
A HYBRID STRUCTURED OBJECT AND CONSTRAINT
REPRESENTATION LANGUAGE*

David R. Harris
Sanders Associates

95 Canal Street
Nashua, New Hampshire 03061

ABSTRACT

SOCLE is a hybrid representation system in
which cells of constraints are identified with
slots of frame networks. Constraint formulas are
maintained with respect to slots in frame networks
and in turn provide for the dependency regulation
of values on the frames. This paper illustrates
the use of SOCLE and outlines the control
structure decisions made for its design and
implementation.

I. INTRODUCTION

This paper describes SOCLE** (Structured
Object and Constraint Language Environment), a
hybrid system in which cells of constraint
networks are identified with slots of frame
networks. The hybrid system contains a structured
object component (essentially FRL [Roberts,
Goldstein, 771) and a constraint component (based
on the Constraint Based Programming Language of
Steele [Steele, 801). As such SOCLE’s benefits
include the following : representation for both
structure and formulas, constraint propagation,
default reasoning, requirement enforcement,
contradiction resolution, and explanation of
computations.

while the notion of adding constraints to
structured objects is not new (for example
[Morgenstern, 84],[Batali, Hartheimer, 80]), SOCLE
fully integrates the key features of mechanisms
from the constraint and frame paridigms and its
architecture offers insights into communication
and delegation between the two components.
Recently several papers including, [Rich,85],
[Vilain, 851, and [Bra&man, Gilbert, Levesque,
851 have reported on the advantages of such hybrid
solutions for the representational needs of
intelligent systems. It is our hope that SOCLE can
serve as an additional data point for
investigations of the space of hybrid solutions.

A. Background

A frame representation language is a
programming language which supports a partitioning
of knowledge into both ” type ” and “part”

* (c) Copyright Sanders Associates, Inc., 1986.
work reported here was developed under internal
research and development at Sanders Associates.

hierarchies. Individual frame objects are created
containing slots which define the object and
indicate relationships to other structured
objects. The types of computation typically
performed by frame based sys terns include
subsumption, defaults, and procedural attachment.

A constraint based language is used to
express formulas and dependencies. The underlying
mechanism supports (i) bi-directional propagation
of values through constraint networks, (ii)
recording of dependencies (to be used in support
of contradiction resolution, retraction, and
explanations of the history of computations) and
(iii) persistence of certain types of values.

As we will illustrate with an example below,
SOCLE adds computational power to both structured
object and constraint paridigms.

B. Motivation for SOCLE

SOCLE was motivated by our work on
intelligent engineering assistance programs. Such
programs must contain representations for highly
structured engineering knowledge and must, in a
mixed initiative mode, provide assistance when an
engineer changes his or her mind in trying out
solutions to complex problems.

It was important for us to develop a
completely integrated solution in which typical
computation in one component invokes the correct
response in the other component. A weak link
between components would not have succeeded. The
critical consideration which forced the hybrid
approach was the fact that formulas relate
variables only as they fill a particular role with
respect to application objects. This is true for
two reasons. First, mu1 tiple instances of
formulas may be used in describing the same
object. For example, a description of a function
might make use of a “range constraint” (minimum
value + range = maximum value) applied to both the
ordinate and abscissa. Each instance requires the
instantiation of a separate constraint network.
The knowledge about the number of constraint
networks to be declared can be stored in the
structured object component. Secondly,
engineering formulas often are approximations
which are not universally applied. Hence

** An architectural term
foundation piece.

for a projecting

986 / ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

enforcement, dependent on the context, can be
expressed declaratively in the structured object
component.

In the ensuing paragraphs, we will present
SOCLE at the knowledge level and at the
implementation level. At the knowledge level we
illustrate the need for the hybrid approach with
an example and then talk about the expressive
power of SOCLE. At the implementation level we
discuss issues of control structure: communication
and division of labor between components.

II. KNOWLEDGE LEVEL DISCUSSION

A. An Example

This example is motivated by the use of a
simple "distance = rate x time" formula in a
design problem for air traffic control systems.
Figure 1 shows a decomposition of the AIR TRAFFIC
CONTROL SYSTEM using "input-from", "objects-
tracked", "tracker", and "geographic-coverage"
slots.

AIR TRAFFIC
CONTROL 52 SYSTEM

I

+

RADAR ’ ’ I

SWEEP RETURNS
RATE REQUIRED + +

DISTANCE
INITIATION

TIME + SPEED
I I . I

Figure 1. Structured Object Decomposition
for AIR TRAFFIC CONTROL SYSTEM Concept.

Slot fillers for each of these parts are
LONGRANGE-RADAR, COMMERCIAL-AIRCRAFT, ALPHA-BETA-
TRACKER, and CRITICAL-AREA respectively. Each of
these is a structured object which can inherit
values, defaults, procedural attachments from
generalized concepts.

In such a decomposition, slots which are
related through formulas may be functionally far
apart. For example, the distance that an aircraft
can cover before a track is established is related
to the speed of the aircraft, sweep rate of the
radar, and the number of hits required for the
tracker to establish a new track. Letting

T = initiation time for establishing a track,
N = number of radar returns required to establish

a new track,
R = the sweep rate of the system radar,
D = distance covered by the aircraft before a

track is established,
and S = speed of a commercial aircraft,

we can quickly establish the formulas:

T=R*N
D=S*T.

These formulas are illustrated on the diagram (and
conceptualized) as wiring networks.

The advantage of a hybrid approach can be
seen from two viewpoints. From the point of view
of the structured object component, these wiring
networks constrain the values placed on slots. If
values are set for "sweep-rate", "number-of-radar-
returns-required", and "speed" as shown, then
values of 1 minute, and 10 miles can be propagated
to the "initiation-time" and "distance" variables,
respectively. If, in an exploratory design
session, an engineer sets the distance to 5 miles,
SOCLE will declare a contradiction and help to
resolve it by identifying premises and associated
levels of confidence. From this view, what is
significant is that variables located on
structured objects are regulated using dependency
information.

From the point of view of the constraint
component, the structured objects provide and
maintain the context for constraint formulas.
Constraints are only enforced for values that fill
particular roles in structured object networks.
Subsequent engineering changes can result in
modification to these structured object networks,
and constraint networks must be adjusted
accordingly. Hence in the example, if the "input-
from" slot filler is replaced by a radar with a
sweep rate of 10 seconds rather than 12 seconds,
SOCLE will move the constraint network to the new
radar, disconnect the 12 second value from
formulas, retract any values for which the 12
seconds was a premise, assert the fact that a new
value of 10 seconds is to be used, and propagate
appropriate values in the constraint network.
This enforcement of formulas between values only
as they fill slots in structured object networks
is a key feature of the hybrid system.

B. Expressibility

In addition to the somewhat standardized
vocabulary of frame systems, SOCLE includes
functions which mix notions from the structured
object and constraint paridigms. For example,
levels of confidence (DEFAULT, SUPPOSITION,
BELIEF, and CONSTANT) can be stated for values at
particular locations in structured objects.

The declaration of formulas is an important
aspect of .using SOCLE. Two methods are available
for this. In both methods, the functions for
declaring formulas work with pathnames (i.e.,
sequences of slots whose fillers are frames) for
variables. This idea is also used by Morgenstern,
[Morgenstern, 19841, in declaring constraint
equations in semantic networks.

KNOWLEDGEREPRESENTATION / 9S7

First, a priori formulas can be declared on
generic structured objects. The mechanism for
installing constraints starts with structured
object based inferencing. We profit from
inheritance by declaring the formula on a
CONSTRAINT slot of the most general concept
appropriate. When an individual structured object
is instantiated, procedural attachments are placed
along the path to the variable referred to in the
constraint. These procedural attachments are
charged with installing and maintaining the
constraint network when changes are made in the
participating structure.

In the example, the “distance = rate x time”
formula, referred to above, could be declared on
the AIR-TRAFFIC-CONTROL structured object as
follows:

(air-traffic-control (ako ($value (system)))
(constraint ($value
((multiplier (at* tracker initiation-time)

(at* objects-tracked speed)
(at* geographic-coverage

distance))))***

Formulas can also be declared for variables
found only on specific individual structured
objects. In this case, the maintenance of context
along structured object links is forfeited. As an
example, one might declare the formula between
“sweep-rate”, “number-of-radar-returns-required”,
and “initiation-time” by invoking:

(multiplier (at radar-43 sweep-rate)
(at tracker-21 number-of-radar-

returns-required)
(at tracker-21 initiation-time))

C. Assumptions

Two assumptions of the current implementation
should be mentioned. First, SOCLE supports
numbers, symbols, sets, and number unit pairs as
slot values to be tied to constraints (Internally,
constraint primitives employ functions which
understand number conversions and dimensional
analysis). Second, it is assumed that all slots
which participate in constraint formulas are
single valued (i.e. x is the slot filler of s on
frame f means s(f) = x).

III. IMPLEMENTATION LEVEL DISCUSSION

This section is organized to describe the
control structure issues outlined in Brotsky and
Rich’s paper [Brotsky, Rich, 19851 on hybrid
systems.

*** The hyphenated-expressions indicate that the
frames are instantiations of generic frames for
RADAR and TRACKER. The difference between the AT
and AT* functions is that the first argument to
the AT function is the name of a frame, while the
AT* function is evaluated when the frame name is
bound to the frame on which the a priori formula
is defined.

A. Communication

Communication between the two components of
SOCLE is performed through a collection of cells
which are attached to slots of frames. Frame
generated values are pushed into these cells.
Subsequently, the cells are used for setting
values, retrieving values and explanations, and
invoking procedural attachments.

1. Setting Values:

A value may be set through a frame based
inference. For example, a request for a value may
be answered by inheritance of a default. This
value is returned and also stored on the cell
attached to the slot. In addition, the confidence
level of default is noted so that the value will
behave as a default in constraint networks.

A value may also be remotely set through a
constraint based inference. Computation in the
constraint system proceeds by
constraints

awakening
when new values are set for

participating variables. If the variable is in
fact the slot of a frame (this information is
stored on the cell), then control is passed to the
frame system to awaken procedural attachments that
reside there.

2. Retrieving Values:

The frame-constraint boundary may need to be
crossed to retrieve values. A frame based request
for a value is honored by looking on the cell
attached to a slot of a frame. From the other
side, constraint computations may beg frame
networks for values. This occurs in the course of
contradiction resolution and retraction. When
cells lose values, the frame location is
determined and a frame based request for a value
is made. If a value is available, it is
immediately stored back in the cell as described
above.

In summary, all communication between the two
components takes place using cells. These cells
know their place in both worlds and contain the
current state for the variables of interest. The
division of labor and the needs for crossing the
frame-constraint boundary are
discussion in the next section.

the topics of

B. Division Of Labor

1. Strategies:

Before explaining the approach we have taken
in SOCLE, we might pause to consider two extreme
strategies for integrating structured objects with
constraints.

On the one hand, it could be the
responsibility of the constraint mechanism to
perform all frame based inferences. Thus, for
example, rather than having a frame retrieval
function which uses subsumption to find a value,
one could install “inheritance constraint”
networks which link together values on all slots
of two frames when one subsumes the other. This
would lead to some difficulties, however.

988 1 ENGINEERING

Importantly, propagation and contradiction
resolution strategies would need to be tailored to
support exception links. Also, additional control
structure would be required when inheritance is
considered prior to formula computation.

On the other hand, one could move all the
information stored in constraint nodes onto frame
facets. In addition to default, type, and
procedural attachments, one might have supplier,
reason, and associated constraint pins as facets.
The complexities involved in computations for
local propagation, retraction, and contradiction
resolution could be made the responsibility of
frame representation language functions, but now
all the checking related to constraint calculation
would occur all the time whether or not there was
ever any intent to tie a particular frame-slot to
a constraint network. At issue, is the percentage
of frame-slots in the application domain which can
be expected to be tied into these constraint
networks. In our work, only about 10% of the
slots serve as variables for constraint networks.

We have deemed both of these strategies to be
inappropriate. The first is inappropriate due to
differences between inheritance and constraint
propagation. The second is inappropriate due to
the expectation that only a small percentage of
slots will participate in constraint networks.

2. Features Of A Good Hybrid
Intelligent Assistance:

System For

In order to divide responsibility for
computations it was necessary to look carefully at
the union of the features provided by both
mechanisms. with this in mind, we generated the
following list of important benefits:

a. Representation of structured engineering
knowledge and engineering formulas. This item
falls into the province of a frame based system.
Of note is the fact that formulas are expressed
declaratively on an appropriate frame. When this
frame is instantiated, the constraint function
(e.g. MULTIPLIER in the example above) is invoked
to install the constraint network.

b. Propagation of values which are
constrained by underlying engineering formulas.
This item is primarily the responsibility of the
constraint component. If, however, values are
lost in constraint network computation, then
control is returned to the frame component to
locate potential values there.

C. Default reasoning, wherein default
values eagerly assert themselves in formulas, but
immediately bow out when they have created a
contradictory state. Default reasoning has
semantics in both paridigms. An important
consideration of the implementation was to ensure
that the two notions worked correctly together.

**** While this feature can be associated with any
confidence level, we have chosen to associate it
with the weakest level. This is consistent with
Steele's implementation.

For frame based computation, defaults are used
only when values are not present or can not be
inherited. In constraint networks, there are
potentially two dimensions to be considered. First
defaults can be thought of as being the weakest
confidence level for assertions. In this sense,
the notion in the two paridigms is the same. In
addition, however, there is a notion of
persistence associated with constraint based
computation. Values which are persistent must
actively force themselves into formulas when they
can.****

In SOCLE, we have placed responsibility for
maintaining default state information on the frame
component. when defaults are declared they are
eagerly pushed onto instantiated frames and hence
out into attached constraint networks. Also, when
a value is lost (through retraction of a
supporting premise perhaps), the transfer of
control back to the frame network described in the
paragraph above will of necessity discover and re-
assert default values.

d. Enforcement of requirements imposed by
both structures and formulas. The enforcement of
requirements on values is of course exactly what
constraint networks are all about. However, one
can also declare explicit requirements on a frame.
For example, a requirement that speed be within a
valid range (imposed by the laws of physics) might
properly be placed on a MOVINGOBJECT structure
independently of constraint networks. On the
other hand, a value for the speed of a particular
aircraft may be regulated by a formula which is
enforced by a constraint network. SOCLE permits
the assertion of values only as they are
consistant with both types of requirements.

e. Contradiction resolution based on
recordings of premises for inferences. Resolution
takes advantage of annotations for the level of
confidence that an engineer has in the premise.
Contradiction resolution is performed in both the
frame and constraint mechanisms. The determining
factor is whether or not a new value being set is
intended to be a premise or is remotely
established through other premises in constraint
networks. In the first case, a preliminary
investigation can compare the levels of confidence
between the new assertion and the old. For
example, a default, would bow out to a
supposition. The second case, can only be
resolved in the constraint network. Values
dependent on the old value are retracted, the new
value is asserted and an attempt is made to settle
out the state of the constraint network. when
SOCLE can not automatically resolve the
contradiction, it informs the user of the problem
and requests that the user either retract a
premise or declare a formula's application to be
invalid.

f. Explanation of values based on history of
computations. Explanation is handled totally by
the constaint network, although values to be
explained are referenced by their location in the
frame network.

IV. CONCLUSIONS

In summary, SOCLE embodies the power of

KNOWLEDGE REPRESENTATION / 989

the above six items: representation for structure
and formula, propagation, default reasoning,
requirement enforcement, contradiction resolution,
and explanation. It is a generally useful
knowledge representation language in application
areas which contain highly structured knowledge
including formulas which tie together variables
from the structures.

SOCLE is currently being used on several
projects at Sanders. These include projects in
system and software requirements analysis,
automatic test equipment reprogramming, and
reliability simulation.

I would like to thank Chuck Rich for his
suggestions and encouragement on this effort.
Important contributions to the design and
implementation of SOCLE were made by Andy Czuchry,
Terry GiM, and Lynne Higbie.

REFERENCES

[l] Batali, Hartheimer, "The Design Procedure
Language Manual". MIT/AI Memo 598, 1980.

[2] Bra&man, Gilbert, Levesque, "An Essential
Hybrid Reasoning System: Knowledge and Symbol
Level Accounts of KRYPTON", Proc. IJCAI-85, Los
Angeles, California, Aug. 1985, pp 532-539.

[3] Brotsky, Rich, "Issues in the Design of Hybrid
Knowledge Representation and Reasoning Systems".
Proc. of the Workshop on Theoretical Issues in
Natural Language Understanding, Halifax, Nova
Scotia, May, 1985.

[4] Morgenstern, "Constraint Equations: A Concise
Compilable Representation for Quantified
Constraints in Semantic Networks", Proc. AAAI-84,
Austin, Texas, Aug., 1984, pp. 255-259.

[5] Rich, "The Layered Architecture of a System
for Reasoning about Programs", Proc. IJCAI-85,
Los Angeles, California, Aug. 1985, pp 540-546.

[6] Roberts, Goldstein, "The FRL Prime", MIT/AI
Memo 408, 1977.

[7] Steele, "The Definition and Implementation of
a Computer Programming Language Based on
Constraints", MIT/AI Technical Report 595, 1980.

[8] Vilain, "The Restricted Language Architecture
of a Hybrid Representation System", Proc. IJCAI-
85, Los Angeles, California, Aug. 1985, pp. 547-
561.

990 / ENGINEERING

