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ABSTRACT 

SOCLE is a hybrid representation system in 
which cells of constraints are identified with 
slots of frame networks. Constraint formulas are 
maintained with respect to slots in frame networks 
and in turn provide for the dependency regulation 
of values on the frames. This paper illustrates 
the use of SOCLE and outlines the control 
structure decisions made for its design and 
implementation. 

I. INTRODUCTION 

This paper describes SOCLE** (Structured 
Object and Constraint Language Environment), a 
hybrid system in which cells of constraint 
networks are identified with slots of frame 
networks. The hybrid system contains a structured 
object component (essentially FRL [Roberts, 
Goldstein, 771) and a constraint component (based 
on the Constraint Based Programming Language of 
Steele [Steele, 801). As such SOCLE’s benefits 
include the following : representation for both 
structure and formulas, constraint propagation, 
default reasoning, requirement enforcement, 
contradiction resolution, and explanation of 
computations. 

while the notion of adding constraints to 
structured objects is not new (for example 
[Morgenstern, 84],[Batali, Hartheimer, 80]), SOCLE 
fully integrates the key features of mechanisms 
from the constraint and frame paridigms and its 
architecture offers insights into communication 
and delegation between the two components. 
Recently several papers including, [Rich,85], 
[Vilain, 851, and [Bra&man, Gilbert, Levesque, 
851 have reported on the advantages of such hybrid 
solutions for the representational needs of 
intelligent systems. It is our hope that SOCLE can 
serve as an additional data point for 
investigations of the space of hybrid solutions. 

A. Background 

A frame representation language is a 
programming language which supports a partitioning 
of knowledge into both ” type ” and “part” 

* (c) Copyright Sanders Associates, Inc., 1986. 
work reported here was developed under internal 
research and development at Sanders Associates. 

hierarchies. Individual frame objects are created 
containing slots which define the object and 
indicate relationships to other structured 
objects. The types of computation typically 
performed by frame based sys terns include 
subsumption, defaults, and procedural attachment. 

A constraint based language is used to 
express formulas and dependencies. The underlying 
mechanism supports (i) bi-directional propagation 
of values through constraint networks, (ii) 
recording of dependencies (to be used in support 
of contradiction resolution, retraction, and 
explanations of the history of computations) and 
(iii) persistence of certain types of values. 

As we will illustrate with an example below, 
SOCLE adds computational power to both structured 
object and constraint paridigms. 

B. Motivation for SOCLE 

SOCLE was motivated by our work on 
intelligent engineering assistance programs. Such 
programs must contain representations for highly 
structured engineering knowledge and must, in a 
mixed initiative mode, provide assistance when an 
engineer changes his or her mind in trying out 
solutions to complex problems. 

It was important for us to develop a 
completely integrated solution in which typical 
computation in one component invokes the correct 
response in the other component. A weak link 
between components would not have succeeded. The 
critical consideration which forced the hybrid 
approach was the fact that formulas relate 
variables only as they fill a particular role with 
respect to application objects. This is true for 
two reasons. First, mu1 tiple instances of 
formulas may be used in describing the same 
object. For example, a description of a function 
might make use of a “range constraint” (minimum 
value + range = maximum value) applied to both the 
ordinate and abscissa. Each instance requires the 
instantiation of a separate constraint network. 
The knowledge about the number of constraint 
networks to be declared can be stored in the 
structured object component. Secondly, 
engineering formulas often are approximations 
which are not universally applied. Hence 

** An architectural term 
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enforcement, dependent on the context, can be 
expressed declaratively in the structured object 
component. 

In the ensuing paragraphs, we will present 
SOCLE at the knowledge level and at the 
implementation level. At the knowledge level we 
illustrate the need for the hybrid approach with 
an example and then talk about the expressive 
power of SOCLE. At the implementation level we 
discuss issues of control structure: communication 
and division of labor between components. 

II. KNOWLEDGE LEVEL DISCUSSION 

A. An Example 

This example is motivated by the use of a 
simple "distance = rate x time" formula in a 
design problem for air traffic control systems. 
Figure 1 shows a decomposition of the AIR TRAFFIC 
CONTROL SYSTEM using "input-from", "objects- 
tracked", "tracker", and "geographic-coverage" 
slots. 

AIR TRAFFIC 
CONTROL 52 SYSTEM 
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+ 

RADAR ’ ’ I 

SWEEP RETURNS 
RATE REQUIRED + + 

DISTANCE 
INITIATION 

TIME + SPEED 
I I . I 

Figure 1. Structured Object Decomposition 
for AIR TRAFFIC CONTROL SYSTEM Concept. 

Slot fillers for each of these parts are 
LONGRANGE-RADAR, COMMERCIAL-AIRCRAFT, ALPHA-BETA- 
TRACKER, and CRITICAL-AREA respectively. Each of 
these is a structured object which can inherit 
values, defaults, procedural attachments from 
generalized concepts. 

In such a decomposition, slots which are 
related through formulas may be functionally far 
apart. For example, the distance that an aircraft 
can cover before a track is established is related 
to the speed of the aircraft, sweep rate of the 
radar, and the number of hits required for the 
tracker to establish a new track. Letting 

T = initiation time for establishing a track, 
N = number of radar returns required to establish 

a new track, 
R = the sweep rate of the system radar, 
D = distance covered by the aircraft before a 

track is established, 
and S = speed of a commercial aircraft, 

we can quickly establish the formulas: 

T=R*N 
D=S*T. 

These formulas are illustrated on the diagram (and 
conceptualized) as wiring networks. 

The advantage of a hybrid approach can be 
seen from two viewpoints. From the point of view 
of the structured object component, these wiring 
networks constrain the values placed on slots. If 
values are set for "sweep-rate", "number-of-radar- 
returns-required", and "speed" as shown, then 
values of 1 minute, and 10 miles can be propagated 
to the "initiation-time" and "distance" variables, 
respectively. If, in an exploratory design 
session, an engineer sets the distance to 5 miles, 
SOCLE will declare a contradiction and help to 
resolve it by identifying premises and associated 
levels of confidence. From this view, what is 
significant is that variables located on 
structured objects are regulated using dependency 
information. 

From the point of view of the constraint 
component, the structured objects provide and 
maintain the context for constraint formulas. 
Constraints are only enforced for values that fill 
particular roles in structured object networks. 
Subsequent engineering changes can result in 
modification to these structured object networks, 
and constraint networks must be adjusted 
accordingly. Hence in the example, if the "input- 
from" slot filler is replaced by a radar with a 
sweep rate of 10 seconds rather than 12 seconds, 
SOCLE will move the constraint network to the new 
radar, disconnect the 12 second value from 
formulas, retract any values for which the 12 
seconds was a premise, assert the fact that a new 
value of 10 seconds is to be used, and propagate 
appropriate values in the constraint network. 
This enforcement of formulas between values only 
as they fill slots in structured object networks 
is a key feature of the hybrid system. 

B. Expressibility 

In addition to the somewhat standardized 
vocabulary of frame systems, SOCLE includes 
functions which mix notions from the structured 
object and constraint paridigms. For example, 
levels of confidence (DEFAULT, SUPPOSITION, 
BELIEF, and CONSTANT) can be stated for values at 
particular locations in structured objects. 

The declaration of formulas is an important 
aspect of .using SOCLE. Two methods are available 
for this. In both methods, the functions for 
declaring formulas work with pathnames (i.e., 
sequences of slots whose fillers are frames) for 
variables. This idea is also used by Morgenstern, 
[Morgenstern, 19841, in declaring constraint 
equations in semantic networks. 
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First, a priori formulas can be declared on 
generic structured objects. The mechanism for 
installing constraints starts with structured 
object based inferencing. We profit from 
inheritance by declaring the formula on a 
CONSTRAINT slot of the most general concept 
appropriate. When an individual structured object 
is instantiated, procedural attachments are placed 
along the path to the variable referred to in the 
constraint. These procedural attachments are 
charged with installing and maintaining the 
constraint network when changes are made in the 
participating structure. 

In the example, the “distance = rate x time” 
formula, referred to above, could be declared on 
the AIR-TRAFFIC-CONTROL structured object as 
follows: 

(air-traffic-control (ako ($value (system))) 
(constraint ($value 
((multiplier (at* tracker initiation-time) 

(at* objects-tracked speed) 
(at* geographic-coverage 

distance))))*** 

Formulas can also be declared for variables 
found only on specific individual structured 
objects. In this case, the maintenance of context 
along structured object links is forfeited. As an 
example, one might declare the formula between 
“sweep-rate”, “number-of-radar-returns-required”, 
and “initiation-time” by invoking: 

(multiplier (at radar-43 sweep-rate) 
(at tracker-21 number-of-radar- 

returns-required) 
(at tracker-21 initiation-time)) 

C. Assumptions 

Two assumptions of the current implementation 
should be mentioned. First, SOCLE supports 
numbers, symbols, sets, and number unit pairs as 
slot values to be tied to constraints (Internally, 
constraint primitives employ functions which 
understand number conversions and dimensional 
analysis). Second, it is assumed that all slots 
which participate in constraint formulas are 
single valued (i.e. x is the slot filler of s on 
frame f means s(f) = x). 

III. IMPLEMENTATION LEVEL DISCUSSION 

This section is organized to describe the 
control structure issues outlined in Brotsky and 
Rich’s paper [Brotsky, Rich, 19851 on hybrid 
systems. 

*** The hyphenated-expressions indicate that the 
frames are instantiations of generic frames for 
RADAR and TRACKER. The difference between the AT 
and AT* functions is that the first argument to 
the AT function is the name of a frame, while the 
AT* function is evaluated when the frame name is 
bound to the frame on which the a priori formula 
is defined. 

A. Communication 

Communication between the two components of 
SOCLE is performed through a collection of cells 
which are attached to slots of frames. Frame 
generated values are pushed into these cells. 
Subsequently, the cells are used for setting 
values, retrieving values and explanations, and 
invoking procedural attachments. 

1. Setting Values: 

A value may be set through a frame based 
inference. For example, a request for a value may 
be answered by inheritance of a default. This 
value is returned and also stored on the cell 
attached to the slot. In addition, the confidence 
level of default is noted so that the value will 
behave as a default in constraint networks. 

A value may also be remotely set through a 
constraint based inference. Computation in the 
constraint system proceeds by 
constraints 

awakening 
when new values are set for 

participating variables. If the variable is in 
fact the slot of a frame (this information is 
stored on the cell), then control is passed to the 
frame system to awaken procedural attachments that 
reside there. 

2. Retrieving Values: 

The frame-constraint boundary may need to be 
crossed to retrieve values. A frame based request 
for a value is honored by looking on the cell 
attached to a slot of a frame. From the other 
side, constraint computations may beg frame 
networks for values. This occurs in the course of 
contradiction resolution and retraction. When 
cells lose values, the frame location is 
determined and a frame based request for a value 
is made. If a value is available, it is 
immediately stored back in the cell as described 
above. 

In summary, all communication between the two 
components takes place using cells. These cells 
know their place in both worlds and contain the 
current state for the variables of interest. The 
division of labor and the needs for crossing the 
frame-constraint boundary are 
discussion in the next section. 

the topics of 

B. Division Of Labor 

1. Strategies: 

Before explaining the approach we have taken 
in SOCLE, we might pause to consider two extreme 
strategies for integrating structured objects with 
constraints. 

On the one hand, it could be the 
responsibility of the constraint mechanism to 
perform all frame based inferences. Thus, for 
example, rather than having a frame retrieval 
function which uses subsumption to find a value, 
one could install “inheritance constraint” 
networks which link together values on all slots 
of two frames when one subsumes the other. This 
would lead to some difficulties, however. 
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Importantly, propagation and contradiction 
resolution strategies would need to be tailored to 
support exception links. Also, additional control 
structure would be required when inheritance is 
considered prior to formula computation. 

On the other hand, one could move all the 
information stored in constraint nodes onto frame 
facets. In addition to default, type, and 
procedural attachments, one might have supplier, 
reason, and associated constraint pins as facets. 
The complexities involved in computations for 
local propagation, retraction, and contradiction 
resolution could be made the responsibility of 
frame representation language functions, but now 
all the checking related to constraint calculation 
would occur all the time whether or not there was 
ever any intent to tie a particular frame-slot to 
a constraint network. At issue, is the percentage 
of frame-slots in the application domain which can 
be expected to be tied into these constraint 
networks. In our work, only about 10% of the 
slots serve as variables for constraint networks. 

We have deemed both of these strategies to be 
inappropriate. The first is inappropriate due to 
differences between inheritance and constraint 
propagation. The second is inappropriate due to 
the expectation that only a small percentage of 
slots will participate in constraint networks. 

2. Features Of A Good Hybrid 
Intelligent Assistance: 

System For 

In order to divide responsibility for 
computations it was necessary to look carefully at 
the union of the features provided by both 
mechanisms. with this in mind, we generated the 
following list of important benefits: 

a. Representation of structured engineering 
knowledge and engineering formulas. This item 
falls into the province of a frame based system. 
Of note is the fact that formulas are expressed 
declaratively on an appropriate frame. When this 
frame is instantiated, the constraint function 
(e.g. MULTIPLIER in the example above) is invoked 
to install the constraint network. 

b. Propagation of values which are 
constrained by underlying engineering formulas. 
This item is primarily the responsibility of the 
constraint component. If, however, values are 
lost in constraint network computation, then 
control is returned to the frame component to 
locate potential values there. 

C. Default reasoning, wherein default 
values eagerly assert themselves in formulas, but 
immediately bow out when they have created a 
contradictory state. Default reasoning has 
semantics in both paridigms. An important 
consideration of the implementation was to ensure 
that the two notions worked correctly together. 

**** While this feature can be associated with any 
confidence level, we have chosen to associate it 
with the weakest level. This is consistent with 
Steele's implementation. 

For frame based computation, defaults are used 
only when values are not present or can not be 
inherited. In constraint networks, there are 
potentially two dimensions to be considered. First 
defaults can be thought of as being the weakest 
confidence level for assertions. In this sense, 
the notion in the two paridigms is the same. In 
addition, however, there is a notion of 
persistence associated with constraint based 
computation. Values which are persistent must 
actively force themselves into formulas when they 
can.**** 

In SOCLE, we have placed responsibility for 
maintaining default state information on the frame 
component. when defaults are declared they are 
eagerly pushed onto instantiated frames and hence 
out into attached constraint networks. Also, when 
a value is lost (through retraction of a 
supporting premise perhaps), the transfer of 
control back to the frame network described in the 
paragraph above will of necessity discover and re- 
assert default values. 

d. Enforcement of requirements imposed by 
both structures and formulas. The enforcement of 
requirements on values is of course exactly what 
constraint networks are all about. However, one 
can also declare explicit requirements on a frame. 
For example, a requirement that speed be within a 
valid range (imposed by the laws of physics) might 
properly be placed on a MOVINGOBJECT structure 
independently of constraint networks. On the 
other hand, a value for the speed of a particular 
aircraft may be regulated by a formula which is 
enforced by a constraint network. SOCLE permits 
the assertion of values only as they are 
consistant with both types of requirements. 

e. Contradiction resolution based on 
recordings of premises for inferences. Resolution 
takes advantage of annotations for the level of 
confidence that an engineer has in the premise. 
Contradiction resolution is performed in both the 
frame and constraint mechanisms. The determining 
factor is whether or not a new value being set is 
intended to be a premise or is remotely 
established through other premises in constraint 
networks. In the first case, a preliminary 
investigation can compare the levels of confidence 
between the new assertion and the old. For 
example, a default, would bow out to a 
supposition. The second case, can only be 
resolved in the constraint network. Values 
dependent on the old value are retracted, the new 
value is asserted and an attempt is made to settle 
out the state of the constraint network. when 
SOCLE can not automatically resolve the 
contradiction, it informs the user of the problem 
and requests that the user either retract a 
premise or declare a formula's application to be 
invalid. 

f. Explanation of values based on history of 
computations. Explanation is handled totally by 
the constaint network, although values to be 
explained are referenced by their location in the 
frame network. 

IV. CONCLUSIONS 

In summary, SOCLE embodies the power of 
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the above six items: representation for structure 
and formula, propagation, default reasoning, 
requirement enforcement, contradiction resolution, 
and explanation. It is a generally useful 
knowledge representation language in application 
areas which contain highly structured knowledge 
including formulas which tie together variables 
from the structures. 

SOCLE is currently being used on several 
projects at Sanders. These include projects in 
system and software requirements analysis, 
automatic test equipment reprogramming, and 
reliability simulation. 

I would like to thank Chuck Rich for his 
suggestions and encouragement on this effort. 
Important contributions to the design and 
implementation of SOCLE were made by Andy Czuchry, 
Terry GiM, and Lynne Higbie. 
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