available for generating explanations to future users and
system maintainers.

7. Conclusion
Rational integration of conflicting preferences involves

normalizing them relative to a common supergoal. This
process requires identifying an appropriate supergoal and
using it to analyze the tradeoff among the preferences.
For example, in prescribing therapy, it, is preferable to
minimize the number of drugs and maximize their
effectiveness, but the relative importance of these two
preferences depends on their ultimate impact on some
higher level criterion. Presumably the implicit topmost
criterion in medicine is patient welfare. ***** Determining
the tradeoff between the number of drugs and their
effectiveness involves balancing the likelihood and urgency

Cynics think it is physician income.

934 / ENGINEERING

of curing the illness against the likelihood and seriousness
of unforeseen drug interactions. However, information
about these factors is imprecise at best.

When the knowledge required to integrate preferences on
a mathematically rational basis is unavailable, domain
experts and expert system designers generally integrate
them instead on whatever ad hoc basis is cognitively or
computationally expedient. In the absence of compelling
medical reasons one way or the other, a physician might
choose between a one- and two-drug therapy arbitrarily,
out of habit, or based on a medically unjustified rule of
thumb. While domain experts make such decisions on a
case-by-case basis, expert system designers must anticipate
the entire class of situations in which such decisions will
be needed, and provide general mechanisms for making
them. MY GIN’s designers chose to PARTITION drug
effectiveness into three categories, which enabled them to
store the LINEARIZEd set of “instructionsn in a precompiled
table. Presumably, a simpler design alternative would
have been to rate each proposed therapy by computing a
WEIGHTED SUM of, say, the effectiveness of each drug in the
therapy, with a negative term for the number of drugs.
Because MYCIN does not explicitly represent the reasons
for using a table of instructions, it is not easy to
determine why a weighted-sum approach was considered
inappropriate, or even whether it was considered at all.

Lest MYCIN’s designers regret their generous assistance
to us, or the readers of this paper get the incorrect
impression that we are attacking MYCIN, we would like to
emphasize that MYCIN is not a particularly egregious
example of ad hoc integration; the problem of
distinguishing arbitrary choices from justified ones is
endemic among current expert systems. In fact we chose
MYCIN’s therapy selection algorithm precisely because the
task is too complex to fit the single integration method
(certainty factors) used in the rest of MYCIN and in many
subsequent systems. We found the algorithm to be a rich
source of techniques for integrating knowledge, and we
expect case studies of other expert systems and problem-
solving programs to help identify, clarify, and formalize
such techniques.

If the rationale, or lack thereof, for integrating
preferences in a particular fashion is left implicit in the
design of an expert system, the artifacts of arbitrary design
choices cannot be distinguished from bona fide domain
knowledge. That is, when the expert system recommends
one alternative over another -- for example, when MYCIN
prefers a therapy consisting of one lst-choice and one 3rd-
choice drug over a therapy consisting of two 2nd-choice
drugs -- we cannot always tell if the recommendation is
based on real domain knowledge or is simply the result of
some arbitrarily chosen integration scheme.

It is important to distinguish between justifying and
explaining a conclusion made by an expert system.
Justification is based on knowledge (or assumptions) about
the domain, e.g., “therapy A is rated over therapy B
because it’s medically more effective.” This kind of
information is important to the user. In contrast,
explanation can refer to computational or design
expediency, e.g., “therapy A is rated over therapy B as an
artifact of condensing metrics for computational efficiency,
and the designers figured it wasn’t important enough to
bother fixing.n This kind of information can be important

to the expert system maintainer.

In building an expert system it is expedient to use
various knowledge integration techniques, some more
justified by domain knowledge than others. The ultimate
goal of this research is to create a framework for building
expert systems that would support the representation of
such integration techniques and the assumptions and
tradeoffs involved in using them. Before that goal can be
reached, much remains to be done. We must better
understand how to formalize the techniques and represent
the situations they apply to. We must also develop
mechanisms for applying them and for reasoning about
which technique to use in a given situation. Finally, the
entire knowledge integration process must be recorded in a
machine-understandable fashion for subsequent use in
generating explanations. Such formalization will impose
considerable overhead on the design process (though it
should be somewhat offset by automating some of the
techniques). However, we argue that an expert system
ought to be able to explain its knowledge integration
techniques and their underlying assumptions, both to help
the user evaluate its recommendations, and to guide the
expert system maintainer in adding new knowledge. In the
long run, these enhanced capabilities should justify the
overhead required to support them.

Acknowledgements
We thank Bill Clancey and Ted Shortliffe for their

patient explanations of MYCIN, and Tom Dietterich, Jim
Bennett, and Rich Keller for their comments on earlier
drafts. Of course any errors are our own.

References

[Buchanan & Shortliffe 841
B. G. Buchanan and E. H. Shortliffe
(Editors).
Rule-Based Expert Systems.
Addison-Wesley, 1984.

[Clancey 83a] W. J. Clancey.
The epistemology of a rule-based expert

system: A framework for explanation.
Artificial Intelligence 20(3):215-251, 1983.

[Clancey 83b] William J. Clancey.
The advantages of abstract control

knowledge in expert system design.
In AAAI89, pages 74-78. Washington,

DC, 1983.

[Clancey 841 William J. Clancey.
Details of the Revised Therapy Algorithm.
In B. G. Buchanan and E. H. Shortliffe

(editors), Rule-Based Expert Systems.
Addison-Wesley, 1984.

[Davis 771 R.. Davis.
Interactive transfer of expertise:

Acquisition of new inference rules.
In IJCAI-5, pages 321-328. Cambridge,

MA, 1977.

[Mostow 811 D. J. Mostow.
Mechanical Transformation of Task

Heuristics into Operational Procedures.
PhD thesis, Carnegie-Mellon University,

1981.
Technical Report CMU-CS-81-113.

[Neches et al 851
R. Neches, W. Swartout, and J. Moore.
Enhanced maintenance and explanation of

expert systems through explicit models
of their development.

IEEE Transactions on Software
Engineering SE-11(11):1337-1351,
November, 1985.

[Shortliffe 841 Edward H. Shortliffe.
Details of the Consultation System.
In B. G. Buchanan and E. H. Shortliffe

(editors), Rule-Based Expert Systems.
Addison-Wesley, 1984.

[Swartout 831 Swartout, W.
XPLAIN: A system for creating and

explaining expert consulting systems.
Artificial Intelligence 21(3):285-325,

September, 1983.
Also available from USC Information

Sciences Institute as ISI/RS-83-4.

[Swartout & Balzer 821
Swartout, W., and Balzer, R.
On the inevitable intertwining of

specification and implementation.
CA CM 25(7):438-440, July, 1982.

AUTOMATED REASONING / 935

