
FRAMEWORK FOR PROTOTYPING EXPERT SYSTEMS FOR FINANCIAL APPLICATIONS 

Jacob Y. Friedman and Atul Jain 

Decision Support Group, Management Consulting Services 

Coopers & Lybrand, New York, NY 10020 

ABSTRACT 

Analysis of difficulties in trans- 
ferring expert systems technology into the 
financial industry applications suggests 
that speed-up of the prototyping phase can 
significantly reduce the cost and length 
of the entire development process. We 
suggest a prototype concept that is 
generic for certain types of financial 
applications and can serve as both a 
catalyst for the knowledge engineering 
process and a laboratory for knowledge 
gathering, validation and maintenance. We 
developed software tools to provide a 
framework for rapid prototyping by finan- 
cial professionals with basic computer 
training. 

I INTRODUCTION 

High costs, a long development cycle 
and the lack of experienced knowledge en- 
gineers are the main obstacles to the 
broad commercialization of expert system 
technology, particularly in the "bottom 
line" oriented financial industry. To 
understand the difficulties in building an 
expert system (ES), one has to consider 
all stages of ES development. 

1. 

2. 

3. 

4. 

Knowledge Engineering: analysis of 
problem domain; selection of knowledge 
representation, computational ap- 
proach, and user interface; building 
of the first prototype. 

Knowledge Acquisition: selection and 
training of experts; knowledge gather- 
ing and validation using the proto- 
type; refinement of the first proto- 
type or building a second one; 
prototype field testing. 

Delivery System Development: 
preparation of specification and 
design documentation; software coding; 
system Integration; testing. 

System Deployment: preparation of user 
documentation; user training; instal- 
lation and support; knowledge base 
maintenance. 

The first two stages are referred to 
as ES prototyplng and the last two as lm- 
plementation. ES implementation is a pro- 
cess similar to conventional DP system 
development. Therefore, well formulated 
and accepted principles and methods of 
software engineering can be adopted. The 
prototyplng phase, on the other hand, 
often becomes a major research project, 
consumes more than 70% of the time and 
resources allocated to ES development and 
requires highly skilled knowledge engin- 
eers (KE). 

Transformation of the ES prototyping 
process from a research effort to an en- 
gineering task is an important factor in 
reducing the length of ES development and 
associated costs. 

II PURPOSE OF PROTOTYPE 

A. Knowledge Engineering Catalyst 

The difficulties in ES development 
start from the very first interaction be- 
tween the KE and the domain expert (DE). 
Typical scenario: the KE Is a computer 
scientist with knowledge of AI principles 
and techniques but a limited understanding 
of the problem domain; the DE is very 
knowledgeable in the application domain 
but has difficulty comprehending ES tech- 
nology. Knowledge engineering sessions 
become unstructured crash courses in both 
AI and application. They are complicated 
by differences in the individuals' back- 
grounds, ways of thinking and communlcat- 
M3, and Inability to visualize abstract 
rules, notions, and Ideas. 

The Knowledge Engineering process 
functions much smoother when an ES for a 
similar problem is available and can be 
used as a means for exchanging knowledge, 
demonstrating principles and testing 
ideas, and sometimes as a first prototype. 
Even though an existing ES is not a per- 
fect solution for the new problem and can 
not be used for complete knowledge acqui- 
sition (KA), it helps to keep the know- 
ledge engineering process focused and 
significantly speeds up ES development. 

KNOWLEDGE ACQUISITION / 969 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



If a similar ES is not available, the 
building of the first prototype in the 
very early stages of ES development is 
extremely important. Such a prototype, 
even with a limited useful life, can serve 
as a catalyst for the Knowledge Engineer- 
ing process by provinding the DE with 
structure and concrete objects to describe 
his reasoning process to the KE. 

B. Knowledge Base Laboratory 

Some developers believe that it is 
important to have a prototype as close to 
the final system as possible at very early 
stages of a project. Such a prototype is 
supposed to speed up development of the 
delivery system. 

In our opinion, at this stage of de- 
velopment It is difficult to select the 
optimal design of the final system. Fur- 
thermore, we do not believe that the final 
system intended for production is the most 
suitable for KA. 

The system used during the KA process 
needs certain capabilities that the final 
system will not, and these features are 
essential tools for the most effective 
development of the Knowledge Base (KB). 
For example, the prototype should provide 
the DE easy access to intermediate results 
to permit the necessary refinements in the 
problem-solving process. It also needs a 
greater degree of user control over steps 
of inference to allow testing of the KB by 
the DE. 

Testing the KB is often complicated 
by the fact that processing a test case 
requires the ES to contain knowledge about 
all aspects of the problem. When in the 
prototype version the problem Is broken 
down into a series of relatively indepen- 
dent steps (at least as a first aproxlma- 
tion), and human intervention is provided 
for steps missing In the KB, the entire KA 
process becomes better structured, earlier 
tests of completed sections of the KB can 
be performed, and several DES can work on 
different sections simultaneously. 

Some advanced ES software tools pro- 
vide facilities to examine and modify the 
KB during the test run of a final system. 
However, these are typically designed more 
for the use of the KE in debugging the 
system code. The DE needs an interface 
that is specifically tailored for a par- 
ticular application and does not signlf- 
icantly slow him down when routinely pro- 
cessing real cases. 

C. Knowledge Validation Device 

A good prototype can be carried to 
the phase of KB validation by independent 
experts who have otherwise not partici- 
pated In the process of KA. 

In prototype field testing, the prob- 
lem of acceptance by new users becomes 
very important. Users have a problem ac- 
cepting a system whose operations are not 
completely transparent. Because of the 
inherent limitations of the Initial KB, 
the user does not entrust real cases to 
the system and performs parallel testing 
only with selected cases. This slows the 
KB validation and limits the variety of 
test cases. Another limitation of on-line 
testing of the prototype is that it rarely 
handles multiple cases. In financial ap- 
plications, not all input Information is 
readily available at one time, and the 
user often switches back and forth between 
cases. 

To allow on-line processing, the sys- 
tem used for the KB field test should be 
absolutely transparent, imitate the prob- 
lem-solving process used by human experts 
and provide the user with full control of 
this process. These features are not im- 
portant and often are undesirable for the 
production system, but are essential for 
the prototype used In KA. 

D. Knowledge Base Maintenance System 

The process of KB maintenance is 
analogous to the process of KA and re- 
quires thorough testing of new pieces of 
knowledge. A good prototype can be used 
for testing of new knowledge even if it 
does not exactly correspond to the deliv- 
ery system. The speedup of KB testing us- 
ing debugging facilities of the prototype 
easily compensate for possible delays 
caused by the conversion from the format 
used in the prototype to the format of the 
delivery system. 

E. Methodolonv Carrier 

The major problem in ES development 
Is the lack of an established methodology 
and the absence of examples for different 
types of problems In various applications. 

BY continuing to use a prototype 
through the entire process of ES develop- 
ment, and later KB maintenance, we extend 
its role of knowledge engineering catalyst 
to one of a carrier of ES development 
methodology. A good prototype built on 
the base of similar problems can be a 
valuable guide during ES development, 
especially for KEs who are not very 
experienced. 

970 I ENGINEERING 



III PROTOTYPE FEATURES 

For a prototype to be extended to 
cover all aspects of knowledge engineering 
(acquisition, testing, validation and 
maintenance of the KB), it must lncorpor- 
ate a series of features not usually asso- 
ciated with a prototype. 

The following Is a description of 
these features embedded In the example of 
a generic ES prototype used by Coopers & 
Lybrand to develop ES for its financial 
clients. The prototype is Intended for 
decision making problems that comprise a 
large segment of the potential ES applica- 
tions in finance. 

A. Domain Tailored Data Representation 

From our experience, the process of 
Knowledge Engineering proceeds faster if 
the knowledge representation in the first 
version of the ES closely follows the rep- 
resentation used by human experts in solv- 
ing the problem. This makes It easier to 
extract rules from experts and test their 
validity on real cases. 

Decision-making processes in finan- 
cial applications are typically accompa- 
nied by and organized around massive pa- 
perwork: input information collected in 
forms, summary data, results of interme- 
diate analyses, underlying assumptions and 
the final report. Every step of the prob- 
lem solution is documented on paper. If 
several people participate in the process, 
they use paper media (folders with forms 
and reports) as a main channel of commu- 
nication. 

In the prototype, data is organized 
on the screen in a way that imitates the 
paper forms used by the human experts. 
The on-screen form is composed of several 
fields that are placeholders for data 
(Fig. 1). Each field has a label and a 
value, number or string, and is mouse- 
sensitive. Values of lldisplay only" 
fields or space allocated for them are 
underlined. Values of user modifiable 
fields are boxed. Users can enter or 
modify field values by clicking on the box 
and then, depending on the field type, en- 
ter values from the keyboard, cycling 
through a pre-specified list of values or 
selecting values from a pop-up menu. 

A form can have a bar diagram to 
illustrate some of the numeric field 
values. Bars corresponding to modifiable 
fields are mouse-sensitive and provide 
another way of entering or overwriting 
field values by the user. Each form can 
have several "schedules" - instances of 
the same form for several instances of an 
object. For example, the form In Fig. 1 
is scheduled by vessels and there is an 
instance of this form for each instance of 
a vessel. The schedule menu is used to 
select specific schedules or to create new 
ones. 

B. Problem Decomposition 

Decomposition of the problem is im- 
plemented both by grouping contextually 
similar data and by breaking decision pro- 
cess into a series of steps. 

Forms in an application are organized 
in folders. Mouse clicking on a folder 
icon in the application window (Fig. 2) is 

SCHEDULES 
NEU SCHEDULE 
American Dream 
Enclno Girl 
Ilarblehead Princess 
Russian Orean 
Y anksc 

MARINE UMBRELLA LIABILITY INSURANCE UNDERWRITER 
Long Island Yacht 

Standard Rates 

e.9 

Vessel Information Form 
Vessel: Marblehead Princess 

Vessel Type: Sailboat//Yacht m Boat contribution: 1 s 16.800 I 

Value: 1s 2.500.000.00 m Crew Contribution: [ 8 10,000 1fgg 

Location: East Coast ID Location Factor: 1.4 

Cargo: Not Hazardous Im Premium Contribution: 1 8 23,000 I= 

Number of Crew: III 

Age: B 

Base Amount for Boat: s 12.000 
t 

Base Amount for Crew: s 750 

Base Amount for Location: s 1,250 m 

Figure 1. Interface Screen with Form Window, Context Window, and Schedule Menu 

KNOWLEDGEACQUISITION / 971 



used to select a folder. Clicking on the 
form icon in the folder window (Fig. 3) 
invokes display of the corresponding form. 
Any folder can also be selected from the 
context window on the form or folder 
screen (Fig. 1). 

The way forms are grouped in folders 
is intended to accomplish two objectives: 
to have forms with context-related fields 
in the same folder and, more important, to 
have forms containing the results of a ma- 
jor step of the problem solution in the 
same folder. Thus, the solution process 
can be represented as a step-by-step prop- 
agation of Information (field values) from 
one group of folders to another. Visual- 
ly, It Is represented .ln the application 
window (Fig. 2) and context window (Fig. 1 
as lines with arrowheads (connectors) con- 
necting two folders, the origination fold- 
er and the termination folder. 

C. KB Debugging Facilities 

Such features as explanation facili- 
ties and indicators of data availability, 
source and quality are Important in pro- 
duction ES, but they are even more import- 
ant In prototype during the KA and KB val- 
idation. 

An explanation related to specific 
data can be obtained by clicking on a 
field. The user can Invoke an explanation 
of why its value Is needed to solve the 
problem, or a justification of the field 
value was inferred. 

In addition to a label and a value, 
each field has a value source and a value 
quality associated with it. The shading 
intensity of a box displayed on the form 
next to the value (Fig. 1) is used to in- 
dicate one of the three levels of value 
quality: "guessed", "probable*' or "cer- 
taint'. The quality of data represented by 
a bar diagram Is Indicated by the shading 
of the bar. 

The quality of the field value is in- 
ternally represented by a number from 0 to 
1. It is calculated using one of the 
methods described in C1,2,3] depending on 
the rule specification. The entire range 
from 0 to 1 is broken in three sub-ranges 
corresponding to "guessed", "probable" and 
"certain" for external presentation. 

Each form and folder icon has a data 
meter (Fig. 2 and Fig. 3) that Indicates 
how many fields are filled with values and 
the quality composition of these values. 
Total height of the meter's shaded area 
Indicates weighted number of filled 
fields, while the nonshaded area repre- 
sents unfilled fields. A weight factor 
assigned to each field Is used to determ- 
ine the field contribution in the data 
meter read-out. The shaded areas are 
broken into three areas, with different 
shading indicating how many filled fields 
are "'guessed", l'probable", and "certain". 

The validation mechanism is used to 
allow the user to easily trace changes In 
field values resulting from inference. 

II CASES I 
NEU CRSE 
Fantasy Is1 and 
Hal’s Cruise Line 
Long Island Yacht 
NY Port Authority 
Us&bury Narins 

MARINE UMBRELLA LIABILITY INSURANCE UNDERWRITER 

Long Island Yacht 

Figure 2. Interface Screen with Application Window and Case Menu 

972 I ENGINEERING 



When a field value is asserted by a rule, 
it is not verified and is displayed in 
reverse video. The user can verify all 
fields of a schedule, a form or an entire 
folder by clicking on the corresponding 
verify icon. If as a result of later ln- 
ference the field value Is changed, the 
new value is displayed in reverse video. 
By clicking on it, the user can examine 
the old value and even restore it. The 
user can detect changes at any level of 
field hierarchy: schedule, form or fold- 
er. The corresponding verify icon Is not 
filled If the folder, form or schedule 
contains nonverified values. The icon Is 
filled if all field values are verified. 

Hierarchy of folders, forms and 
schedules provides the user with easy ac- 
cess to all Input data and intermediate 
and final results. The user has the op- 
tion to enter data that Is supposed to be 
inferred or to overwrite already Inferred 
data. If the value of a field that Is ln- 
tended to be inferred was actually entered 
by the user, it is displayed In italic. 

D. Control and Status of Solution Process 

Two components are Important for 
step-by-step execution of a decision pro- 
cess : 

1. Clear visual representation of the 
problem structure, steps in the solu- 
tion and their Interaction. 

2. User control of inference, with an 
Indication of the solution steps that 
provide enough information to infer 
new data. 

A flow chart composed of folder Icons 
and connectors on the application window 
(Fig. 2) combined with folder data meters 
provides the visual representation men- 
tioned above. 

Each connector has a group of 
production rules associated with It. 
These interfolder rules, in their pre- 
mises, refer to field values from the 
origination folder and assert the field 
values of the termination folder. Each 
rule can be associated with several con- 
nectors terminating at the same folder. A 
connector is shaded in the application 
window if at least one rule associated 
with it is ready to fire. By clicking on 
the connector, the user can view a list of 
actions that will occur if these rules are 
fired. 

The user has to click on the data 
meter of a folder icon to allow firing of 
the inter-folder rules. A tree with the 
activated folder as a root, connectors as 
branches and other folders as nodes illus- 
trates the scheme used to control inter- 
folder inference. The generation of con- 
nectors most removed from the root Is ac- 
tivated first, then the next generation, 
and so forth, ending with a generation of 
connectors terminating at the activated 
folder. Generations with no rules ready 
to fire are skipped. When there are no 
more rules to fire at the root level, 
inter-folder Inference is completed. Con- 
nectors that are activated at each step 
through the tree are highlighted in the 
application window. 

PRIMARY COVERAGE 

Figure 3. Folder Window 

KNOWLEDGEACQUISITION / 973 



The data meters of folders are also 
updated. They give the user a visual 
indication of the information propagation 
through the system. The user can choose 
to walk through the solution process by 
sequentially invoking one generation of 
connectors at a time and reviewing lnter- 
mediate results after each step. On the 
other hand, by clicking on the folder with 
the final results, the user can accomplish 
the entire process In one shot. 

In addition to user-controlled lnter- 
folder rules, the system has intra-folder 
rules that fire automatically as soon as 
their premises are satisfied. Intra- 
folder rules are local to a particular 
folder and usually represent a '*lower 
level" of knowledge. These rules are 
invoked as result of user entry of field 
values or inter-folder inference. 

E. Analysis of Alternative 

The ability to analyze a variety of 
alternatives in the process of selecting 
an optimal solution is one of the most 
important features of an ES. To help de- 
velop and test rules for selection of op- 
tional alternatives, the prototype should 
allow the user to generate and analyze ar- 
bitrary alternatives. The alternative 
window (Fig. 4) is used to generate new 
alternatives and is used to switch between 
alternatives. Alternatives are shown as 
nodes of the alternative tree; the node 
corresponding to the current alternative 
Is highlighted. 

Standard Assumptions 

Low Boat Contribution (10,000) v!iiz~+ 
Figure 4. Alternative Window 

A new alternative Is generated by 
clicking on the node that becomes a parent 
alternative. The parent alternative be- 
comes frozen and cannot be modified. The 
user can change any data in the new alter- 
natives and other alternatives without 
children. 

An alternative can be selected by 
clicking on the corresponding leaf of the 
alternative tree. The user can prune the 
alternative tree using the mouse. In this 

way he can temporarily or permanently 
disregard (poison) certain branches or 
select a subtree as the only promising set 
of alternatives (believe). The alterna- 
tive comparison window is used to compare 
alternative values of any field under dlf- 
ferent assumptions. It is invoked by 
clicking on the field value and has the 
value of the field corresponding to each 
alternative displayed in each node. Al- 
ternative selection and pruning is also 
possible in the alternative comparison 
window. 

F. Case Management Svstem 

To be able to use the prototype for 
on-line validation of KB, it should handle 
multiple cases. The case menu In the ap- 
plication window (Fig. 2) is used to 
switch between cases and to Initiate new 
ones. When a different case is selected, 
the current case, including the field val- 
ues, the statuses, and justifications, is 
stored on disk and can be restored later 
for continuation. 

IV PROTOTYPE DEVELOPMENT 

A. Difficulties of Prototype Development 

Building a prototype, especially one 
with the battery of features described 
above, entails a serious programming ef- 
fort, even with the help of commercially 
available ES software tools. These tools 
provide knowledge representation language, 
Inference engine, and graphic and develop- 
ment utilities, but they lack a very im- 
portant feature successfully used in PC 
spreadsheets and data base packages: 
complete application structure with built: 
in user interface and data handling facil- 
ities. As a result, ES developers spend a 
lot of time programming specific features 
and designing the prototype structure In 
addition to developing the KB. 

A majority of ES software tools (at 
least those with enough representational 
and computational power to solve financial 
applications) require extensive training 
and a strong programming background from a 
KE. That limits selection of KEs to pro- 
grammers and precludes utilization of the 
large group of financial specialists who 
are successfully using PC software pack- 
age. 

Even experienced KEs have a problem 
properly Incorporating the wide variety of 
existing ES techniques. They would bene- 
fit from a software-development environ- 
ment with a library of modules tailored to 
specific problems, enabling them to select 
those most relevant to the particular 
application. 

974 / ENGINEERING 



B. Framework for Financial Applications 
Prototvnina 

The following is a description of a 
software development environment (frame- 
work) for rapid building of prototypes for 
financial applications that have features 
presented in the previous section. 

The framework was implemented on a 
Symbolics 3640 computer, by Symbolics, 
Inc. using both LISP and Automatic Rea- 
soning tool (ART) from Inference, Inc. 
The Symbolics computer provides the ne- 
cessary computational power, high reso- 
lution graphics, rich software library and 
development environment. ART provides the 
knowledge representation language, rule 
compiler, inference engine, and Important 
features such as logical dependencies and 
a viewpoint mechanism for exploration of 
hypothetical alternatives. 

The framework consists of three 
modules: interactive application editor, 
preprocessor and run module. The inter- 
active application editor is an Icon edi- 
tor that provides the KE with an easy way 
(using the mouse) to specify the entire 
application structure: fields, forms, 
schedules, folders and connectors. As a 
result this module produces a file with 
the application specification. 

The preprocessor module uses the file 
with the application specification and the 
file with rules specification to generate 
application-specific ART schemata, facts 
and rules, and to store them as an appli- 
cation file. 

The run module is a set of ART rules 
and LISP functions generic for all appli- 
cations. When loaded together with an ap- 
plication file, it generates the prototype 
for a given application that supports all 
generic features described in the previous 
section. 

V, RESULTS 

This framework has been used for 
prototyping three financial expert sys- 
tems: Risk Manager, Marine Umbrella Lia- 
bility Insurance Underwriter, and Merger 
and Acquisition Analyst Assistant. In all 
three cases, the framework structure was 
efficient and flexible enough to produce a 
working prototype In less than four weeks. 
All interactions with domain experts were 
performed by KEs with a background In the 
problem domain after short training in use 
of the framework. The main tasks of the 
software engineers were to check rule 
syntax and consistency and to select the 
method for data quality propagation. 

The experts' acceptance of the 
*'forms" concept was very encouraging. As 
a result, knowledge engineering sessions 
were very focused from the beginning. In 
a matter of days, the experts learned to 
use the prototype and started processing 
real cases to generate, refine and test 
rules. Several experts were used as 
sources of rules for each application. 
The clear and visible structure of the 
prototype made it easy to achieve consls- 
tency in rules derived from different ex- 
perts. Use of multiple experts was also 
aided by the fact that the inference 
process was broken into several steps. 

VI CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK 

Successful use of the framework in 
prototyping several ESs for financial ES 
applications confirmed our statement that 
the proposed financial applications struc- 
ture and tools for prototype development 
with built-in features facilitating gath- 
ering, validation and testing of KB can 
significantly reduce the cost and time 
involved In ES development. 

Even in the somewhat more specialized 
field of financial applications there are 
different types of problems requiring dif- 
ferent approaches: questionnaire-driven 
systems, modeling in time, etc. To accom- 
modate these problems, different frame- 
works should be created or new features 
should be added to the existing one. 

ACKNOWLEDGMENTS 

We would like to thank Dr. David 
Shpilberg from Coopers & Lybrand for his 
support and advice on the project and help 
in shaping this paper. 

REFERENCES 

(1) Shortfliffe, E.H. and B.G. Buchanan. 
"A Model of Inexact Reasoning in 
Medicine", Mathematical Biosciences, 
Vol. 23, 1975, 355-356. 

(2) Duda, R.O., P.E. Hart and Nils Nlls- 
son '*Subjective Bayesian Methods for 
Rule-Based Inference Systems** AFIPS 
Conf. Proc., National Computer Conf., 
Vol 45, New York, 1976, 1075-1082. 

(3) L.A. Zadeh, '*Syllogistic Reasoning as 
a Basis for Combination of Evidence 
in Expert Systems'*, Proc. IJCAI-85, 
Los Angeles, 1985, 417-419. 

KNOWLEDGE ACQUISITION / 975 


