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Abstract 

This paper describes a general mechanism for the qualitative inter- 
pretation of simple arithmetic relations. This mechanism is useful for 
the understanding and reasoning about domains that can be modeled 
by systems of simple arithmetic equations. Our representation at- 
tempts to model the underlying arithmetic in its complete detail. 
Reasoning from these forms provides the completeness and consist- 
ency that cannot be always guaranteed by a pure production-rule 
based system. We describe an experimental architecture for Equation 
Reasoning (ER), and illustrate its applicability using examples from 
the financial domain. 

1 Introduction 

One popular form of representation for building expert systems 
is production rules. This representation has been found to be 
highly successful for encoding empirical knowledge directly 
elicited from human experts. This empirical knowledge is 
normally based on the human expert’s experience at solving 
specialized problems. Many times the underlying basis for this 
knowledge is hard to formulate, and rules are then the most ex- 
pedient way to encode the problem solving knowledge. 

A class of problems exist for which it is possible to develop an 
underlying model of problem solving. Expert problem solving 
rules in such domains usually turn out to be specialized pre- 
compiled statements that are, in fact, derivable from the under- 
lying theory. For building computer based problem solvers, it 
would then seem more advantageous for these systems to di- 
rectly represent the underlying theory and reason directly from 
this representation just as a human expert would in the absence 
of pre-compiled rules. Intuitively, we can see the advantages of 
circumventing the problems of completeness and consistency 
which arise when one attempts to directly transfer a human ex- 
pert’s situation specific compiled rule knowledge into a com- 
puter program. However, on a more practical level, underlying 
theories, possibly well defined, often prove to be computa- 
tionally expensive, and the trade-off between expediency and 
accuracy usually leans towards the use of production rules, even 
if it implies painstaking knowledge engineering efforts to ensure 
maximal coverage by the knowledge base. 

There do exist some problem domains for which the underlying 
model is no more complex than simple arithmetic equations. It 
is an interesting research issue as to whether we can draw upon 
principles and mechanisms of causal and qualitative modeling 
for representing these simple underlying models, and use them 

as augmented problem solvers or support tools for knowledge 
acquisition and explanation generation. 

Human experts rarely reason from underlying models, however 
simple, only because they have a truly vast store of applicable 
surface rules. On the other hand, it is not impossible for one to 
use a “reasoning from first principles” approach in the absence 
of such rules, when given a problem that can be abstracted down 
to its underlying mathematical form. When we try to examine, 
understand, and solve problems that are governed by numerical 
formulations, it is possible for us to use our knowledge about 
numerical expressions to understand how we can make the cor- 
rect assumptions and approximations to get a quick feeling for 
the expected behavior of the unknowns in the solution. We may 
then progressively refine or restrict our approach to obtain more 
precise and accurate solutions. Many times, exact values of 
variables required for solving the problem are hard to come by, 
and inexact or estimated values need to be used for obtaining 
qualitatively reasonable solutions. 

For a computer program to be able to use this approach, we 
need an explicit representation for the generic knowledge that 
can reason about numerical relations. Mechanisms are required 
for applying this knowledge to a situation that is modeled by 
equations. Strategies need to be developed for combining this 
domain independent equation based reasoning with the domain 
environment, which may include heuristic reasoning for solving 
problems that are not entirely based on pure numerical consid- 
erations. 

1.1 Motivation 

Our interest in this mechanism stems from a desire to build 
knowledge based automatic reasoners in the domain of finance. 
Financial planning and analysis is centered around a couple of 
dozen of arithmetic equations. Expert finance specialists seem 
to use a combination of numerical computations and heuristic 
rules. Upon closer examination, it turns out that a major portion 
of these heuristics are in fact derivable from exactly the same 
equation set (that are used in the computations), using a qual- 
itative reasoning approach. It then seems natural to use a core 
representation for this basic equation set, and implement both 
quantitative and qualitative problem solvers that work off the 
same single representation. 

The financial application is an extremely appealing problem 
from the viewpoint of building AI systems. There are suffi- 
ciently complex yet not impossible problems in this domain that 
merit closer inspection. Other than problem solving mech- 
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anisms, there is potential for applications of advanced know- 
ledge representation techniques, problem solving control 
mechanisms, natural language processing, and many other AI 
notions. Knowledge based systems for business and finance may 
prove to be a rich arena for testing the fusion of many diverse 
AI mechanisms and concepts. 

1.2 Approach 

Assume an artifact whose behavior is governed by the equation 
a+b2- c = 0. What can we say about the behavior of the 
variables a, b, and c? Very little, given no further particulars. 
However, if we are told that typically a is extremely small com- 
pared to b , and that both a and b are typically greater than I, 
and then asked how a small change in a would affect c , it would 
be relatively easy to answer. Because of the relation between a 

and b, a significant change in c will be only noticed if there is a 
change in 6, and not otherwise. What we just did was apply our 
qualitative knowledge about arithmetic relations to the above 
equation, and made a statement of effect based on certain do- 
main specific knowledge about the variables in the equation. 

How should a computer based system solve a similar problem? 
The quick way is to build a rule based system that will incorpo- 
rate rules like “If ‘a’ is extremely small compared to ‘b’, and ‘a’ 
is changed by a small amount, then %’ will not change significantly 
or some variation thereof. We could write countless rules just 
for the equation c = a + b2 for covering different combinations 
of conditions. If our system is modeled by some dozens of dif- 
ferent equations then we need to repeat these countless rules for 
each of the equations. The folly in the rule based approach is 
obvious; the clean way to do this is to separate the equations and 
their domain specific knowledge into a distinct representation, 
and use domain independent knowledge about arithmetic re- 
lations to reason about what is represented. 

Our architecture is based on what we view as the clean way. All 
equations that are available to model a problem or parts of it are 
stored in an Equation Base (EB). A special purpose problem 
solver for Equation Reasoning (ER) can inspect, manipulate, 
and reason about the equations in EB using its expert rules 
about arithmetic relations and expressions, in conjunction with 
domain specific Situational Knowledge (SK) about the current 
states of the variables involved. ER can be asked to determine 
the consequences on a variable(s) in a specified state, via a 
query. As a side effect, ER may be also queried for a symbolic 
solution for a specified variable (that can be used in computing 
the value(s) of that variable). ER is itself completely domain 
independent, all it knows about is simple arithmetic operations 
and their effects. It is a domain dependent problem solver that 
has to transform problems from the domain to specialized que- 
ries in the equational domain, and transform answers in the 
equational domain to inferences in the application domain. 

1.3 Related Work 

The use of a central “base” of equations to perform intelligent 
problem solving can also be seen in the work of 
[Kosy * and Wise 841, where an equation base is used as a 
self-explanatory financial planning model. The use of equations 
in this work is to mainly give the system’s spreadsheet like 
computation facility an a posteriori reasoning capability to gen- 

erate explanations for computed values from the underlying 
equations. Our effort is more in the development of an a priori 
reasoning mechanism to solve for and generate problem solving 
steps or “rules” as and when required. 

More recent attempts in the use of qualitative reasoning for 
solving financially related applications can be seen in 
[Hart et al. 861. The major difference here is that this ap- 
proach is considering more abstract level representations of fi- 
nancial activities as a basis to reason with, and not attempting 
to represent the underlying “arithmetic”, as we wish to. 

2 Representation and Reasoning about Equations 

Consider a system to be reasoned about that is modeled by a set 
of equations. In the course of problem solving, we have to per- 
form both qualitative inferences and numerical computations. 
Then given a problem specification, one way to solve that 
problem is to use an available production rule statement or a 
computable function to prod&e a required answer. What if the 
rule or the function is not available? Since we know that the 
system under consideration is modeled by a set of equations, 
we transform the domain situation problem into a query that 
consists of a goal accompanied by a constraint set on the vari- 
ables. We then perform some symbolic manipulation and qual- 
itative reasoning on the equations, to derive an answer to the 
query. The derived answer is then transformed back into a do- 
main inference or value. This mode of operation is illustrated in 
Figure 1. 

Domain Production Rules Doma i n 
Situation b Inference 
Problem Commutation Functions or Value 

Goal and 
Constraint 
Specificat 

Symbolic Manipulation 
b 

on Qualitative Reasoning 

I Transform 

Solved Forms 
and Derived 
Constraints 

Figure 1. Reasoning from equations: In the absence of 
available rules or functions, reasoning or solving may 
be done at the level of the underlvinn equations 

We represent all equations in their unfocused prefix notation in 
an Equation Base. For example, the equation x = y t z can be 
rewritten in its unfocused form as x x z - y = 0. Correspond- 
ing to this equation, the form stored in the equation base would 
be (- (x x z) y). To reason about or compute a variable that be- 
longs to this equation set may require the solving of these 
equations to first obtain a focused symbolic solution for the 
variable. Classical computer based systems for symbolic ma- 
nipulation of algebraic forms (e.g. MACSYMA, SMP, 
SCRATCHPAD II [Wolfram 853) incorporate advanced gen- 
eral purpose algorithms for operations such as polynomial ma- 
nipulation and symbolic integration. For the simple arithmetic 
world, there are more restricted but efficient approaches 
[Derman and Van Wyk 841, [Hansen and Hansen 851. We 
use a simple Solve facility, based on the latter, for the purpose 
of solving for a variable of interest from a given set of equations 
in the equation base. This capability is required for two pur- 
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poses, for solving for a variable so that its value may be com- 

puted, and for solving for a variable so that its behavior may be 
reasoned about, in a focused manner, under weakly specified 
conditions. 

The major components of our problem solving mechanism are: 

0 An equation base (EB), for storing all the available 
equations in their prefix unfocused notation. 

a An equation reasoner (ER), that uses specialized and 
qualitative knowledge about arithmetic for solving and 
reasoning about the contents of EB. 

Figure 2 illustrates the architectural organization of the overall 
equation reasoner. Various components will be appropriately 
described, although the focus in the remainder of this paper will 
be upon the inference capabilities of the qualitative equation 
reasoner (ER) and the knowledge it employs. 

Domain Situational 41 
Knowledge (SK) 

t 
Queries 

b 
Domain Problem 

Transformations 

Answers 

Equation 7 Reasoner 
(ER) 

Figure 2. Overall organization of an Equation 
Reasoner: Indicates how a sing/e equation base may 
be used for both numerical computation and qualitative 
reasoning activities 

Typically, a domain problem solver will send off a request to 
ER for a computable function for a certain variable, or for 
finding out a qualitative set of consequences on variable(s) un- 
der certain situation specific constraints. These requirements are 
specified as part of a query statement that is composed by the 
domain problem solver. Some distinct types of queries that ER 
can produce answers for are: 

0 What is the function for computing the value of the domain 
variable v? 

0 Given a variable Vand a constraint set on it c(V), what are 
the implied constraints on one or more of the variables 
(XI, a**> -5) ? 

a Given variables (x1, . . . . x,), and constraints on them 
4x,>, --a, c(x,), what are the implied constraints on the var- 
iable v? 

Producing an answer for the first query is just a matter of simple 
symbolic solving for producing a computable expression for a 
focused variable v. A domain problem solver would typically 
request ER to produce this if it didn’t already have available to 
it a function for computing a value for the variable under ques- 

tion. Of more interest is the way ER handles other types of 
queries. In a sense, producing answers for them also requires the 
symbolic solving for a focused variable V. In addition, ER can 
apply its general knowledge about arithmetic functions to situ- 
ation specific and query specific domain knowledge about the 
variables involved to come up with some qualitative solutions. 
Thus, ER can solve for a variable V to obtain a form 
v = fh +2, *a-*, x,) , and use weakly specified constraints on x1 
. . . x, to derive some qualitative descriptions about V. ER can 
also apply this reasoning in the reverse direction, i.e., given some 
weakly specified constraint requirements on V, it can derive 
some qualitative statements about the states of the variables x1 
. . . XII* 

A query posed to ER includes two set specifications, a in- 
terms-of variable set, and a subset of this, a controllable variable 
set. Exactly one member of the controllable set is identified as 
a focused variable, and one or more members of the in-terms-of 
set are associated with a constraint list. Determining the relevant 
members of this set is done by the domain problem solver using 
the situational knowledge base (SK). ER will solve for the 
specified focused variable, and in the process, will only inspect 
and keep track of qualitative effects on the controllable set 
variables. Any other variables that may come up in the symbolic 
solution will be considered invariant in the current situation. 
The in-terms-of variable set is a specification of variables in 
terms of which the focused symbolic solution is to be computed. 
Often, EB may contain multiple independent solutions for a 
variable, in which case specifying a in-terms-of set helps to re- 
strict the number of solutions that are to be inspected. In some 
other cases, though EB may have a unique solution for a vari- 
able, a in-terms-of variable set specification is used to prevent 
the substitution of sub-expressions in a symbolic solution to 
finer resolutions. This is indeed the case in many situations when 
sub-expressions directly correspond to some domain concepts 
of current interest and the reasoning is to be done in terms of 
these concepts and not anything finer. 

ER’s general knowledge includes what we view as the qualitative 
knowledge about arithmetic relations. Currently, ER’s know- 
ledge is limited to the more common arithmetic notions, includ- 
ing Addition, Subtraction, Multiplication, Division, 
Exponentiation, Summation expressions, Binomial expressions, 
Rounding, Integer parts, Fractional parts, Sign, Magnitude. ER 
knows properties about these more common arithmetic re- 
lations. For example, given a relation x), ER can use its know- 
ledge about exponentiation to make various inferences. The 
exponentiation knowledge includes rules that combine notions 
of even powers, odd powers, sign and magnitude of base, etc. 
An example of a qualitative rule about exponentiation is If the 
base is a positive real fraction less than I, then the result will de- 
crease as the exponent increases. A related rule would be If the 
base is a positive real number greater than I, then the result will 
increase as the exponent increases. 

Which of these rules to apply to a given situation is very much 
dependent upon the assumptions that can be made. An impor- 
tant additional ingredient that is therefore used by ER is sim- 
plifications and approximations based on assumptions that can 
be made about the operands involved in a relation. The ability 
to make these assumptions relies very much on domain and en- 
vironment specific facts that can be gathered about these oper- 
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ands. These facts may be thought of as a combination of domain 
knowledge that is partly query dependent and partly query in- 
dependent situational knowledge (SK) that can be accessed by 
ER during its reasoning process. The types of facts that ER will 
attempt to assess for a query using the domain situational 
knowledge base (SK) include Is the operand a domain concept?, 
Is the operand’s domain/situation value available?, Is the oper- 
and’s domain/environment value available?, Does the operand 
have a domain/situation typical/default value?, Do the operands 
have typical/default relative magnitudes?. Available data in SK 
regarding these questions in combination with ER’s general 
knowledge about arithmetic make it possible to infer and prop- 
agate qualitative assessments about an arithmetic relation. 

Many frequently occurring patterns in arithmetic expressions 
possess special properties that can be used for making quick 
qualitative interpretations. For example, the quadratic form 
a xx2 + bxx is constrained in its behavior by the special role x 
plays in the relation (think of the quadratic curve). However, 
if the terms a xx* and bxx are inspected independently, we may 
possibly make locally correct but globally incorrect interpreta- 
tions. One way to avoid this problem is to look for patterns 
matching a library of known special relations, before breaking 
into sub-expressions. To make this pattern match problem easy, 
the equation base (EB) keeps some such special relations (that 
are expected to frequently occur) in a pre-parsed form so that 
a special relation can be detected just as any standard arithmetic 
operator. For example, the domain that we wish to apply ER in 
has one very frequently occurring pattern (1 + y)-‘. When an 
equation containing this form is entered into EB, a pre- 
processor replaces the form by (binomial1 y z). From the view- 
point of numerical computation, all required information is 
preserved too (e.g. a function binomial1 can easily compute 
(1 + y)-2 from its two arguments y,z). 

Assume that EB contains three equations (- (V (x x w))) (cor- 
responding to V - xx w = 0), (- (x w (- 1 (binomial] y z))) y) 
(corresponding to w x ( 1 - ( 1 + y)-‘) - y = 0)) and (- (x (x s 
t))) (corresponding to x - sx t = 0). Note that EB represents a 
binomial term not in its fine details but rather as (binomial1 y 
z). Assume ER receives a query that requires reasoning about 
the focused variable V, with a in-terms-of variable set specifi- 
cation of (x,y,z, V) and a controllable set specification of (x,y, V). 
ER’s solution for V would be (xxy) + (1 - (1 + y)-‘) (note 
that x is not further solved for because it is specified as a in- 
terms-of variable). The representation ER uses for building this 
solution is a variation of the standard prefix notation for storing 
expressions. For one thing, certain recognizable arithmetic 
concepts (e.g., a binomial term, in this case) are preserved as 
such, and not expanded into finer sub-trees. Also, appended 
with each operation and its operands is a property list that is 
gathered from an active domain specific situation environment. 

In its most general form, the symbolic solution for a focused 
variable is of the type (concept operand1 &optional operand2 . ..) 
where concept is an arithmetic operator or special form and each 
operand is itself an internal focused variable or a domain vari- 
able. ER makes two passes through this solution, once top- 
down for propagating qualitative assessments to each of the 
controllable variables, and once bottom-up for aggregation of 
individual controllable variables’ qualitative constraints to their 
parent focused variable. For example, if the above query comes 
in with a constraint on V, “decrease ‘I, then ER would use its 

two-pass propagate-aggregate mechanism to come up with 
consequent constraints on x, “decrease ‘I, and on y, “decrease 

the 

ER can also detect conflicts in assessments for a variable and 
perform local backtracks for making consistency corrections. 
For example, consider a focused expression for a variable p to 
be (q - t) + (r - t) Suppose we wanted to propagate a con- 
straint on p, “increase” to its domain variables. Using its 
knowledge about I’+, - ‘I, ER would see initially conflicting as- 
sessments for t, “decrease” and “increase I’. One way to handle 
such problems is to include a form like the above in EB/ER’s 
notion about special arithmetic expressions. Then such a pattern 
would be detected before propagation takes place, ensuring 
correct actions to be taken. However, there are innumerable 
such patterns with special properties, all of which cannot be 
possibly cataloged in advance. In the case of the above form, 
assuming it to be not pre-compiled in advance, ER first posts a 
tag for the numerator “increase” and a tag for the denominator 
“decrease ‘I. It then posts a tag for t, “decrease” when propagat- 
ing constraints to the sub-expressions in the numerator. It then 
pursues the denominator, attempting to post a tag for t, “in- 
crease ’ ‘. A conflict is detected, and ER will backtrack to the 
immediate parent concept that subsumes the roots of the con- 
flict, which in this case is (q - t) + (r - t). ER first attempts to 
resolve this conflict by considering the relative magnitudes of q 
and r (based upon data in SK). However, in the absence of any 
special knowledge about this concept, ER resorts to simulation 
techniques to propagate constraints on q, r, t. Within the bounds 
of situational constraints provided by SK, ER will actually plot 
the behavior of this term for some numerical value assignments 
to the variables involved, to come up with some reasonable 
qualitative assessments for those variables. 

How does this mechanism apply to a real example? The intent 
is to use ER to solve a class of problems that arise in financial 
planning and analysis. The following section will describe the 
application of ER to qualitative reasoning about the arithmetics 
of finance. 

2.1 Understanding the financial impact of a capital acquisi- 
tion 

When a corporation acquires a major item such as a large com- 
puting system, it has available to it various financing options 
which can be used for the acquisition. Which option to use is 
governed by certain well defined concerns of how the trans- 
action could potentially affect the corporations’ financial ratios 
and books, and by some related but not so well defined qualita- 
tive issues (e.g. a corporation may always choose a particular 
bank to finance its acquisitions because it “likes” the way the 
bank treats its corporate customers). ER’s usefulness is limited 
to the first category of concerns. The financial ratios and book 
entries are governed by equations, some of which are shown in 
Figure 3. 

The two major types of financing available to a corporation are 
leasing and purchasing. Of course, there are several sub-types 
in each category. Many times, a corporation may choose one 
method in one time interval and another in a different time in- 
terval. It may also choose different financing methods in the 
same time interval for different capital acquisitions. To deter- 
mine a corporation’s preferred financing method for a specific 
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CurrentRatlot = 
CurrentAssetst 

CurrentLlabllltuzst 

PercentageDebtt = 
Debtt 

TotalAssetst 

EarnlngsPerSharet = 
AfterTaxProfltst 

TotalSharest 

n 
CashFlowt = x CashFlowItemst, 1 

l=l 

P 
TaxBenefltst = TaxRate x c TaxExpenseItemst, 1 + TaxCredltst 

i=l 

CashFlowAfterTaxt = CashFlowt - TaxBenefltst 

t 

CumulatlveDlscountedCashFlowt = 
c 

CashFlowAfterTaxl 

i=l 
(l+D~co"ntRate)~ 

g 
ProfltLossExpensest = c ProfltLossExpenseItemst, 1 

l=l 

9 
ProfltLossBenefltst = TaxRate x 2 ProfltLossExpenseItemst, 1 

i=l 

ProfltLossImpactt = (1 -TaxRate)r (Interestt + Depreclatlont) 

AfterTaXProfltst = OperatlngIncomet -Taxest -ProfltLossImpactt 

Figure 3. Sample of financial equations: A complete set is 
stored in its unfocused form in ER’s equation base. 

capital acquisition, its financial profile needs to be assessed. The 
reasons as to why a company chooses a certain financing 
method is based on the company’s concerns about how the ac- 
quisition may potentially affect its balance sheet and income 
statement. The company’s concerns may be expressed as re- 
quirements on financial ratios, which along with the balance 
sheet and income statement may be expressed as a set of 
equations. The impact of the acquisition on the ratios and books 
may then be determined by propagating qualitative constraints 
across these equations. 

When a financial expert deals with problems in planning and 
analyzing financing methods, he is typically using heuristics like 
If the acquisition decision maker wishes to maintain a high profit 
margin, then use the ProfitLossImpact as a comparison basis, or 
If the corporation is cash-poor, has a low effective tax rate, and a 
high borrowing rate, then it will be strongly inclined to lease. The 
human expert has a countless number of such rules that he uses 
over and over again. These rules may be thought of as qualita- 
tive solutions to situation specific problems, and for a large part, 
may be derived from equations of the type illustrated in 
Figure 3. For an expert system to be able to reason about fi- 
nancial problems, it will either require all such rules to be en- 
coded in advance, or have the ability to reason directly from the 
underlying equations, when there are no readily applicable sur- 
face rules. The advantages of the latter are obvious, and we are 
fortunate to have an underlying theory consisting, in large part, 
of simple arithmetic equations. 

Qualitative reasoning comes in very useful for answering 
questions that come up while performing the financial planning 
and analysis required for choosing an “attractive” financing 
method for acquiring a capital intensive item. For example, 
during the planning phase, typical questions may be of the type: 

1. What financing method will best suit a corporation? 

2. How does the use of a certain financing method for acquiring 
some equipment affect the corporation’s EarningsPerShare 
ratio? 

3. What financial criteria to use for ranking the outcomes of 
analyses of a series of financing alternatives? 

To answer such questions, we have to essentially inspect the fi- 
nancial equations, and determine the implications and con- 
straints imposed upon certain variables under domain specific 
situations. The answers lie in the derived implications and con- 
straints. Situational knowledge that is available is not always 
precisely (numerical values) specified. We do have to make use 
of whatever specifications are available for deriving a reason- 
able and rational qualitative solution. 

Let us consider some examples of qualitative derivations of sit- 
uation specific interpretations. Consider question 3. Suppose 
the domain specific financial planner requires an answer to the 
problem, If a corporation’s concern is its EarningsPerShare ratio, 
what criteria should be used for ranking analyses of several fi- 
nancing alternatives? The query passed on to ER by the domain 
problem solver will include the controllable set 
< EarningsPerShare, CashFlow, CashFlowAfterTax, 
CumulativeDhcountedCashFlow, ProfitLossImpact>. The vari- 
able identified as the focused variable in this set is 
EarningsPerShare, with a constraint on it “increase “. ER will 
attempt to solve for EarningsPerShare, coming up with the sol- 
ution: 

EarnlngsPerShare- 
OperatuIgIncome -Taxes-Prof1tLossImpact 

TotalShares 
El 

Using the strategy described previously, ER will deduce a con- 
straint on ProfitLossImpact, to be “decrease”. When passed 
back, the domain problem solver can infer that If 
EarningsPerShare is of concern, rank alternatives by 
ProfitLossImpact. 

Taking another example, consider question 2. Suppose the do- 
main problem solver requires an answer to the query What is the 
impact in the first year on the EarningsPerShare ratio if outright 
purchase (using bank financing) is used for acquiring a $5 million 
worth computing system The query passed on to ER will consist 
of the controllable set < EarningsPerShare, Interest, Depreci- 
ation >. The variable identified as the focused variable in this set 
is EarningsPerShare, with constraints on “Interest ” to be “about 
a $I million increase” and “Depreciation ” to be “about a $I 
million increase ’ ‘. ER will attempt to solve for 
EarningsPerShare”, coming up with the solution: 
EarnlngsPerShare= 

OperatIngIncome -Taxes - (1 - TaxRate)x (Interest+Depreclatlon) 
TotalShares 

E2 

ER will assess (using a fact from SK that OperatingIncome is 
not extremely large compared to Interest + Depreciation) a 
constraint on “Earnings per share” to be “significant de- 
crease”. Upon passing back, the domain problem solver may 
make an inference of the type An outright purchase of a capital 
asset may adversely affect a firm’s EarningsPerShare ratio in the 
first year. 

3 Discussion 

The production rule formalism is not well suited for many 
quantitative problem solving mechanisms. Attempts at ad- 
dressing this shortcoming has resulted in systems.like SOPHIE 
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[Brown et al. 821 and ELAS [Apt6 and Weiss 851 that inte- 
grate numerical models of a problem with appropriate heuristic 
models. What eluded most of these systems was the ability to 
inspect and reason about the quantitative/numerical models at 
a qualitative level. This was mainly due to the absence of a 
model of general knowledge about quantities and their relations, 
and an appropriate representation for the quantitative problem 
solving models. 

The recent surge of activity in the areas of causal modeling and 
qualitative reasoning may be partially viewed as attempts to 
remedy this lack of representational detail. Although the use of 
causal models is not new [Weiss et al. 781, the more recent 
approaches have begun to address the qualitative and causal 
modeling of specific quantitative problem solving methods. 
Much of the hallmark work in this area appeared in a special is- 
sue of Artificial Intelligence [Kuipers 841, 
[DeKleer and Brown 841, [Forbus 841. Our approach to a 
specific domain problem is very much inspired by this recent 
work in qualitative reasoning and simulation. 

What is it we are doing that is different? It is primarily in the 
representational detail we wish to use. In much of the work on 
qualitative simulation and understanding of physical systems, 
researchers have attempted to use some form of abstract repre- 
sentation to model mathematical entities like differential 
equations for the purpose of reasoning about variables that are 
constrained by such equations. This shift in the representation 
is a forced requirement when dealing with complex forms like 
differential equations. A major disadvantage in abstracting the 
representation of mathematical forms is that certain information 
is lost, and that may exclude reasoning steps that require the 
comparison of magnitudes or computation of numerical values. 
The domain of mathematics that we deal with is simple arith- 
metic, and thus it is possible to achieve our more exacting re- 
quirement, with lesser computational overhead than that 
associated with typical causal models of complex mathematical 
systems. 

We have formulated an architecture for equation reasoning, and 
studied its application to the financial domain. The examples il- 
lustrate the potential role of ER as a special purpose reasoner 
in a financial/business expert system. The main advantage of 
using ER is for its ability to understand and reason about con- 
strained variables in a generalized way. Because ER uses a sys- 
tem’s underlying equational model, it ensures completeness and 
consistency in its answers. Another important advantage is in 
the use of EB for storing equations in their true form, so that 
they may be used for performing both numerical and qualitative 
computations. ER’s inference strategy works on a prefix sym- 
bolic solution for a focused variable. The inference is a two-pass 
propagate-aggregate mechanism that detects and resolves in- 
consistent assessments by local backtrack actions. The power 
of ER lies in its own general knowledge about arithmetic, and 
it is the “knowledge engineering” of this base that is most crit- 
ical to the working of our architecture. It is interesting to note 
that from the viewpoint of a domain, ER solves problems using 
a “first principles” approach, although the knowledge base of 
ER itself is quite akin to “expert rules” about arithmetic 
equations. 

ER is currently not able to provide all that is needed for use in 
an expert system. Our final goal is to strengthen ER’s know- 

ledge base by building a comprehensive catalog of general 
knowledge about arithmetic expressions. We are also enriching 
the constraint language used by ER for propagating and storing 
derived qualitative assessments. In particular, we would like to 
see an external problem solver be able to compare and contrast 
ER’s solutions for problems of comparable nature. For example, 
a question of practical and theoretical interest to financial and 
business analysts is the corporate assessment problem of deter- 
mining in advance whether a firm should lease or purchase cap- 
ital assets. It requires posing multiple queries to ER (e.g. one for 
evaluating the impact of a lease on the firm’s “xyz” ratio, one 
for evaluating the impact of a purchase on the firm’s “xyz” ra- 
tio, etc.). The external problem solver then should be able to 
compare the returned qualitative assessments of the impacts on 
this ratio to determine which financing method is preferred. This 
requires ER to have the capability of computing qualitative as- 
sessments using a sufficiently rich constraint language. 

Another potential area where ER could be further strengthened 
is in its role in the creation of queries. Currently, the domain 
problem solver uses the situational knowledge base (SK) to 
form these queries. However, there do exist causal connections 
between domain concepts and the variables in ER’s equations. 
One way t? find out about the relevant in-terms-of and con- 
trollable sets is to actually interrogate ER about the variable in 
question while forming a query for it. 

3.1 Current Research 

Many interesting extensions can be made to ER. Some of these 
are essential before ER can become a practical real world tool. 
Others are interesting research extensions. We present some 
open problems that we are currently investigating. 

Strategies for integrating domain dependent heuristics: As we 
pointed out earlier, the possibility of mapping all domain spe- 
cific problems into constraints on arithmetic relations is too 
ideal a situation. While we intend to use a generic mechanism 
to reason with numerical relations themselves, there do exist 
domain specific heuristics that just can’t be mapped into our 
structure yet are useful to the reasoning process. We therefore 
require the mechanisms to be able to separately represent such 
heuristics and make use of them where feasible. Many times, 
very specific heuristics produce solutions that are in complete 
disagreement to what ER may produce. In other cases, ER may 
fail to produce a solution while specific heuristics might. It is 
cases such as these that will require ER to be integrated with 
domain dependent heuristics. Integrating ER to a domain prob- 
lem solver brings up an interesting issue, how does a domain 
problem solver know that it does not have a domain heuristic 
and therefore needs ER? Or vice versa? We would like to re- 
solve these issues at least partially in the course of our on-going 
investigation. 

Knowledge Acquisition: Many concepts that are derived from a 
formula based representation in the course of solving a problem 
may be useful over and over again, during the same problem 
solving process, as well as in new ones. There is an interesting 
possibility of caching the query-answer pairs as rules for future 
use within the domain problem solver. We illustrated how some 
typical questions (2 and 3) are solved by ER (El and E2). The 
answers returned from ER, once transformed back into domain 
terms, can be viewed as a domain inference. For example, 
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question 2 coupled with the answer of E2 may constitute a rule 
for a specific situation. The advantages of caching are twofold. 
One, we do not need to pre-compile all such concepts in ad- 
vance. Also, often used lines of reasoning should be available 
as surface rules, rather than having to do something akin to 
theorem proving, or reasoning from first principles each time the 
same problem arises. Automatic derivation and caching is one 
kind of knowledge acquisition, for which useful derivations are 
dynamically compiled, along with supporting knowledge struc- 
tures. Work in the area of learning apprentice systems like 
LEAP [Mitchell et al. 851 and LAS [Smith et al. 851 dem- 
onstrate this capability. The problem of generalizing a line of 
reasoning for the purpose of caching a useful rule is extremely 
hard, specially if the reasoning process employs qualitative 
concepts. We are currently investigating this problem of gener- 
alization as it applies to financial planning and analysis. 

Explanation One of the desired aspects of intelligent problem 
solvers is that they be able to explain or present their solution 
in a way that allow a human user to understand not only the 
solution reached, but also how and why they were reached. This 
usually requires the problem solver to maintain some kind of a 
trace on the bodies of knowledge used during the problem solv- 
ing process. When the underlying behavior is governed by nu- 
merical relations, composing an explainable solution from a 
large body of quantitative data can be quite complex, unless 
explicit knowledge is encoded in advance for composing such 
explanations from numeric solutions. We would like ER to pre- 
serve traces of its reasoning process so as to compose intelligible 
explanations from them. 

3.2 Concluding Remarks 

ER is a stand-alone experiment in testing mechanisms for ap- 
plying qualitative reasoning to systems of arithmetic equations. 
Our mechanisms are currently confined to the class of simple 
arithmetic relations and concepts. The efforts of many others to 
develop powerful qualitative reasoners for a more complex class 
of mathematical models has given us good insight to developing 
this approach for a simpler subset. Many practical problems may 
be based on this subset, and developing more efficient mech- 
anisms for this special class of problems would be very useful. 
ER is being developed within the scope of a wider project that 
is investigating the applications of AI to building a system that 
will serve as a powerful interactive consultant for financial 
marketing decisions [Kastner et al. 861. We continue to work 
towards the implementation and integration of ER with this 
system. 
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