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Abstract 

The knowledge integration problem arises in rule-based 
expert systems when two or more recommendations made 
by right-hand sides of rules must be combined. Current 
expert systems address this problem either by engineering 
the rule set to avoid it, or by using a single integration 
technique built into the interpreter, e.g., certainty factor 
combination. We argue that multiple techniques are 
needed and that their use -- and underlying assumptions -- 
should be made explicit. We identify some of the 
techniques used in MYCIN’s therapy selection algorithm to 
integrate the diverse goals it attempts to satisfy, and 
suggest how knowledge of such techniques could be used to 
support construction, explanation, and maintenance of 
expert systems. 

1. Introduction 
As expert systems develop and proliferate, researchers 

have increasingly noticed the serious problems caused by 
confounding various different kinds of knowledge in an 
expert system’s knowledge base. In particular, [Clancey 
83a] focusses on control knowledge, showing how problem- 
solving strategies are (a% best) clumsily encoded in rules, 
making the rule base difficult to understand and extend. 
In a sense, the control problem has to do with the 
relations among the left hand sides of different “if 
<condition> then <action>” rules -- that is, with deciding 
which of several apparently relevant rules to fire in a given 
situation. In contrast, the integration pro61em has to do 
with the relations among the tight hand sides of rules -- 
that is, with combining multiple recommendations made by 
different rules in the same situation. This problem 
pervades expert systems but tends to get swept under the 
rug. In this paper we shall try to bring it out in the 
open and shed some light on it. 

Most expert system designers use two basic approaches to 
integrate the recommendations made by the right hand 
sides of rules: either they try to finesse the problem by 
manually compiling it out of the rule set, or they rely on 
a’ single uniform integration mechanism. As we shall see, 
both approaches leave implicit the knowledge and 
assumptions underlying the integration process. This opens 
the door to various abuses: leaving knowledge and 
assumptions implicit makes them easier to violate without 
noticing. 
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The compiling out approach engineers the rule set so as 
to avoid the need for integrating recommendations at 
runtime. For example, consider the problem of assessing 
the likelihood that a patient has some disease D, for which 
there are two symptoms, A and B. Suppose that either 
symptom by itself suggests the disease with moderate 
likelihood (40% or 50%), but the two together are very 
strong evidence (95%). To compile out the problem of 
integrating the evidence, we might define three rules: 

If A and not B then conclude (D, 0.4) . 
If B and not A then conclude(D, 0.6). 
If A and B then conclude(D, 0.96). 

While this approach could get the estimates right, it has 
the unfortunate side effect of introducing dependencies 
among the rules and of making them less understandable. 
For example, if just symptom A appears and the system is 
asked to explain its level of belief in disease D, it might 
give an explanation like the following: 

“Since A is present and B is not present, there 
is moderate evidence that the diseaee is D.= 

This explanation misleadingly suggests that the absence 
of B is actually evidence in favor of D. The fact that this 
rule was carefully constructed along with the other two so 
as to compile out the integration problem is not available 
to the system for explanation purposes, since it was never 
more than an intention in the mind of the rule base 
mthor. Engineering implicit knowledge into the rule base 
makes it difficult to understand and extend. For example, 
suppose that a third symptom, C, provides additional 
evidence for disease D; adding this knowledge would 
require splitting each rule listed above into two rules, one 
for when C is present and and one for when it isn’t. 

The usual alternative to compiling out the integration 
problem into the rule base is to build a uniform 
integration mechanism into the rule interpreter for 
combining recommendations at runtime. For example, 
MYCIN dynamically computes a ‘certainty factor” for the 
recommendation made by the right hand side of a rule, 
based on the rule’s’ inferential strength, the certainty 
factors associated with the conditions satisfying its left 
hand side, and the connectives (like AND and OR) relating 
those conditions. When two or more rules produce the 
same recommendation with different certainty factors, 
MYCIN integrates them by means of a numerical formula. 
The appropriateness of any such formula depends on 
certain assumptions. For example, suppose both of the 
following rules are satisfied: 

If A then conclude (D, 0.4). 
If B then conclude (D, 0.6). 
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If A and B represent independent evidence for D, then the 
result of combining these two measures using the certainty 
factor mechanism may be correct, but if B is a special 
case of A, then that result will be wrong and it may be 
necessary to revert to the ad hoc “compiling out” approach 
described earlier. 

As this example illustrates, a uniform integration 
mechanism is based on certain implicit assumptions; in 
cases where these assumptions are violated, it becomes 
necessary to program around the mechanism, producing 
artifacts in the rule base that degrade the quality of the 
explanations generated by the system. 

In summary, most expert systems represent their 
integration mechanisms procedurally, whether in the rule 
interpreter or compiled into the rules. In either case, the 
reasoning that goes into integration is not perspicuously 
represented and hence is unavailable to the system for 
explanation purposes. Rather than hide knowledge 
integration in the design of the rule base or its interpreter, 
we argue that it should be made explicit so that it can be 
reasoned about and explained to the user. 

One strategy toward this end is to encode integration 
mechanisms as meta-rules, i.e., rules for interpreting and 
combining other rules. This strategy has received some 
attention [Davis 77, Clancey 83b]. However, it is not clear 
that standard rule-based architectures are well-suited to 
representing and applying integration mechanisms. We are 
not saying that rule-based architectures (which would be 
more explicit) could not in principle support integration, 
just that in practice, system builders have not seemed to 
find it convenient to use rules to reason about integration. 

An alternative approach to expert system construction 
that makes integration knowledge explicit was first adopted 
in the XPLAIN system [Swartout 831 and is undergoing 
further development in the Explainable Expert Systems 
project [Neches et al 851. The approach is based on the 
observation that usually (sometimes only) the person who 
created an expert system can give a very good explanation 
of how it works. Our approach for capturing the 
knowledge normally lost during expert system construction 
is to use an automatic program writer to create the expert 
system from an initial knowledge base. This knowledge 
base contains both abstract knowledge about the domain 
and general knowledge about expert system construction, 
including integration knowledge. As the writer creates the 
system, it records its reasoning in a development history. 
Explanation routines use this history to produce 
explanations of the design rationale incorporated in the 
constructed system. These explanations are valuable both 
to end-users interested in understanding the system and to 
system builders interested in modifying or extending it. 

This approach promises other benefits in addition to 
improved explanations. Because integration knowledge is 
explicitly separated out, it does not become confounded 
with problem-solving knowledge as occurred in the example 
with MYCIN certainty factors above. It allows greater 
flexibility, because several different techniques for 
integration can be represented in the system’s knowledge 
base, with each one used only when it is appropriate. 
Finally, the explicit separation makes the system more 
modular and easier to extend. For more details on this 
approach, see [Neches et al 851. 

This paper presents some general knowledge integration 
techniques we have identified and shows how they were 
incorporated in the therapy selection algorithm used by 
MYCIN [Buchanan & Shortliffe 841 to prescribe drugs after 
it had diagnosed which organisms were likely infecting the 
patient. We found this algorithm to be a rich source of 
such techniques, since it integrates a set of diverse and 
conflicting criteria in selecting the best therapy. In fact, 
the interactions among these criteria made it impractical to 
implement therapy selection using MYCIN-style rules alone, 
so a somewhat ad hoc procedure [Shortliffe 841 was used. 
Because the knowledge for therapy was implicitly encoded 
in a procedure, explanations of therapy decisions could not 
be given and the code proved difficult to maintain. A 
subsequent reimplementation by William Clancey [Clancey 
841 factored out most of the medical knowledge embedded 
in the procedure into sets of rules pertaining to various 
therapeutic factors like drug sensitivity and contra- 
indications. The reimplemented therapy selection algorithm 
was considerably more general and invoked these rules to 
evaluate individual therapeutic factors based on knowledge 
about specific drugs, organisms, or patients; however, the 
algorithm itself was responsible for integrating these factors 
into therapy recommendations. The algorithm makes a 
good case study because its design is dominated by 
knowledge integration concerns, rather than medical or 
computational details. 

2. Specification of the therapy selection problem 
The therapy selection problem is easy to specify 

informally -- given a diagnosis (one or more organisms 
suspected of infecting the patient), choose the therapy (set 
of drugs) that best satisfies the following medical goals: 

1. Maximize drug sensitivity. 

2. Maximize drug efficacy. 

3. Continue prior therapy. 

4. Minimize number of drugs. 

5. Give priority to covering likelier organisms. 

6. Maximize 
covered. 

number of 

7. Don’t 
class. 

give two drugs from the same general 

suspected organisms 

8. Avoid contraindications for the patient. 

Suppose we implemented these goals as rules, e.g.: 

Rule for goal 4: 
If therapy x uses fewer drugs than therapy y, 
then prefer therapy x over therapy y. 

Rule for goal 6: 
If therapy x covers fewer suspected organieme 
than therapy y, 

then prefer therapy y over therapy x. 

Therapy selection would require integrating the 
recommendations made by the rules’ right-hand sides. For 
instance, if therapy A has fewer drugs than therapy B, but 
covers fewer organisms, the rules would conflict. 
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Integrating goals requires knowledge about their relative 
importance. The informal specification above is ill-defined 
because it omits this knowledge, i.e., it doesn’t specify 
which therapy is “best” where the goals conflict. What’s 
medically ‘best” (i.e., for the patient, the physician, the 
hospital, and society at large) depends on information not 
available with certainty at therapy selection time, e.g., the 
actual effectiveness of the therapy, whether the benefits of 
the therapy will turn out to compensate for its side effects, 
and so forth. That is, this ideal sense of “best” is 
non-operational [Mostow 811, and we must settle for a 
heuristic approximation. Indeed, the operational definition 
of ‘best” is determined by the decisions made in the 
course of designing the therapy selection 
algorithm [S wartout & Balzer 821. 

The design of MYCIN ‘s therapy selection algorithm was 
also influenced by computational concerns and restrictions 
on the design process itself. A comprehensive analysis of 
the algorithm would explicitly model these aspects as well, 
but is outside the scope of this paper. 

3. MYCIN’s therapy selection algorithm 
We now describe in brief how MYCIN performs the 

therapy selection task informally specified in the previous 
section. MYCIN’s (revised) therapy algorithm begins by 
considering in turn each of the organisms classified by the 
diagnosis component as most likely. For each organism, it 
uses rules to assess each known drug as a first, second, or 
third choice based on the organism’s apparent sensitivity to 
that drug. For example, a typical rule is 

If the organism growing from the culture 
appears resistant to the drug, 

then classify the drug as a third choice. 

Since MYCIN uses rules to handle part of the sensitivity 
criterion, the reasons why a drug is classified as a first, 
second or third choice are accessible and MYCIN can 
explain them. However, the reasons for partitioning the 
drugs into three categories (and why three is an 
appropriate number of partitions) are implicitly built into 
the algorithm and MYCIN doesn’t explain them. 

Once the drugs have been classified, MY GIN proposes 
various combinations of them as possible recommendations. 
This is done by a series of fixed “instructions” that 
express how many of each category of drug to select (see 
Figure 3- 1). 

Number of 1st Number of 2nd Number of 3rd 
choice drugs: choice drugs: choice drugs: 

1. 1 0 0 

a. 2 0 0 
3. 1 1 0 

4. 1 0 1 
6. 0 1 0 

Figure 3-l: MYCIN’s Table of Therapy “Instructions” 

MYCIN goes through the instructions in order until an 
acceptable therapy is found. For example, the third 
instruction specifies that one first choiCe drug and one 
second choice drug should be selected. Thus the table of 
instructions integrates the goals of minimizing the number 
of drugs to administer and selecting the most effective 
drugs. 
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The proposed set of drugs is then subjected to three tests 
to determine whether or not it is acceptable. First, 
coverage is tested to see whether the proposed drugs cover 
for all of the most likely organisms. Then the set of 
proposed drugs is examined to ensure that all the drugs 
prescribed are in different drug classes. Drugs in the same 
class work via the same mechanisms so prescribing a 
second drug from the same class will not increase the 
overall effectiveness of therapy. Finally, MYCIN checks for 
patient-specific contraindications. Since all three tests are 
performed by sets of rules, MYCIN can explain them, e.g., 
explain the rejection of a given therapy by describing 
which test it failed and why. 

While some of MYCIN’s therapeutic expertise is explicit, 
its overall therapy selection strategy and its knowledge 
about how to integrate the various therapy goals are 
encoded procedurally (and implicitly). In Section 5 we will 
show how such knowledge could be made explicit. But 
first we discuss how the therapy goals themselves are 
formulated. 

4. Representations of goals 
Our analysis of MYCIN’s therapy selection algorithm 

suggests that many of the crucial decisions in its design 
dealt with how to formulate (or reformulate) the therapy 
goals listed in Section 2. A goal like “maximize drug 
effectivenessn can be represented in several ways. The 
choice of representation determines what kind of 
information about the goal can be encoded, how much 
space it takes to do so, what inferences can be drawn from 
the representation, and how much time they take. For 
example, information about drug effectiveness might be 
expressed as: 

l A set of axioms describing which drugs are 
more effective than others and by how much. 
This representation can encode arbitrary kinds 
of information, but drawing inferences from it 
requires a theorem-prover. 

l A partial ordering represented as a boolean 
connection matrix or as an acyclic graph with a 
drug at each node. This representation encodes 
no information about the magnitude of 
differences in drug effectiveness. The matrix 
representation allows two drugs to be compared 
in constant time but requires quadratic space; 
the graph representation is smaller but slower. 

.A “preference” ordering, which is like a 
partial ordering but allows distinct elements to 
be considered equivalent .* * A preference 
ordering on drugs can be represented as a graph 
with an equivalence class of drugs at each node, 
rather than a single drug. 

l A linear ordering represented as an array of 
drugs in decreasing order of effectiveness. This 
representation takes linear space and allows two 
drugs to be compared in constant time. 

** 
Formally, a preference ordering is a reflexive, transitive binary relation; 

unlike a partial ordering, it need not be anti-symmetric. 



However, it imposes a preference between any 
two drugs. 

l A metric represented as a table showing a 
numerical effectiveness score for each drug, or as 
a procedure or set of rules for computing a 
drug effectiveness score from other data (e.g. 
sensitivity and efficacy). Comparing two scores 
takes constant time. This representation assigns 
numerical magnitudes to all differences in 
effectiveness. 

l A partition of the set of drugs into symbolic 
categories corresponding to different levels of 
effectiveness. This representation suppresses 
differences among elements of the same category. 
Relationships among the categories themselves 
can be encoded using any of the representations 
described here. 

l A yes-or-no predicate that tells whether a 
given drug is effective. This representation 
converts the optimization problem of choosing 
the most effective drug to the satisficing 
problem of choosing a drug that is good enough. 

These representations are not equivalent: they differ in the 
kind of information they can express. For example, a 
partial ordering or preference can represent incomplete 
knowledge about which of two drugs is more effective, 
while a metric cannot. However, they represent no 
information about the magnitude of the difference in 
effectiveness, while a metric does. 

The different representations also vary in their 
computational costs; generally speaking, a simple 
representation like a metric is cheaper to store and use 
than a more precise representation like a preference graph. 
In general there is a tradeoff between the expressive power 
and computational efficiency of knowledge representations 
when it comes to integrating knowledge. Consider the 
problem of integrating two therapy goals. Representing 
each one as a set of axioms allows us to express arbitrary 
knowledge about it, but requires a correspondingly 
sophisticated inference mechanism to combine the goals, or 
to compare how well various therapies satisfy each goal. 
It is much simpler to represent each goal as a metric, even 
though this representation has less expressive power. The 
metrics can then be combined by a weighted sum or other 
numerical formula. It is even simpler to represent each 
goal as a constraint -- a predicate that a therapy must 
satisfy to be considered acceptable. The constraints can be 
combined simply by conjoining them; that is, a therapy 
achieves the combined goals if it satisfies both constraints. 
Faced with the task of integrating diverse goals like the 
therapeutic criteria listed in Section 2, expert system 
designers often formulate (or reformulate) them into simple 
representations such as linear orderings, metrics, or 
constraints. 

5. Partial derivation of the algorithm 
We now rederive portions of the therapy selection 

algorithm described in Section 3 by (re-)formulating and 
integrating the eight medical goals listed in Section 2. 
Reformulation and integration techniques are highlighted, 

e.g., EXTEND, and defined as they are introduced. A 
forthcoming extended version of this paper will present a 
more complete derivation and list of techniques. 

5.1. Combine effectiveness with number of drugs 
MYCIN’s table of “instructions,” described in Section 3, 

integrates the goals of fewer and more effective drugs. 
How can this mechanism be explained? 

1. Decide how to represent each goal. 

2. Extend the preference for effective individual 
drugs into a preference among therapies (sets of 
drugs). 

3. Combine the two 
single ordering. 

preferences on therapies into a 

First we must represent the goals to be integrated. The 
number of drugs defines a linear ordering, call it 

< fewer ’ on therapies. Individual drug effectiveness is 

represented as a metric on a scale of 100-1000. 

To make the table of instructions small enough to 
construct and store, MYCIN’s designers elected to 
PARTITION the drug effectiveness metric into three 
categories: “first choice,” “second choice,” and “third 
choice.’ 

Definition: A preference ordering is CONDENSEd by 
defining a many-to-one function F such that F(x) < F(y) 
implies x < y. F(x) can be thought of as an abstraction 
of x. In particular, a metric M(x) is PARTITIONed into 
the linearly ordered categories 1, . . . . N+l by splitting 
the range of the metric into the N-t1 intervals defined by 
N breakpoints given as parameters: 

PARTITION(tr, . . . t,): M(x) --+ F(x), 

where F is defined as X(x) (i 1 ti-r I M(x) < ti), t, 5 

Mb) < tN+p and + means “is reformulated as.” 

In the case at hand, M is MYCIN’S drug effectiveness 
metric, which ranges from to = 1000 (most effective) down 

to t, = 100 (1 east effective), there are N = 2 breakpoints, 

t, = 700 and t, = 700, and F(x) is the classification of 
drug x as a lst, 2nd, or 3rd choice. The PARTITIoNed 
ordering 1 < 2 < 3 (note that < means ‘is more 
effective than”) is small enough to combine with the 
preference for fewer drugs by using an ordered table of 
5nstructions”; at runtime MYCIN assigns each drug to one 
of these categories based on its score, and uses the table 
to generate therapies in (roughly) best-first order. If the 
effectiveness metric was not PARTITIONed, the table would 
be much too big to store, and would have imposed an 
unreasonable informational burden on the table’s designers 
by requiring them to make distinctions between therapies 
based on minute differences in drug effectiveness. 

In general, CONDENSE assumes that the function F 
captures all the information required to compare x and y 
with respect to <. In practice, this assumption is 
typically violated to some extent, i.e., the original 
preference is distorted in order ‘to condense it. Also, 
notice that F(x) < F(y) usually -- but not always -- 
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implies a significant difference between M(x) and M(y). 
Exceptions occur when x and y lie close to the breakpoint 
separating two categories. For example, the difference 
between drugs in categories 1 and 2 is usually significant, 
but not when both are rated close to 700. 

Next we EXTEND the ordering on 
preference ordering on therapies. 

drug categories into a 

Definition: 
EXTENDed in to 

An ordering on individual items can 
an ordering on bags of items as follows: 

1. {x} < {y} iff x < y. 

2. If X < Y and X’ I Y’, then X+X’ < Y+Y’, 

be 

example, 

:‘:, <better 

it specifies { 1,l) cbetter { 2) and 

{2,2}, but leaves implicit the supporting 

assumption that ‘a first choice drug is worth a lot more 
than a second choice drug” [Clancey, personal 
communication, January 2, 19851. This assumption is 
nowhere represented in MYCIN, and as we saw in the 
discussion of PARTITION, it is not always true. When it is 
violated, anomalies can arise. For example, MYCIN would 
propose a combination of two drugs rated 701 before 
proposing a single drug rated 699, even though the former 
are really not “worth a lot more.” While such anomalies 
may be infrequent and unimportant enough for the expert 
system designer to tolerate them, a robust expert system 
ought to recognize when they occur. 

where + denotes bag union. 

For example 1<2 implies 0) < (21 and 

{l,l~ < WI. 
We combine the preference cfewer for fewer drugs with 

the preference ceffective for more effective therapy*** by 

CONJOINing them. 

It should be noted that MYC’IN preserves some 
distinctions among drugs in the same category by 
generating them in order of decreasing effectiveness scores, 
so as to help generate therapies in best-first order. This 
feature doesn’t prevent the anomaly just described, but 
would make MYCIN propose the drug rated 699 before 
another “second choice” drug that wasn’t rated as highly. 

Definition: The result of CONJOINing two preferences, 

<P and cQ , is the preference <P&q ’ where: 

1. If P and Q both say that x is at least as good 
as y, so does P&Q: x <,,q y iff x 5, y and 
xc -Q Y- 

2. If in addition one of them says that x is 
preferable, so does P&Q: x <psrq y iff (x 5, y 

and x < Q y, or (x <p y and x sQ y) 

The table of instructions shown in Figure 3-l is largely 
specified by the preference ordering cfewerLeilective . For 

examp1eV {l) <fewer&effective {lT1) <fewer&effective {lT2) 
< fewer&effective 0,3). 

In general, CONJOINing preferences doesn’t specify what to 
do when they conflict, since it makes no assumptions about 
their relative importance. For instanceY <fewer&effective 
imposes no ordering between {l,l} and {2}, or between 
{2,2} and {1,3}. 

This partial ordering is next LINEARrZEd into a total 
ordering which we’ll call cbetter . 

Definition: Any partial ordering cp can be embedded 

into a linear ordering <L . (Unless <p is total, it will 

have more than one possible linear embedding.) The 
LINEARIZEd ordering has the property that x cp y => 

x CL Y- The converse does not always hold, i.e., x <L y 

In general, a LINEARIZEd ordering is ambiguous as a 
representation of the original preference, since X<Y 
doesn’t tell whether x is really preferable to y, or if x just 
happens to precede y as an artifact of how the preference 
was LINEARIZEd. 

Suggestion: An attractive way to LINEARIZE a partial 
ordering would be to explicitly specify the assumptions 
that the resulting linear ordering should satisfy. A 
theorem-proving engine would use these assumptions to fill 
in the ordering relation and identify cases where the 
assumptions fail to imply an ordering. The designer could 
provide additional rules to cover such cases, and the 
process could continue interactively until the ordering was 
complete. If feasible, this approach would be better than 
constructing a table by hand because it would make 
explicit the assumptions left implicit in such tables, making 
it possible to distinguish preferences based on genuine 
domain knowledge from those based only on general 
principles or computational expedience. 

5.2. Combine coverage preferences 
The therapy goals listed in Section 2 include maximizing 

the number of organisms covered and giving priority to 
those the patient is likelier to have. Let’s see how these 
two goals are integrated: 

1. Classify organisms as “most likely” or “less 
likely.” 

need not imply x cp y; cp might specify no ordering 
relation between x and y, in which case x cL y is an 

artifact of the particular embedding cL . That is, an 

alternative linear embedding, cL, , might not satisfy 

x CL’ y. 

2. Relax the coverage goal by ignoring “less likely” 
organisms. 

3. Reformulate the coverage goal as the constraint 
that all the “most likely” organisms be covered. 

MYCIN’s LINEARIZEd sequence of ‘instructions” 
incorporates some implicit assumptions about the relative 
importance of therapy effectiveness and number of drugs. 

1.1 
Note that A ceffective B means therapy A in more effective than 

therapy B, i.e., preferable with respect to effectiveness. 

Organism likelihood is PARTITIONed into only two 
categories, “most likely” and “less likely.” Assuming that 
the “most likely” organisms are much more likely than the 
“less likely” organisms, the importance of treating the 
“most likelyn organisms DOMINATES the importance of 
treating the “less likely” organisms. 
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Definition: Letting one preference -- call it <primary -- 

DOMINATE another preference -- call it csecondary -- means 

using <secondary only to resolve ties with respect to 

< The resulting preference <primar,,.secondary is 
primary * 1 

defined by 

X< primary Y Or Cx =primary y and ’ <secondary Y). 

As Section 4 pointed out, reformulating a goal as a 
constraint makes it possible to test whether a given choice 
satisfies the goal without having to compare it against 
alternative choices. Thus converting a preference into a 
constraint reduces an optimization problem (choose the 
most preferred element) to a satisficing problem (choose an 
acceptable element). The latter problem can be solved 
more efficiently, since it is easier to generate candidates 
one by one, test each one separately, and accept the first 
one that passes, than it is to generate all the (possibly 
infinitely many) candidates, compare them, and pick the 
best one. 

Definition: A preference can simply be IGNOREd. For 
example, ignoring -Csecondary rkduces < primary;secondary to 

< primary ' This particular case of IGNORE is appropriate 

if ties with respect to cprimary are too rare to worry 

about, or if violating <secondary in the event of such a 

tie wouldn’t do much harm. 
6. Applications 

Explicit knowledge about the integration techniques used 
to construct an expert system could be exploited in several 

ways, which we illustrate by means of hypothetical 
examples of behavior. 

It is unlikely for two therapies to be equally effective on 
the likeliest organisms but different on the less likely ones, 
so it is reasonable to ignore the less likely organisms 
altogether. A possible rationale for this compromise is a 
tradeoff between breadth and effectiveness of coverage, 
based on the assumption that broad-spectrum drugs are 
less effective than highly specific drugs. “You could 
generate all of the recommendations in the equivalence 
class and pick the one covering the most less likely 
organisms, but this will probably result in choosing drugs 
that are lower for most likely organisms (within the 
rankings). For example, choosing a 950 drug for an 
organism is preferable to choosing a 750 drug, (both are 
first rank), even if you pick up a less likely organism” 
[Clancey, personal communication, January 2, 19851. This 
is a good example of a design decision rationale of the 
form “Errors of type X are unlikely to occur and wouldn’t 
do much harm anyway.” Here an “error” would consist of 
proposing one therapy before another one that covers the 
more likely organisms just as well and also covers for less 
likely organisms. The net effect of the PARTITION, 
DOMINATE, and IGNORE steps is to CONDENSE the preference 
for maximal coverage by ignoring the less likely organisms. 

Notice violated assumptions. If the system can test 
the assumptions on which an integration technique is 
based, it may be able to detect flaws in its own reasoning. 
Therapy A, which coneists of two l&-choice 

drugs, is rated higher than therapy B, which 

consists of one lst-choice and one and-choice 

drug, based on the assumption that lst-choice 
are much better than and-choice drugs. 

However, one of the let-choice drugs in therapy A 
ie rated very - close to the and-choice drug in 

therapy B, 80 this assumption is questionable 

here. 
Detect artifacts. If the system can distinguish genuine 

domain knowledge from the accidental artifacts of 
reformulation techniques like METRICIZE or LINEARIZE, it 
may be able to alert the user to spurious preferences in its 
recommendations. 
Therapy X is rated higher than therapy Y because 

the combination of one let-choice drug and one 

Brd-choice drug comes before the combination of 
two and-choice drugs in the table of inetructione. The CoNDENsEd preference compares therapies based on 

the number of “most likely” organisms covered. This 
preference is now reformulated into a constraint by 
THRESHOLDin& 

However, that might be an accident of how the 

table was conetructed, rather than a genuine 

medical preference. 
Support maintenance by inferring constraints and 

goals. To some extent it is possible to guess rationales 
for how knowledge has been integrated in an expert 
system. In the absence of explicit rationales, these guesses 

may still serve to expose constraints and goals left 
implicit. For example, the following inferences might be 
made based on the knowledge that MYCIN’s table of 
instructions is a LINEARIZEd form of the preference formed 
by CONJOINing the preference for fewer drugs with the 
CONDENSEd preference for more effective therapy: 
From the fact that an explicit table ie used to 

Definition: A metric M(x) can be converted to a 
constraint by the THRESHOLD transformation 

THRESHOLD(tmin): M(x) --+ X(x) (M(x) 2 tmin), 

where the threshold value tmin is a parameter of the 

THRESHOLD transformation. (Variations on this 
transformation use >, <, or 5 in place of 2, and tmax in 

place of tmin.) 

In the case at hand, x is a candidate therapy, the metric 
M is the number of “most likely” organisms covered by 
therapy x, and tmin is defined to be the total number of 

organisms considered “most likely.” That is, an acceptable 
therapy must cover all the most likely organisms. 

decide tradeoffs between maximiziing therapy 

effectiveness and minimizing the number of drugs, 
it appears that the eimpler approach of computing 

not considered accurate enough a weighted sum was 
to do t'he job. 

This reformulation incorporates the assumption that all 
the most likely organisms can and must be covered. The 

implicit rationale for this assumption has to do with the 
risks of failing to treat for a likely condition. 

**** 

It appear6 that 3 effectiveness rank6 are 

coneidered eufficient to discriminate among 

different drugs, at least for the purpose of 

deciding tradeoffs between therapy effectiveneee 
and number of drugs. 
en'ough. 

Perhaps 3 ranks were not .t** 
Such as being sued for malpractice. 
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Maximizing therapy effectiveness appears more 

important than minimizing the number of drugs, in 
the senae that increasing therapy effectiveness by 
1 rank is considered more desirable than reducing 

the number of drugs by 1. 
This sort of information might be useful to an expert 

system maintainer who needed to revise the knowledge 
base. 

Support expert system construction. If 
reformulation and integration techniques like those 
described in Section 5 are mechanized, they might 
eventually be used to help automate expert system 
construction and documentation. 

. . . I detect a conflict between 
maximizing therapy effectiveness and minimizing 

the number of drugs. Which of the following 

the goals of 

relationships holds between the two goals? 

1. One goal is absolutely less important than the 
other. Only use it to resolve ties with respect 
to the more important one. [=> uee DOMINATE] 

a. One goal is absolutely less important than the 
other, and no ties are expected. [=> use IGNORE] 

3. The relative importance of the two goals can 
be adequately expressed aa coeff 
weighted cum. [=> utse WEIGHTED SUM] 

icients in a 

4. The importance of the two goals is relative 
and cannot be adequately expreeeed am 
in a weighted sum. [=> use TABULARIZE] 

coeff icients 

[User selects option 4; system tries integrating 
preferences in a table.] 

There are too many combinatione of drug 
effectiveness ecores to list them in a table. I 
would like to use a coarser measure of 
effectiveness [i.e., CONDENSE it] . An ideal 
therapy would consist of one drug rated 1000. How 
much lower could one drug be rated and still be 
better than any therapy coneisting of two drugs? 

[User says 700; system PARTITIONs effectiveness 
into 300-point subranges.] 

Automating the knowledge integration process would 
make it easy to record the design choices, techniques, and 
assumptions used. Once captured, this information would 
be available for generating explanations to future users and 
system maintainers. 

7. Conclusion 
Rational integration of conflicting preferences involves 

normalizing them relative to a common supergoal. This 
process requires identifying an appropriate supergoal and 
using it to analyze the tradeoff among the preferences. 
For example, in prescribing therapy, it, is preferable to 
minimize the number of drugs and maximize their 
effectiveness, but the relative importance of these two 
preferences depends on their ultimate impact on some 
higher level criterion. Presumably the implicit topmost 
criterion in medicine is patient welfare. ***** Determining 
the tradeoff between the number of drugs and their 
effectiveness involves balancing the likelihood and urgency 

***** 
Cynics think it is physician income. 
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of curing the illness against the likelihood and seriousness 
of unforeseen drug interactions. However, information 
about these factors is imprecise at best. 

When the knowledge required to integrate preferences on 
a mathematically rational basis is unavailable, domain 
experts and expert system designers generally integrate 
them instead on whatever ad hoc basis is cognitively or 
computationally expedient. In the absence of compelling 
medical reasons one way or the other, a physician might 
choose between a one- and two-drug therapy arbitrarily, 
out of habit, or based on a medically unjustified rule of 
thumb. While domain experts make such decisions on a 
case-by-case basis, expert system designers must anticipate 
the entire class of situations in which such decisions will 
be needed, and provide general mechanisms for making 
them. MY GIN’s designers chose to PARTITION drug 
effectiveness into three categories, which enabled them to 
store the LINEARIZEd set of “instructionsn in a precompiled 
table. Presumably, a simpler design alternative would 
have been to rate each proposed therapy by computing a 
WEIGHTED SUM of, say, the effectiveness of each drug in the 
therapy, with a negative term for the number of drugs. 
Because MYCIN does not explicitly represent the reasons 
for using a table of instructions, it is not easy to 
determine why a weighted-sum approach was considered 
inappropriate, or even whether it was considered at all. 

Lest MYCIN’s designers regret their generous assistance 
to us, or the readers of this paper get the incorrect 
impression that we are attacking MYCIN, we would like to 
emphasize that MYCIN is not a particularly egregious 
example of ad hoc integration; the problem of 
distinguishing arbitrary choices from justified ones is 
endemic among current expert systems. In fact we chose 
MYCIN’s therapy selection algorithm precisely because the 
task is too complex to fit the single integration method 
(certainty factors) used in the rest of MYCIN and in many 
subsequent systems. We found the algorithm to be a rich 
source of techniques for integrating knowledge, and we 
expect case studies of other expert systems and problem- 
solving programs to help identify, clarify, and formalize 
such techniques. 

If the rationale, or lack thereof, for integrating 
preferences in a particular fashion is left implicit in the 
design of an expert system, the artifacts of arbitrary design 
choices cannot be distinguished from bona fide domain 
knowledge. That is, when the expert system recommends 
one alternative over another -- for example, when MYCIN 
prefers a therapy consisting of one lst-choice and one 3rd- 
choice drug over a therapy consisting of two 2nd-choice 
drugs -- we cannot always tell if the recommendation is 
based on real domain knowledge or is simply the result of 
some arbitrarily chosen integration scheme. 

It is important to distinguish between justifying and 
explaining a conclusion made by an expert system. 
Justification is based on knowledge (or assumptions) about 
the domain, e.g., “therapy A is rated over therapy B 
because it’s medically more effective.” This kind of 
information is important to the user. In contrast, 
explanation can refer to computational or design 
expediency, e.g., “therapy A is rated over therapy B as an 
artifact of condensing metrics for computational efficiency, 
and the designers figured it wasn’t important enough to 
bother fixing.n This kind of information can be important 



to the expert system maintainer. 

In building an expert system it is expedient to use 
various knowledge integration techniques, some more 
justified by domain knowledge than others. The ultimate 
goal of this research is to create a framework for building 
expert systems that would support the representation of 
such integration techniques and the assumptions and 
tradeoffs involved in using them. Before that goal can be 
reached, much remains to be done. We must better 
understand how to formalize the techniques and represent 
the situations they apply to. We must also develop 
mechanisms for applying them and for reasoning about 
which technique to use in a given situation. Finally, the 
entire knowledge integration process must be recorded in a 
machine-understandable fashion for subsequent use in 
generating explanations. Such formalization will impose 
considerable overhead on the design process (though it 
should be somewhat offset by automating some of the 
techniques). However, we argue that an expert system 
ought to be able to explain its knowledge integration 
techniques and their underlying assumptions, both to help 
the user evaluate its recommendations, and to guide the 
expert system maintainer in adding new knowledge. In the 
long run, these enhanced capabilities should justify the 
overhead required to support them. 
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