
A KNOWLEDGE REPRESENTATION TECHNIQUE FOR 

SYSTEMS DEALING WITH HARDWARE CONFIGURATION* 

Jeff Pierick 
ROLM Corporation 

4900 Old Ironsides Dr. 
Santa Clara, CA 95054 

Massachusetts Institute of Technology 
Laboratory for Computer Science 

77 Massachusetts Ave. 
Cambridge, MA 02139 

ABSTRACT 

A representation language combining the 
attributes of both rule-based systems and 
frame-based systems is discussed within the 
context of developing systems for computer 
hardware configuration. It is believed that the 
combination of these two common approaches to 
knowledge representation provides many advantages 
over the strict use of either of the two 
approaches alone. 

I INTRODUCTION 

The domain which shall be considered in this 
paper is that of order processing for computer 
hardware. For years, this task was handled 
almost exclusively by teams of experts who would 
meticulously review each customer's order. The 
expert would check the customer's order by 
mentally reviewing a set of rules, learned over 
time. For the most part, the task was tedious 
and time consuming. However, this all changed 
with the advent of XCON (McDermott, 1980). 

The first commercially successful 
knowledge-based system to effectively deal with 
this domain was the XCON system, developed by 
John McDermott and his colleagues for use by the 
Digital Equipment Corporation. Since the 
development of this system, many similar systems 
have been developed for use by other companies. 
One such system is the BEACON system (Freeman, 
1985>, developed for use at Burroughs. 

These two systems use two very different 
approaches toward representing the knowledge 
necessary for their domain. The XCON system uses 
simple production rules to represent its 
knowledge. The BEACON system uses a semantic 
network augmented with the addition of simple 
constraints. However, I suggest that neither of 

*The work described in this paper is based in 
part on research done at ROLM Corporation, 
through the coordination of the MIT VI-A 
Internship Program, in partial fulfillment of my 
SM Thesis at the Massachusetts Institute of 
Technology. 

these two techniques adequately hand1 
complexities that arise in this doma .in. 

es the 

This paper will discuss a representation 
language that is tailored to the representational 
needs of the domain by combining the benefits of 
production rules and the benefits of semantic 
networks. While this language is demonstrated 
within the domain of computer hardware 
configuration, it should be remembered that it 
may be equally useful in other domains as well. 

II PRODUCTION RULES AS A KNOWLEDGE REPRESENTATION 
FORMALISM 

The typical approach to knowledge 
representation in knowledge-based systems is the 
use of production rules (Barr and Feigenbaum, 
1981). This tendency is so prevalent, that the 
term rule-based systems iS used almost 
synonymously with knowledge-based systems. 
Certainly, the majority of the commercial expert 
system building tools available today make 
extensive use of this knowledge representation 
technique. 

There are many reasons that the use of 
production rules is so desirable. The domain 
knowledge is represented explicitly within the 
rules. The knowledge is encoded in such a way 
that a casual observer can easily understand the 
intent of the knowledge. This is made possible 
by the fact that the rules seem natural and the 
fact that control structures are not freely mixed 
with the domain knowledge. That is, the 
information in the rule is declarative rather 
than procedural. Thi; all leads to the fact that 
production rules can be used to explicitly 
represent the important domain knowledge. 

Another advantage of production rules is the 
fact that the knowledge is represented in a 
uniform manner. This makes for efficient 
handling of the knowledge. A very simple, 
generic inference engine can be built to parse 
the knowledge base. Furthermore, a uniform 
representation language makes it easy to 
translate the knowledge into a stylized form of 
English for use in describing the reasoning of 

KNOWLEDGE REPRESENTATION / 99 1 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



the system. of semantic networks; however, the 
discussed are pertinent to both formalisms. 

points 

Furthermore, production rules have a nice 
way of dealing with empirical knowledge; in fact, 
it could be said that all of the knowledge in 
these systems is simply empirical. This is very 
useful for domains for which a model cannot 
easily be formulated. A good example of such a 
domain is the diagnosis of infectious bacterial 
diseases, the domain within which the MYCIN 
(Shortliffe, 1984) system worked. 

Within MYCIN's domain, the expert could 
rarely be certain about the knowledge he was 
giving the system. Certainty factors were used 
in an attempt to deal with this problem of 
reasoning with uncertainty. Moreover, it would 
have been very difficult for the expert to give 
MYCIN a reliable model of the domain. The expert 
could only offer empirical knowledge about the 
domain, knowledge that he had gathered through 
past experiences. Thus, a rule-based knowledge 
representation language was well suited to this 
domain. 

Lastly, production rules tend to be very 
modular (Davis et al., 1977). Each production 
rule represents a distinct chunk of knowledge. 
Each production rule is relatively independent of 
the other rules in the system. Thus, for a 
moderately sized knowledge base, the knowledge 
engineer should be able to modify an existing 
rule or add an additional rule to the system 
without having to worry about adversely affecting 
any of the other rules in the system.* 

However, herein lies one of the major 
limitations of using production rules alone as a 
knowledge representation technique within the 
domain of computer hardware configuration. This 
domain has a great deal of structure which is not 
properly represented in the form of production 
rules. A lot of the structure of the domain is 
lost when it is compiled in the form of 
production rules. It is unable to exploit the 
structure of the domain, but rather it can only 
use the empirical rules which it is given. 

Moreover, compiling the structure of the 
domain in the form of rules may actually make the 
system difficult to modify and maintain. This is 
pointed out in (Koton, 1985) where she states, 
"One piece of knowledge may be contained in any 
number of rules in the system, so in order to 
change that knowledge it must be changed in every 
rule that uses it." As the size of the knowledge 
base increases, it becomes even more difficult to 
determine all of the interrelationships between 
the rules (Freeman, 1985). 

Frames can be used to build a model of the 
system to be configured. A hardware component is 
represented as a single frame within the model. 
If the component is modified, the effect of the 
modification is isolated to the single frame 
which represents the component. Thus, the 
frame-based approach exhibits a form of 
modularity not inherently found in the rule-based 
approach. It displays a form of object oriented 
modularity. 

Using a rule-based approach, knowledge about 
a component may be located in several different 
rules. When the knowledge of that component must 
be modified, each relevant rule must be found and 
changed as appropriate. Using a frame-based 
approach, all of the information about a 
component, including its relationship to other 
components, is located within a single frame; 
thus, since the knowledge about a component is 
centralized, the knowledge base is much easier to 
modify and maintain. 

Moreover, the relationships between 
different components in the system can be 
represented naturally using a frame-based 
approach to knowledge representation. For 
example, if a system has four distinct 
components, then the frame representing the 
system would have a slot listing the four 
components. If two systems within the domain are 
simply variations of an encompassing system, then 
there would be a slot in each of the two 
representative frames representing this fact. 
Thus, the relationships between different 
components in the domain can be represented 
explicitly using frames. 

This suggests another advantage of using a 
frame-based approach to knowledge representation 
within the domain of hardware configuration. 
Frame-based systems typically have some form of 
inheritance between frames (Brachman, 1983). 
This is provided for through the IS-A or AK0 
(standing for A Kind Of) slot alluded to in the 
previous example. Inheritance results in an 
efficient means of hierarchical knowledge 
representation which makes the knowledge easier 
to modify and maintain. 

Since knowledge can be inherited by one 
frame from another, knowledge does not have to be 
duplicated within the knowledge base. The 
knowledge is located at the most logical position 
within the network. It is not spread throughout 
the knowledge base. 

Thus, using a model-based approach to 
knowledge representation can overcome many of the 
problems which a rule-based approach introduces. 
However, just as it has been shown that the 
exclusive use of the rule-based approach to 
knowledge representation within this domain may 
not be appropriate, it can also be shown that the 
exclusive use of the frame-based approach to 
knowledge representation may also prove to be a 
hinderance. 

III FRAMES AS A KNOWLEDGE REPRESENTATION FORMALISM 

The BEACON system uses a semantic network 
system to represent its domain knowledge. This 
paper will consider frame-based systems instead 

*As the size of the knowledge base increases, 
this may not necessarily hold. 

992 / ENGINEERING 



While a model can represent the structures 
and the legal combinations of structures within 
the domain, the user is left to decide which 
configuration is most appropriate for his needs. 
If the user is already an expert in the domain, 
this will be an easy task for him. However, 
there is no reason to expect that the user of the 
system is going to be an expert in the domain; in 
fact, if he were an expert, he probably would not 
be using the knowledge-based system in the first 
place. The more likely situation is that the 
user will know very little about the domain; 
thus, it is unlikely that he will be able to 
decide which configuration is appropriate for his 
needs. A useful knowledge-based system should 
aid the user in making this decision. 

Thus, frames are a good formalism for 
representing the structure in a domain such as 
computer hardware configuration. However, it is 
very difficult to add any form of judgemental 
reasoning to such a system. The result is that 
we have a system which will hold a user to a set 
of outlined constraints, but the user must be 
smart enough to decide which constraints apply to 
his situation. 

IV MAKING THE TWO WORK AS ONE 

If the domain exhibits a great deal of 
structure, while still requiring a certain amount 
of judgemental reasoning, (as is the case with 
hardware configuration) then a solution to this 
problem presents itself as the combination of 
these two paradigms. Frames can represent the 
structure of the domain, while rules can 
represent the needed judgemental reasoning. 

The idea is to hold on to the structure 
which is naturally provided by the frame-based 
approach. System components are to be 
represented as frames with slots, the slots 
representing the component's relationship to 
other components in the domain. However, if 
there is a relationship in the system which is 
dependent on the user's needs, then production 
rules are used. That is, if the user has a 
choice as to whether a particular component is 
included in his configuration, then the value of 
that slot would be filled with an if-needed 
production rule demon. The production rule 
system would then aid the user during the 
consultation in deciding whether that component 
is appropriate for his needs. 

This representation language represents the 
structure of the domain while still being able to 
deal with empirical knowledge and judgemental 
reasoning. It represents the natural 
dependencies within the domain while maintaining 
a modular style. Knowledge is centralized and 
logically sectioned. Instead of having a single, 
large rule base dealing with every facet of the 
domain, this knowledge is divided into smaller, 
more manageable, rule bases, each with a very 
particular purpose. 

Thus combining the frame-based approach and 

the rule-based approach takes advantage of the 
benefits of both paradigms while overcoming their 
limitations. The frame-based section divides the 
knowledge base into logical components, while the 
rule bases provide the needed judgemental 
reasoning. Moreover, the important aspects of 
the domain are made explicit, which is the 
ultimate goal in the selection of any good 
representation language (Winston, 1984). 

V IMPLEMENTATION DETAILS 

As noted in a previous section, the language 
used in this project incorporates both the 
structure of a frame-based system and the 
judgemental reasoning power of a rule-based 
system. This is accomplished in the following 
manner. 

A. The Frame Based System 

The frames in the system are implemented in 
the fashion of FRL frames (Roberts and Goldstein, 
1977), with the exception that every datum has a 
certainty factor associated with it: 

(frame1 (slot1 (facet1 (datum1 certainty) 
(datum2 certainty)) 

(facet2 (. . .))) 
(slot2 (. . -1) 
(. - .>I 

The name of the frame corresponds to the 
name of a concept or object in the domain. A 
slot represents an attribute of the object. A 
facet signals the way in which the data 
associated with the facet fill the slot. A datum 
is the actual slot filler. The certainty factor 
associated with the datum (of which there is 
always exactly one), represents the strength with 
which the association between the slot and the 
slot filler is believed. 

In the domain of hardware configuration, the 
frames represent typical components and typical 
systems. There is a frame for each distinct 
component within the domain. There are also 
frames which represent systems composed of 
combinations of distinct components and other 
systems. These frames are linked together 
through special slots, For example, a system 
frame has a slot containing the names of the 
frames representing its constituents. 

As with traditional frame-based systems, 
slots can be filled with explicit values, default 
values, or demons. The components of a system 
are represented as a list of explicit values. 
The purpose of a particular system is given as a 
default value which may be overridden if the user 
has a different purpose in mind. The price of a 
component is given as a demon which 
the price of the 

would look up 
component in a separate, 

loosely-linked data base. 

Inheritance is also an integral part of the 
representation language. A frame is able to 

KNOWLEDGE REPRESENTATION / 993 



inherit values for its slots from all of its 
ancestors. This makes the representation 
efficient in terms of space requirements. It 
also makes intuitive sense. For example, it 
seems natural to say that an IBM PC* has a 
display because it is a kind of personal 
computer; we know that all personal computers 
have displays. 

B. Adding Rules to the Frame Based System 

The production rules are found in the system 
in the form of production rule demons. They are 
identical to their procedural counterparts, 
except for the fact that they are declarative 
instead of procedural. There are IF-NEEDED 
demons, which are activated if a value is needed 
for a slot which does not have an explicit value, 
IF-ADDED demons, which are triggered if a new 
value is added to a slot, IF-REMOVED demons, 
which are evaluated if a value is removed from a 
slot, and IF-MODIFIED demons, which are processed 
if the certainty factor associated with a datum 
is modified. 

A production rule demon is essentially a 
small rule base containing a number of rules 
intended to solve a very focused problem. The 
way in which the demon is evaluated depends on 
the type of demon it is. If it is an IF-NEEDED 
demon, the rules are evaluated in a backward 
chaining manner, in which only those rules which 
may provide a solution to the current goal are 
triggered. If the demon is an IF-ADDED, 
IF-REMOVED, or IF-MODIFIED demon, then it is 
evaluated in a forward chaining manner, in which 
every rule is triggered. 

The rules themselves are based on attribute, 
object, value tuples. In this case, the objects 
are frames, the attributes are slots, and the 
values are slot fillers. Thus, a typical rule 
may appear as follows: 

(RULE1 ((SAME FRAME1 SLOT1 VALUE DATUMl) 
(KNOWN FRAME2 SLOT2 VALUE)) 

((RETURN FRAME3 SLOT3 VALUE DATUM3 95))) 

These rule S are very similar 
were used in the MYCIN system. 

to the rules that 

VI HYPOTHETICAL SCENARIO 

As an example of the use of the new 
representation language, I will present a system 
which would be used by a sales representative to 
aid in the configuration of an IBM personal 
computer for a customer. A portion of the 
knowledge base is shown in Figure 1. 

We could imagine that a sales 
representative, who may have very little computer 
experience, could sit down with the system and 
place an order in the following manner. The 
inference engine would begin with the PC System 

*IBM PC, XT, and AT are trademarks 
International Business Mach ines Corporation, 

of 

Rule Base #I (RBl): 

Rule 1.1: 
If the customer knows the type of system he wants, 
then that is definitely the proper system (1.0). 

Rule 1.2: 
If speed is important to the customer, 
then an IBM AT map be the proper system (0.7). 

Rule 1.3: 
If expandability is important to the customer, 
then an IBM XT may be the proper system (0.7), and 

an IBM AT may be the proper system (0.8). 

Rule 1.4: 
If the customer does not want to spend a lot of 

money, 
then an IBM PC may be the proper system (0.8), and 

an IBM XT may be the proper system (0.6). 

Figure 1. Determining the Proper Order Type: This 
is the portion of the knowledge base which helps 
the user decide which of the three system types 
(i.e. PC, XT, or AT) is most appropriate for the 
customer. 

frame and it would apply Rule Base #l when the 
IBM PC frame is activated. Thus, the 
consultation would proceed as follows: 

What type of PC system would the customer 
like, or would you like me to help you 
decide which would be appropriate for him 
(PC, XT, AT, or Assist)? 
>Assist 

Since the user has asked for the assistance 
of the knowledge-based system in determining the 
proper PC system for the user, the evaluation of 
the rule base continues: 

Is it critical that the customer's 
applications run as fast as possible? 
>No 
Does the customer plan on expanding his PC 
system (e.g. extra memory, a modem, 
communication interfaces, etc.)? 
>Yes 
IS price an important factor for the 
customer? 
>Yes 

994 / ENGINEERING 



The evaluation of Rule Base #l has 
determined that the most appropriate system for 
the customer is an IBM XT. Thus, it notes the 
fact that there should be one IBM XT frame but no 
IBM PC frame nor IBM AT frame instantiated in the 
consultation data base. Thus the inference 
engine halts its evaluation of the IBM PC branch 
of the knowledge base and begins to evaluate the 
IBM XT branch. 

The rest of the knowledge base would be 
represented in a similar fashion as that 
suggested in Figure 1, and the consultation would 
continue as shown in this example. 

VII CONCLUSIONS 

The problem of hardware configuration and 
order processing has proven to be a difficult 
problem to deal with in any sort of automated way 
for many reasons. Firstly, the amount of 
knowledge necessary to make an automated system 
work effectively in this area is usually quite 
large. Secondly, it is typically the case that 
the domain knowledge changes significantly during 
the life of the product. Thus, no real progress 
was made in this area until knowledge-based 
system technology was applied to the problem. 

Since the first knowledge-based system was 
developed for this domain, many other systems 
have followed. Some of these systems used 
production rules as a knowledge representation 
language, while other systems used frames or 
semantic networks, 

It has been argued that the representation 
language used in these systems may not be 
appropriate for their domain. Important 
information about the domain, namely the 
structure of the target system, is lost when 
production rules are used. Frame-based systems 
deal nicely with the structure of the domain, 
however, they cannot adequately represent the 
empirical knowledge and judgemental reasoning 
which is often necessary for a complete system. 

For these reasons, a representation language 
which effectively combines the benefits of a 
frame-based system and a rule-based system has 
been proposed. The frames in the language 
effectively represent the inherent structure in 
the domain of computer hardware configuration 
while maintaining a sense of modularity. The 
rule-bases describe the judgemental reasoning 
which is involved in the process of hardware 
configuration and order processing. 

These ideas are currently being tested 
through the development of two prototype systems 
for hardware configuration. The first system is 
being developed using a commercial expert system 
building shell. The knowledge for this system is 
encoded in the form of production rules. The 
second system is being developed concurrently 
using an inference engine based on the new 
representation language. 

It is believed that the second system shall 
prove to be easier to develop and maintain than 
the first system. Since the knowledge will be 
partitioned into logical sections it should be 
easier to enter the original core of knowledge 
and easier to maintain the knowledge base 
thereafter. 

ACKNOWLEDGMENTS 

I would like to thank Dr. Wing Kai Cheng, of 
ROLM Corporation, and Prof. Ramesh Patil, of the 
Massachusetts Institute of Technology, for their 
comments and suggestions on earlier drafts of 
this paper and their continued support during my 
research. 

REFERENCES 

Barr, A., and Feigenbaum, E. A. (Eds.) 
"Production Systems". In The Handbook of 
Artificial Intelligence. Volume 1. Los 
Altos, CA: William Kaufmann, Inc., 1981, 
pp. 190-199. 

Brachman, Ronald J. "What IS-A Is and Isn't: An 
Analysis of Taxonomic Links in Semantic 
Networks". Commuter, Volume 16(10), 1983, 
pp. 30-36. 

Davis, R., Buchanan B., and Shortliffe, E. 
"Production Rules as a Representation for a 
Knowledge-Based Consultation Program". 
Artificial Intellipence 8, 1977, pp. 15-45. 

Freeman, Michael W. "Case Study of the BEACON 
Project: The Burroughs Browser/Editor and 
Automated Configurator". Logic-Based 
Systems Group SDC, A Burroughs Co. Paoli, 
PA, 1985. 

Koton, Phillis. "Towards a Problem Solving 
System for Molecular Genetics". Technical 
Report MIT/LCS/TR-338, Massachusetts 
Institute of Technology, Cambridge, MA, 
1985. 

McDermott, John. "Rl: An Expert in the Computer 
Systems Domain". In Proceedings of -the 
First International Joint Conference on 
Artificial Intelligence, Palo Alto, 
California, 1980, pp. 269-271. 

Roberts, B., and Goldstein, I. The FRL 
Manual". MIT AI Memo 409, Massachusetts 
Institute of Technology, Cambridge, MA, 
1977. 

Shortliffe, Edward H. "Details of the 
Consultation System". In Rule-Based Expert 
Systems, Reading, MA: Addison-Wesley, 1984, 
pp. 78-132. 

Winston, P.H. "Representing Commonsense 
Knowledge". In Artificial Intelligence. 
Reading, MA: Addison-Wesley, 1984, pp. 
251-289. 

KNOWLEDGE REPRESENTATION / 995 


