
AGNESS: A GENERALIZED NETWORK-BASED EXPERT SYSTEM SHELL*

James R. Slagle
Michael R. Wick
Marius 0. Poliac

Computer Science Department
207 Church Street, S.E.

136 Lind Hall
University of Minnesota
Minneapolis, MN 55455

ABSTRACT

AGNESS is an expert system shell developed at the
University of Minnesota. AGNESS is more general than other
shells. It uses a computation network to represent expert defined
rules, and can handle any well-defined inference method. The
system works with non-numeric as well as numeric data, and shares
constructs whenever possible to achieve increased storage
efficiency. AGNESS uses a menu-driven user interface, and has
several features that make the system friendly and convenient to
use. The system includes eight explanation queries designed to
increase the amount of information available to the user, the expert,
and the knowledge engineer while remaining simple enough to be
included in most of today’s expert system shells. AGNESS has
been tested on several domains ranging from simplified problems to
real world medical analysis.

I. lNTRODUCTlON

The design of expert consultation systems has been a topic
of growing interest in Artificial Intelligence (Al) research during the
past decade. Numerous expert systems have been constructed to
give consultations in a variety of application areas. Two prominent
examples of this are MYCIN [l], a program for the diagnosis of
infectious diseases, and PROSPECTOR [2], a mineral exploration
system. The common aim of expert system technology is to
represent and apply knowledge obtained from a specialist in the
problem domain. Early in the history of this technology, people
realized that rewriting the entire system for a new domain was both
wasteful and unnecessary. Since most of the operational code can
be separated from the domain specific knowledge, one program
can be written to handle rule bases from several domains. Using
this idea, a system can be developed for a new domain by simply
changing the rules that the operational system handles. This
operational system is called a skeletal system or an expert system
shell.

Many expert system shells have been implemented recently
with varying degrees of success. The best known of these are
KEE(Knowledge Engineering Environment) from Intellicorp,
LOOPS developed at the Xerox Palo Alto Research Center, and
ART (Automated Reasoning Tool) from Inference Corporation [3].

We have developed an expert system shell called AGNESS
standing for A Generalized Network-based Expert System Shell.
AGNESS uses a computation network to represent the domain
knowledge as opposed to a production rule base. The network is
restricted to be a directed acyclic graph. There are several
advantages to using a network-based shell as opposed to a simple
rule-based shell. For example, in a network-based system, there is

*This material is based partly on work supported by the National
Science Foundation, grant no. DCR8512857 and by the
Microelectronics and Information Sciences Center of the University
of Minnesota.

no need for searching for the rules to be fired, as all rules are directly
connected to the current node. The AGNESS network increases
storage efficiency by sharing common constructs whenever
possible. The network also allows for visually pleasing graphical
representations of the domain knowledge, and lends itself well to
data flow analysis.

PROSPECTOR is perhaps the best known network-based
expert system 121. AGNESS has been implemented as a
generalization of the network scheme introduced in
PROSPECTOR. In AGNESS, constructs are shared to achieve
increased storage efficency. AGNESS also has the ability to
manipulate any well-defined data type, not just probabilities. For
example, a value in the AGNESS system can be a string, or a frame.
Also, AGNESS allows for expert-defined inference methods. This
gives the system the abiltiy to handle any value propagation method
that the domain expert desires.

AGNESS is a shell aimed at a wide variety of domain
applications, however, as with all shells, some application areas are
better than others. AGNESS is particularly useful in domains that
involve matching entities. The matching problem is really a

I I
SOCIALLY-COMPATIBLE PHYSICALLY-COMPATIBLE

1

I 1

(COHP-HOBBIES (COHP-JOBS)
COHP-WEIGHTS

I I I ’

Figure 1. The dating service network

996 I ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

generalization of the classification problem, and as such, is a widely
occurring problem. We will illustrate the AGNESS constructs by
means of an example taken from a simplified problem domain of a
dating service. The “expert system” we will develop is intended to
be used to find the probability that two people make a good match
for dating each other. The computation network for this problem
domain is presented in Figure 1.

Each general proposition is represented by a node in the
network. A value is associated with each node in a given context.
For example, in Figure 1, the node AGE1 may represent the
general proposition of the age of a person. Given a context such as
(Steve), the node, together with the context, have an associated
value, say 24. This is the specific instance of the general
proposition AGE1 representing the fact that Steve’s age is 24. In
AGNESS, the value associated with a node and context is not
required to be a numerical value, but may come from any
well-defined data type. For instance, the value associated with the
node HOBBY1 and the context (Steve) may be the string
“computers” representing the fact that Steve’s favorite hobby is
computers. The triple made up of the node, the context and the
value is called a datum.

The nodes in the network are connected by links called
edges representing the possible dependency of one datum’s value
on that of another. For example, the nodes AGE1 and AGE2 are
linked (connected by an edge) to the node COMP-AGES
representing the relationship between the ages of two people and
the probability that the two people have compatible ages. The
nodes connected by the edges are called the antecedents
(AGE1 ,AGE2) and the consequent (COMP-AGES) to
emphasize their inferential relationship. Associated with each node
is a function that takes the value of the antecedent nodes and
generates the value of the consequent node. This function is
called an inference method corresponding to its function of
inferring the consequent value from the antecedent values. For
example, the node COMP-AGES uses an expert defined
inference method that takes the values of the two antecedent
nodes AG E 1 and A G E 2 and computes a value for
COMP-AGES. Given the context of (Steve) for AGE1 and
(Cindy) for AGEP, this would correspond to taking Steve’s age
and Cindy’s age and computing the probability that their ages are
compatible and assigning this probability to the node
COMP-AGES in the context (Steve,Cindy).

A node can be linked to an arbitrary number of other nodes,
and it may have an arbitrary number of nodes linked to it. It is
important to realize that a node and the value associated with that
node (in a given context) are separate entities. The node
represents a general proposition whereas the value, stored in a
separate database, represents a given instance of a general
proposition that occurs during the problem solving process.
Domain specific knowledge is relatively fixed, and thus is
represented directly in the computation network. User supplied
and problem specific knowledge is more volatile and thus is stored
in a separate database.

AGNESS has been implemented on a LISP workstation and
uses a menu-driven interface. The system operates in several
modes and provides a variety of facilities including explanation.
AGNESS has also been tested on various problem domains ranging
from a simplified expert system on wine to the serial evaluation of
ECG exercise tests [4], and has proven to be elegant and powerful.

II. BASIC TERMINOLOGY

A. An Object

The basic element that AGNESS manipulates is called an
object. An object represents a primitive element to which
information may apply. Typically, an object represents a single
real-world entity or a group of entities that work together. For
example, in our dating service, an object is a given person, such as
Steve or Cindy.

B. An Obiect Tvpe

Objects are grouped into sets referred to as object types,
such as male and female. AGNESS supports basic object types,
defined by enumerating their member objects, and derived object
types, defined by applying the set-theoretic union, intersection,
and difference operators to other object types.

Figure 2. The object type lattice

The basic object types are organized into a structure called
the object type lattice, representing a partial ordering based on set
inclusion. Figure 2 shows the object type lattice for the dating
service world. Placement of objects on an object type lattice
naturally allows for the representation of fragmentary knowledge.
For example, AGNESS will reason about Steve as both a person
and as a male. Rules and elementary propositions in a computation
network can be made as general as possible to avoid duplication,
without diluting the power of the system to reason about specifics.

C. -urn Function

A datum function is a mapping from objects to information
about those objects. The English meaning of a datum function is
described using a list of words and integers. For example, the
datum function INTERESTED-DF has the phrase (The
probability that cl> is interested in <2>). Each bracketed
number in this list, called a parameter, corresponds to an element of
an ordered list of objects called a context. The datum function may
be instantiated by substituting the elements of the context for the
corresponding parameters, resulting in a concrete phrase about
specific objects. Instantiating the above datum function in the
context (Steve,Cindy) yields the phrase “The probability that
Steve is interested in Cindy”. The use of a datum function enables
AGNESS to represent the general antecedent-consequent
relationship between un-instantiated concepts instead of the
specific relationship between concrete phrases.

D. A Domain Constrair-tt

We have seen how a datum function may be instantiated to
yield a phrase. It is important to prevent instantiations that yield
meaningless phrases such as “The probability that Steve is

KNOWLEDGE REPRESENTATION / 997

interested in Jeff” (assuming a heterosexual dating service). The
set of permissible contexts of a datum function is specified using
domain constraints. A domain constraint is a list of object types that
represents the Cartesian product of those types. For example, the
above datum function may have the domain constraint
(male,female) designating that the datum function may be
instantiated in any context that contains a male in the first position
and a female in the second. Thus a context is a member of the set
represented by a domain constraint when each object in the
context belongs to the corresponding type in the domain
constraint. We say in this case that the context matches the domain
constraint. A datum function will be instantiated only in contexts
that match one of its domain constraints. A datum function may
have several domain constraints, allowing (The probability that
4r is interested in <2>) to be instantiated in any context
matching either the domain constraint (male,female) or the
domain constraint (female,male).

Multiple domain constraints may be used with the same
datum function to divide the domain of the datum function into
disjoint parts. This division is useful when the value of the datum is
computed differently when instantiated in contexts from different
parts of the domain. For instance, the datum function (The
probability that cl> is interested in <2>), specifying the
probability that one person is interested in dating another person,
may be instantiated for any male/female or female/male pair.
However, if we allowed the instantiation for any person/course, we
would get a completely different idea, namely the probability of a
person being interested in some particular course. Obviously, this
datum would be derived in a completely different manner than
would the earlier datum.

Domain constraints also enable AGNESS to generate the
possible contexts for a node, an important consideration when
inference is performed (see section 4).

III. KNOWLEDGE REPRESENTATION -THE NODF

In AGNESS, knowledge is represented in the form of a
computation network and a database. The network is built from the
rules supplied by the domain expert and the database is built from
knowledge obtained during the run of the expert system and from
the default information. This section describes, in detail, the design
and implementation of the AGNESS network and illustrates the
ideas with the dating service example.

The main element of the network is the node. A node in
AGNESS corresponds to a datum function with domain constraints.
That is, a node represents a proposition and the domain in which
that proposition is valid. A node is defined as the following 5-luple:
<datum function, constraint-default list, antecedent edges,
consequent edges, inference method>.

There are two types of nodes that are of special interest.
First, a node with no consequent is called a top node and
represents a high level topic that is of interest to the system. For
example, the top node in the dating service example is
GOOD-MATCH representing the probability that two people are a
good mafch for dating. A second special type of node is a node
with no antecedents, called a bottom node. A bottom node
represents a topic that the system has no way of inferring from other
information, and thus has no associated inference method. An
example of a bottom node is AGE1 or HOBBYP. The value of
such a node will either be the default value or a value supplied by
the user.

A. The Datum Function of a Node

A datum function is associated with each node and is a
mapping from objects to information about those objects. It is
defined as the following 5-tuple: carity, phrase, askable,
codomain-constraint, self-merit>.

An argument list for a datum function is a list of objects called
a context, and the result of instantiating the datum function in a
context is called the value. Together a node (with its datum
function), a context, and a value are called a datum. In this paper we
will use data as the plural of datum. Each entry in the AGNESS
database is stored as a datum, and retrieved using the node and
context as keys.

The arity of the datum function is the number of formal
parameters. This number is used during the generation phase
(called phase I) of the propagation process.

The phrase of a datum function is a list of bracketed numbers
and text such as (probability that cl> is interested in <2>).
The phrase represents the English meaning of the datum function.
The instantiated phrase is what the system uses to request or

report the value of a datum. This text gives the system some of the
advantages of a natural language interface, while retaining the
advantages of strictly canned text.

The askable flag of the datum function tells the system
whether the user may be requested to supply a value for this datum.
Use of this field allows the expert to prevent questions that a typical
user cannot answer.

The codomain-constraint of the datum function is used to
verify that a value of this datum is reasonable. That is, the value of
any datum that uses this datum function must satisfy the constraint.
For example, if the value of the datum is meant to be a probability,
the system will use the codomain constraint called probp which will
return true if the value is between zero and one. This provides the
system with a way to screen data that can not possibly be correct.

The self-merit of the datum function is a number that is used
to calculate Merit [5], a measure of the utility of requesting
information from the user. The self-merit associated with each
datum function is an expert-defined approximation of the ratio of the
expected change in the value of a datum to the expected cost of
determining the value. The concept of Merit will be discussed later
in relation to the questioning process of the AGNESS shell (see
section 5).

B. The Constraint-defaultlist of a Node

The constraint-default list is the second element of a node.
Each element of this list is an ordered pair that consists of a domain
constraint and a default value. For example, the constraint-default
list ((person) computers) for a datum function with the phrase
(The favorite hobby of cl>) defines that computers are the
default hobby of every person. The domain constraints in the
constraint-default list need not represent disjoint sets of contexts. If
a context matches more than one domain constraint in the
constraint-default list, the first such constraint and its associated
default value apply. For example, a constraint-default list containing
1 (male) operating-systems) and ((Person)
artificial-intelligence) defines that the default hobby for any
man is operating systems, while the default hobby for any other
person (simply woman in this example) is artificial intelligence.

998 / ENGINEERING

C. The Edges of a Node

The next two elements of a node are the edges to the
antecedents and the consequents. In AGNESS, an edge is
explicitly represented as the following 4-tuple: <antecedent,
consequent, transformation template, auxiliary information>.

The antecedent of an edge is the node that is used as the
“source”. For example, the antecedents of the node
COMP-AGES are the nodes AGE1 and AGES. It is the data of
these nodes that are used in the computation of the consequent
datum.

The consequent of an edge is the node that is used as the
“destination”. It is the datum of this node that is computed using
the data of the antecedent nodes. The consequent of
COMP-AGES is the node COMPATIBLE.

A node can have an arbitrary number of antecedents and
consequents. The names “antecedent” and “consequent” are
chosen from their role in the typical IF - THEN rule.

The transformation template of an edge is a list of bracketed
numbers that specifies the correspondence between parameters of
the antecedent and consequent datum functions. Each bracketed
number in a transformation template specifies a single pair of
corresponding parameters. The consequent parameter is given by
the number’s value, while the antecedent parameter is given by the
number’s position in the transformation template. Every element of
the antecedent context must occur in the consequent context.
Thus reasoning is constrained to proceed from the general to the
specific.

Transformation Template : ((2~)

Consequent Context : (1 2)
/

Antecedent Context : (1 1

Figure 3. Operation of a transformation template

The operation of a transformation template is illustrated in
Figure 3. In this example the edge links the antecedent node
HOBBY 2 (with a one parameter datum function) to the
consequent node COMP-HOBBIES (with a two parameter datum
function). The first (and only) element of the antecedent context
corresponds to the second element of the consequent context
because the first element of the template contains c2>. Thus the
two parameters must be the same. The first element of the
consequent context does not correspond to any element of the
antacedent context.

Edge = ~HOBBYP,COMP-HOBBlES,(<2~),nilB

Consequent Context : (? , Steve) (Cindy , Steve)

fi u

Antecedent Context : (Steve) (Steve)

[al bl

Figure 4. Context mapping during edge traversal

AGNESS uses a transformation template in two ways,
corresponding to the two directions in which the edge can be
traversed. In proceeding from antecedent to consequent,
AGNESS constructs a set of consequent contexts based on the
antecedent context. Figure 4a illustrates this traversal. In this
example, the transformation template is interpreted from the
antecedents’ point of view. That is, the template tells the system
that the first parameter in the antecedent context (Steve) is
mapped to the second parameter of the consequent context. Thus
the context (Steve) for HOBBY2 is mapped to the context (?,
Steve) for COMP-HOBBIES. Notice, this context is only
partially specified. The system will fill in the question mark with all
legal objects by using the constraint-default list for
COMP-HOBBIES. This process will be discussed in section 4.
Traversing the edge from antecedent to consequent occurs during
the propagation process.

In proceeding from consequent to antecedent, the
transformation template tells the system that the second parameter
in the consequent context (Steve) is mapped to the first parameter
of the antecedent. This is illustrated in figure 4b. Thus the context
(Cindy, Steve) for COMP-HOBBIES maps to the context
(Steve) for HOBBYS. Traversing the edge from consequent to
antecedent occurs during the questioning process.

The auxiliary information element of an edge holds any
additional information a particular inference method might need.
For example, the subjective Bayesian inference method requires
conditional probabilities. This information can be extracted from the
edge and used during the propagation process.

D. The Inference Method of a N&

The last element of a node is the inference method. An
inference method specifies the relation that holds between the
value of a consequent datum and the values of ifs antecedents. An
inference method is defined as the following 3-tuple: <assignment
function, antecedent value function, edge merit function>.

Each inference method has an assignmen function which is
a procedure for deriving the value of a consequent datum from the
values of its antecedent data. The assignment function is called
with one argument for each antecedent, and returns the value of
the consequent. The arguments of the assignment function are
usually the values of the antecedents. For example, the inference
method *AND* (probabilistic “and”) takes the value of each of the
antecedent data, multiplies them together and assigns the resulting
value to the consequent datum. In more complicated situations,
another function called the antecedent value function constructs
the arguments of the assignment function from information present
in the computation network.

Thus the second element of an inference method, the
antecedent value function, is used when the assignment function
requires information other than the value of the antecedents. For
instance, subjective Bayesian inference methods use conditional
and prior probabilities to apply Baye’s formula [6]. This information is
extracted from the computation network by the antecedent value
function. For instance, the conditional probabilities for subjective
Bayesian inference are stored in the auxiliary position of the edge.
The antecedent value function returns a value suitable as an
argument to the assignment function.

The third function making up an inference method is the
edge-merit function. Merit calculations are used to direct the
acquisition of information by identifying questions that are likely to
have a large effect on the results of the computation network at a
relatively low cost. Since user interaction is frequently the most
time-consuming part of expert system use, the intelligent direction

KNOWLEDGE REPRESENTATION I 999

of questioning can significantly improve the system’s performance.
If a questioning mechanism is desired for a computation network
built with AGNESS, an edge-merit function must be specified for
each inference method.

The current implementation of AGNESS contains inference
methods that deduce consequent probabilities from independent
antecedent probabilities. Basic logical connectives (“and”, “or”, and
“not”) and subjective Bayesian inference have been implemented,
as well as Mycin style confidence functions. AGNESS also allows
expert-defined inference methods for both general and
problem-specific purposes. This feature allows the domain expert
to use any inferential relationship that is found to be desirable.

value would be computed in each of the three resulting contexts.
Once this has been done, the propagation process is re-started
once for each node/context pair. Thus all daa in the data base that
are affected by the change in the initial antecedent datum will be
updated.

An important effect of this propagation process is the
downward inconsistency that might arise. If the initial datum that is
changed corresponds to any node other than a bottom node, the
database will be inconsistent downward. That is, this modified
datum has no longer been inferred from its antecedents. The
propagation process does insure upward consistency in the
database.

IV. PROPAGATION
V. _SVFSTIONING

Propagation is a procedure invoked each time a new value is
added to the data base. The propagation process updates the
data base so that values of the consequents of the modified data
are consistent with the new values of their antecedents. This
means that the value of each consequent datum has been
deduced from the values of the antecedent data by applying its
inference method. Modifying the values of the consequents thus
implies a recursive invocation of the propagation procedure. The
recursion is terminated by reaching nodes that have no
consequents. The termination condition is insured by requiring that
the network be acyclic. The propagation process consists of two
phases.

Partially Specified Context : (? , Steve)

Constraint-Default List : (((male, female) 0.8)
((female, male) 0.8))

u
Matched Constraint : (female,male)

v
Consequent Contexts : { (Cindy,Steve)(Ann,Steve)(Candy,Steve))

Figure 5. Context propagation

A. Phasel

The first phase of the propagation process is illustrated in figure
5. First, a partially specified context is generated from the
antecedent context using the transformation template associated
with the edge. Next, the unspecified parts of the consequent
context are filled in using the domain-constraint list of the
consequent node. In this example, the partially specified context (
? , Steve) matches only one domain constraint, namely
(female,male). This tells the system that the first parameter of the
partially specified context can be filled in with any female object.
Doing so gives a set of all the contexts for the consequent that will
be affected by the change in the antecedent datum.

B. Phasell

In the second phase of the propagation process, the
consequent node is evaluated in each of the contexts produced by
phase I. That is, the value for each datum involving the consequent
node and one of the given contexts is re-computed using the new
value of the antecedent datum. For example, in figure 5, a new

The propagation process discussed earlier can be thought of
as the forward chaining mechanism of the AGNESS system.
AGNESS also provides a backward chaining mechanism, namely
the questioning process. To initialize this process, the user gives
the system the initial focus (a node and context). This focus is used
as the goal that the system is working towards. If the focus datum is
marked as askable, the system will ask for its value. If the user
supplies the value, the value is recorded, the propagation process
initiated, and the questioning process stops. If the user does not
supply a new value, the system generates the antecedent data of
the focus datum. The antecedent data act as the initial set of
candidate questions. The questioning process then proceeds in
three phases: Merit calculation, value retrieval, and candidate
updating.

A. Merit CalculatiQn

In this phase, the system calculates Merit values for each
datum in the candidate set that is marked as askable. These Merit
values represent the ratio of the expected change in the focus
datum over the expected cost of suppling the candidate datum.
The calculation is based on the partial derivatives of the assignment
functions on the path from the candidate’s node to the initial focus
node. The theoretical foundation of Merit has been presented in
previous papers and will not be presented here [5].

B. y&e Retrid

The system now chooses the candidate datum with the
highest Merit value and asks the user for the value of this datum. If
the user supplies a value, the system will initiate the propagation
process to update the data base to be consistent with the new
value. The user may, however, not know the answer to the
question. In this case, no propagation is performed.

C. Candidate Upd&g

In this phase of the questioning process, the system
updates the set of candidate data. The updating is done as follows.
If the user answered the question, that datum is simply removed
from the candidate set. However, if the user did not answer the
question, the antecedent data are generated and added into the
set of candidates. By doing this, the system has added to the
possible questions the data that will allow a value for the skipped
datum to be computed.

At this point, the system returns to the Merit calculation
phase. This questioning process halts when either the user
requests the system to stop, or when the Merit of the best available

1000 / ENGINEERING

candidate datum falls below a predetermined threshold. The use of
the Merit scheme directs the system towards asking next an optimal
question. Thus, if the questioning process must be terminated
before all the questions are asked, the time has been used to
optimal efficiency.

VI. USFR INTERFACE

The AGNESS system is capable of using two different user
interfaces. The system can run in a batch interface, reading and
executing commands from a file. This user interface is useful for
applications that require many independent runs of the AGNESS
system. The second and more interesting interface is a
menu-driven user interface. Through a series of menus, the user
can pick activities, nodes and contexts with a minimum of typing.
AGNESS provides a variety of facilities including construction and
explanation.

A. Construction

This facility provides the expert with a user-friendly interface
for building the computation network. Through this facility, the
expert can add, delete, and modify nodes, datum functions, and
edges. Also, the expert can examine the structure of the network
through a graphical representation, examine the values of a given
set of nodes and contexts, and essentially access and manipulate
all elements of the network and data base. This activity allows the
expert to experiment with slight additions to the network, test the
need for some nodes by temporarily removing them from the
network, and even experiment with new and different inference
methods.

B. Explanation

One of the most important features of an expert system, and
thus an expert system shell, is the explanation facility. In early
systems, the explanation usually took the form of answering “why” a
question was being asked. This form of explanation gave the user a
way to follow the reasoning of the system by viewing the series of
rules the system used to reach its conclusions. We use the term
“user” to refer to the end user, the domain expert, and the
knowledge engineer. By exposing the user to this information, the
designers increased the confidence in the final system. Many early
systems also included a second explanation query, namely “how”.
This query was designed to allow the user to ask questions about
the conclusions of the system. As the system listed the
conclusions, the user was allowed to ask “how” each conclusion
was reached.

Designing an improved set of explanation queries has
become an increasingly important area of research. Most of this
research has moved away from the simple notion of presenting the
rules used by the system towards more sophisticated explanation
systems. Some researchers are concentrating on the causal
relationships that exist in the domain knowledge [7]. Another
branch of research on explanation concentrates on the natural
language feature of the user interface. Although this names only
two of the numerous areas of research on explanation, it does serve
to illustrate that the explanation of tomorrow’s systems will be
sophisticated, depending on more than the simple rules used by
the expert system in reaching its conclusions.

In an expert system shell, the value of the explanation facility
is increased significantly. A shell is designed to be used over and
over again in various domains, and as such should include friendly
and useful interface facilities. Most of the expert system shells

available today host an impressive graphic and menu-driven user
interface. However, these shells have seemingly forsaken
explanation as part of their elaborate interface. For example, some
of the most visually sophisticated and useful expert system shells
such as ART, KEE, and LOOPS do not include explanation as a
feature 131. These systems do provide a means of programming the
explanation function into the final system, however it is not provided
as part of the actual shell. Other shells that do provide explanation
facilities such as INSIGHT, M.l, and Personal Consultant only
provide the basic “why” and “how” queries that were found in the
earliest systems [3]. Although the state-of-the-art explanation
facilities are far to complicated and domain sensitive to be
reasonably included in today’s expert system shells, the set of
permissible explanation query types should be much larger than the
simple ‘why” and “how” that is found today.

AGNESS provides eight types of explanation that give the
user a more complete set of queries. These query types also give
the system designer rule tracing and debugging facilities. Each
query type uses only slightly more knowledge than the standard
“why” and “how” queries, and yet significantly increases the
information available to the user . Each has been designed to
improve the explanation available to the user while using only
technology that is already in use in most of today’s expert system
shells. Thus, these query types are not meant to challenge the
state-of-the-art explanation technology, but instead, to act as an
intermediate set that can be included in commercially available
systems with little or no increase in the cost or complexity. Also,
each of these query types can be added to existing expert systems
directly without significant effort.

In the AGNESS system, the explanation queries fall into
three categories: queries about the past, queries about the
present, and queries about the network structure. Each of the
eight queries is recursive. That is, as the system answers the query,
the user is allowed to ask for explanation of the answer.

Queries about the past allow the user to ask the system (1)
why a datum was derived, (2) where a datum was used, and (3) how
a datum was computed. These three queries give the user the
ability to move through the database, examining the features that
lead to certain data.

With respect to the present, AGNESS provides the user with
the ability to ask (1) why a question is being asked, (2) where a
datum will be used, and (3) how a datum will be computed if left to
the system. By using these queries, the user can follow the
reasoning process of the system as it happens. They also provide
the user with information about the effect of answering a question,
or leaving the computation up to the system. Thus the user can
always ask for an explanation of the system’s actions, and an
explanation of the results of the user’s actions.

AGNESS also provides explanation about the structure of
the network. The user or the expert is allowed to ask for (1) the
antecedents and (2) the consequents of any node. This
information is displayed graphically, and gives the user or expert an
explanation of the structure of the network at the node level. This
explanation facility can be valuable when the expert wants to verify
part of the network. It is also valuable to the user as it gives an
explanation in terms of general propositions as opposed to specific
instances.

This set of explanation facilities allows the system to be easily
understood and followed, thus increasing the user’s confidence in
the system’s conclusions. A more detailed description of the query
types and their importance will be presented in a forthcoming paper.

KNOWLEDGE REPRESENTATION / 100 1

VII. CONCLUSIONS

The AGNESS system has been tested on domains ranging
from an expert system on wine to the real world problem of
analyzing treadmill exercise ECG test results. In both domains, the
system proved to be elegant and simple to use. The expert system
written to analyze ECG test results has achieved a level of
performance higher than that of the human doctors that were being
used to analyze the data [4].

AGNESS represents a significant step forward in generalized
expert system shells. AGNESS can reason both forward and
backward, can use any combination of numeric and non-numeric
data, and can use any well defined inference method required by
the user. The system provides an excellent range of explanation
queries far and above other expert system shells. The explanation
query types give a full and rich explanation of the relationships that
exist in the knowledge base. By including these query types as a
basic feature, expert system shells can patiently wait for the
technology of tomorrow while remaining useful today. The
AGNESS architecture provides efficient implementations of expert
systems by sharing constructs such as nodes, edges, and datum
functions whenever possible. The computation network used in
AGNESS allows only relevant rules to be considered during
propagation, thus reducing the work needed in finding the rules
that can be fired. Also, AGNESS uses the Merit scheme to handle
the questioning of the user to insure that the most important
questions are asked first in case the questioning period must be
prematurely terminated.

VIII. PI ANS

Even though AGNESS has shown to be extremely useful as
an expert system shell, we are still working on more features and
improvements to make the system even better. Some of the things
we are investigating include new explanation facilities that contain
more knowledge than the current system, new network
configurations to help make the propagation process even faster,
and improvements to the Merit scheme used during questioning.
The interface is also being revised to include more graphical
representations, and better help facilities.

ACKNOWLEDGMENTS

We would like to express our deep gratitude to the members
of the Monday Night Expert Systems Workshop. Without their
guidance and encouragement, the AGNESS system might never
have been implemented.

REFERENCES

[l] Shortliffe, E.H., Computer Based Medical Consultations: MYCIN.
New York: Elsevier, 1976.

[2] Duda, R.O., Hart, P.E., Konolige, K., and Reboh, R., “A
Computer-Based Consultant for Mineral Exploration,”
Technical Report; Final Report, SRI Project 6475, SRI
International, September, 1979.

[3] Harmon, P., and King, D., “Expert Systems: Artificial Intelligence
in Business,” John Wiley & Sons, Inc., 1985.

[4] Slagle, J.R., Long, J.M., Wick,M.R., Matts, J.P., and Leon, A.S.,
“Expert Systems in Medical Studies - A New Twist,”
Proceedings of the Conference on Applications of Artificial
Intelligence, SPIE, 1986.

[5] Slagle, J.R., and Hamburger, H., “An Expert System for a
Resource Allocation Problem,” Comm. of the ACM,
September, 1985.

[6] Duda, R.O., Hart, P.E., and Nilsson, N.J., “Subjective Bayesian
Methods for Rule-based Inference Systems,” National
Computer Conference, 1976.

[7] Swat-tout, W.R., “XPLAIN: a System for Creating and Explaining
Expert Consulting Programs,” Artificial Intelligence 21,
1983.

1002 / ENGINEERING

