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ABSTRACT 

SYNTELTM is a novel knowledge representation language 
that provides traditional features of expert system shells within a pure 
functional programming paradigm. However, it differs sharply from 
existing functional languages in many ways, ranging from its ability to 
deal with uncertainty to its evaluation procedures. A very flexible user- 
interface definition facility is tightly integrated with the SYNTEL 
interpreter, giving the knowledge engineer full control over both form 
and content of the end-user system. SYNTEL is fully implemented and 
has been successfully used to develop large knowledge bases dealing 
with problems of risk assessment. 

I INTRODUCTION 

A large class of expert system applications concerns judging 
risks under conditions of uncertainty. Problems of financial risk 
analysis--with which we have been particularly concerned--have this 
characteristic, but it arises in many other fields, such as public health 
and safety. 

An effective knowledge representation language addressing 
such domains must satisfy a number of requirements. The assessment 
of financial risk involves a combination of quantitative analysis and 
qualitative judgment. Both quantitative and qualitative factors might 
have either high or low confidence associated with them, imposing a 
need to manage uncertainty uniformly across different types of 
variables. Financial risk analysis often requires consideration of sets of 
similar objects (such as geographical sites or years), suggesting that the 
representation and manipulation of large sets requires efficient support. 

For the end user, the analysis of financial risk may require 
identifying and analyzing a large amount of (possibly conflicting) data. 
Accordingly, data must be presented (and requested) in a compact, 
familiar form; equally important, the user must be spared the need even 
to look at system displays that are not immediately relevant . 

For the knowledge engineer, the knowledge representation 
must afford a natural means to structure the assessment criteria used by 
experts, and to do so on a large scale. This goes beyond the availability 
of a well-developed knowledge-acquisition tool set and the design of a 
convenient syntax, although surely both are important. It requires the 
architecture of the language to mirror the structure of explicit domain 
expertise and to hide all inessentials from the knowledge engineer. 

These and other requirements were sufficiently demanding that 
we were persuaded to design and implement a new language. Our 
philosophical point of view is that a purely non-procedural 
representation of knowledge most naturally reflects the way experts 
appear to think in our domains of interest: Experts are very much 
concerned with relations among factors and subfactors, but appear far 
less concerned with the order in which factors are considered--provided, 
of course, that all potentially relevant items are considered before a 

recommendation is made. SYNTEL is thus at one end of the “what- 
to-how” spectrum and bears certain similarities to other non-procedural 
languages such as LUCID IWadge & Ashcroft, 19851, BATTLE [Slagle 
& Hamburger, 19851 and that described by CLucas & Risch, 19821. 

Among the more widely used expert system languages, 
SYNTEL might be compared with a production language like OPS5 
[Brownston, et al., 19851. However, SYNTEL differs from OPS5 in 
using an alternative to a recognize/act architecture, in the high level of 
primitives it supports, in its treatment of inexact reasoning, its runtime 
features, and its integration with a user interface-definition facility. 

The following sections discuss SYNTEL’s use of a functional 
representation of knowledge, its inference procedure, the user interface 
facility, and some run-time features of the language, A final section 
comments on some lessons learned. 

II KNOWLEDGE REPRESENTATION 

The basic entities in SYNTEL are variables and functions. 
Variables can represent input data, intermediate levels of assessments, 
or final (i.e., output) assessments. Functions define mappings between 
variables. A SYNTEL program (i.e., a knowledge base) consists in 
large part of a collection of variable and function definitions. 

A. Variables 

A SYNTEL variable does not hold a single value but instead 
represents a set of probability distributions indexed by formal 
parameters. For example, a variable EconomicOutlook, indexed by the 
single parameter Region, might contain the following information: 

Re ion Weak Avg Strong 2 
NE .3 .6 .l 
SE .4 .5 .l 

.l .4 .5 
SW .l .2 .7 

The column headings indicate that EconomicOutlook can take 
on the values Weak, Avg, and Strong. Each row of the table holds a 
probability distribution over these values for an instance of the variable, 
each instance corresponding to a value of the Region parameter. In 
general, variables can be indexed by any number of formal parameters. 

The variable EconomicOutlook is ordinal-valued and the 
probability distributions describing its instances are discrete. Variables 
in SYNTEL can also have logical, nominal (e.g., a city name), string or 
real values. The probability distribution of a real-valued variable is 
represented by a mean and a variance for each variable instance. 
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Because uncertainty, in various guises, plays such an important 
role in financial assessment problems, we have provided additional 
mechanisms for its representation. For example, variables and 
parameters can both have Unknown as an explicit value, with 
consequences that are context dependent. An unknown parameter 
causes the creation of a partially-indexed set, an unknown logical 
variable is treated using a 3-valued logic, and so forth. Other 
mechanisms for managing uncertainty include support of prior and 
default probability distributions over variables. 

Our interest in the efficiency of the knowledge engineering 
process, together with our desire for extensive error checking facilities, 
has led us to develop a powerful type system. The language has a 
handful of built-in variable types, but a typical knowledge base contains 
many times that number of additional variable types defined by the 
knowledge engineer. This extensive use of typing leads to code-sharing 
(further enhanced by an inheritance hierarchy of types), and to improved 
consistency of large knowledge bases. Control of errors is facilitated by 
compile-time and run-time type-checking. 

B. Functional Representations 

We have made a strong commitment to knowledge 
representation based on functional mappings between variables. To 
describe this approach by example, suppose a real-valued variable 
Population, indexed by Region, is to be combined with our previously- 
defined EconomicOutlook to estimate the size of a target market of 
interest. This would be represented by 

TargetMarkzt(Region) <= 
f[EconomicOutlook(Region), 

Population(Region)]. 

The knowledge engineer is not free to define the function f 
arbitrarily. Rather, he or she selects the computational form off from 
among the several dozen supported in SYNTEL. Accordingly, this 
selection process--and, for some functions, specification of additional 
information like weighting factors--plays a central role in the lmowledge 
engineering process. 

The functional forms supported by SYNTEL, called 
CompurationTypes, fall naturally into several families. Beyond the 
expected arithmetic and logical functions, there are important families 
of functions for performing a variety of tests and manipulations on sets, 
for combining or weighting variables in several ways, for testing the 
current state of the computation, and for accessing databases. 

Certain ComputationTypes have the important ability to 
combine arguments of different modalities probabilistically. The 
simplest such, Table, illustrates the principle. To use it to compute 
TargetMarket, a table such as the following would be defined, which 
would apply to each Region. 

TargetMarket 
Population 

O-40 
40 - 50 
50-+INF 

EconomicOutlook 
Weak Avg Strong, 

10 20 25 
15 25 30 
15 35 45 

The table extensionally represents the expert’s judgment of 
how an ordinal and a real-valued variable are combined to estimate the 
real variable TargetMarket. 

Suppose there were uncertainty in the arguments because each 
is an estimate of the value, say, in the year 1995. Then each argument 
would have an associated probability distribution, discrete for 
EconomicOutlook and normal for Population. Integration of the normal 
over the indicated ranges, together with an assumption of independence, 
allows the mean and variance of TargetMarket to be computed. 

While simple tables are useful, judgments of this sort are 
usually combined using a more complex ComputationType, called 
Weight, that implements a non-linear, probabilistic voting scheme. 
Weight uses a mechanism analogous to Table, in combination with 
summation and a “soft” threshold, to map between variables of arbitrary 
modalities. 

With the intense current interest in methods for managing 
inexactness in expert systems [e.g., Pearl, 1985; Heckerman, 1985; 
Zadeh, 1985; Gordon & Shortliffe, 19851, it may seem foolhardy to 
have designed and implemented an alternative representation for 
experts’ subjective beliefs. Nonetheless, the “rate and weight” style of 
reasoning we found prevalent in financial institutions led us to develop 
the Weight mechanism which, extending earlier work Duda and Reboh, 
1984; Reboh, Reiter and Gashnig, 19821, eases the problem of 
representing the “apples to oranges” comparisons that are an essential 
part of financial risk assessment. 

Even a cursory description of the remaining ComputationTypes 
would far exceed space limitations, but we make a few general 
comments. Every function works with probability distributions as 
inputs; independence of arguments is assumed as needed. Distributions 
are typed; e.g., normal, discrete, exact, or undefined. However, unlike 
the strong typing of variables, distribution types can be determined only 
at run-time. All probabilistic calculations converge smoothly to 
deterministic calculations when a variable is bown with certainty. 

Each argument to a function can be a set (of distributions), so it 
is important to support set manipulations within argument definitions. 
We have therefore provided means for selecting, aggregating, 
disaggregating, and defaulting variable instances. A simple example of 
this is the selection of the Maximumlnstance of a variable. In the 
illustration above, this could be used to identify the Region having the 
largest TargetMarket. 

Continuing the illustration, we can easily imagine an expert 
specifying EconomicOutlook to depend on a variety of additional 
quantitative and qualitative variables. One or more additional equations 
would therefore have to be written to define EconomicOutlook and its 
arguments until a primitive input level was reached. Mathematically, 
the principal operation for articulating a knowledge base is thus function 
composition. The computational correlate of this is function evaluation, 
which will be further described below. 

Before moving on, though, we should re-emphasize the purely 
declarative nature of this representation. The “<=” signifies function 
definition, not assignment; the right hand side of the equation contains 
no assignments, deletions, or other side effects. Thus, the order of 
function evaluation is controlled entirely by the SYNTEL interpreter, 
not by the knowledge engineer. This separation is more than a 
theoretical nicety. In practice, the knowledge engineer is not concerned 
with control issues. (See [Schor, 19861 for a further discussion of this 
point.) 
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III INFERENCE 

A single inference step in SYNTEL consists of the side-effect- 
free evaluation of a function, given the value of its arguments. This 
step, called propagation, takes place whenever the value of an argument 
to any function is changed. If the function being evaluated is itself an 
argument of a second function, a subsequent evaluation will be 
performed. The basic evaluation strategy is thus forward chaining, and 
the result of an inference cycle is to maintain the values of functions 
consistent with the (new) values of their arguments.* Propagation is the 
central operation of SYNTEL’s inference engine. 

A. Inference Networks 

The nesting of function compositions is compiled into an 
explicit data structure called the static knowledge base. The static 
knowledge base can be represented as a directed acyclic graph in which 
nodes correspond to functions and arcs point to a function from its 
arguments. We call these graphs inference nets, following the 
terminology established in the PROSPECTOR system for analogous but 
simpler structures. Nodes with no incoming arcs represent special 
elementary functions that accept input data from the user or from 
external data sources. Nodes with no outgoing arcs represent “top- 
level” functions whose values are among those displayed to the user. 

A typical cycle of operation begins with the user providing a 
new value for any node in the inference net to which he or she has 
access. (Access mechanisms are described in the following section.) 
Subsequent function evaluations can be visualized as a dataflow 
originating at the changed node and propagating upwards along the arcs 
of the inference net. 

Changing the value of a node cannot lead to the creation of 
new variables-- i.e., of new nodes. However, it can lead to the creation 
or deletion of instances of existing variables. When this occurs, a truth 
maintenance procedure (adapted to our functional representation) is 
invoked to assure global consistency over all instances of all variables. 

B. Efficiency Issues 

A typical knowledge base written in SYNTEL contains 
thousands of nodes and, since functions in general compute sets of 
distributions, many thousands of instances. We have therefore been 
motivated to develop several techniques to enhance propagation 
efficiency. Together, they implement the strategy “Compute only what 
you must, and that only once.” 

Updated instances: Function values are computed only for 
those instances of its arguments that have changed significantly. 
Referring to our earlier example, if our economist tells us that the 
EconomicOutlook for the NorthEast region has improved, we would 
compute a new value for only the variable instance TargetMarket( 

Limited Propagation: New function values are computed only 
if they affect the display seen by the user. A change in the value of any 
node may, in general, affect the values of many output nodes, only some 
of which can be displayed at any one time. By limiting propagation to 
these visible nodes, execution time is proportional to the number of 
outputs displayed rather than to the total size of the knowledge base. 
Potential changes to other nodes are recorded in a queue if needed. 

*But see Section V for a description of a backward chaining sub-process. 

Non-redundant computation: Because an inference net is a 
graph rather than a tree, because instances of a node can be selected by 
other nodes, and because propagation can be initiated from several 
nodes simultaneously, a straightforward propagation algorithm will 
perform unnecessary recomputation of functions. 

Limited propagation and non-redundant computation are 
supported by an extensive compile-time analysis of the static knowledge 
base. The analysis identifies the connections between each node in the 
inference net and each screen that the user may see. It also produces an 
optimal partial ordering for function evaluation. In these and similar 
optirnizations we have favored run-time efficiency at the expense of 
compilation cost. 

IV USER INTERFACE 

It is widely recognized that the user interface consumes a large 
proportion of application development resources, yet its design is so 
critical to system acceptance that its development cannot be slighted. 
Our approach to this ubiquitous problem is to separate the description of 
the interface cleanly into two parts: one governing the appearance and 
interactive properties of the display itself, and the other defining the 
logical relations between display objects and the underlying inference 
net. 

A. Display Description 

Our application domains make it natural to adopt the business 
form as the underlying display metaphor, much as ONCOCIN [Hickam, 
et al., 
forms 

19851 uses medical forms 
are insurance applications 

for its 
or sets 

domain. Examples of business 
of financial statements. Figure 

1 shows a form concerning the assessment of a building’s fire risk. 

WILDING FIRE RISK - CDNSTRlJCTION - FIRE i ALLIED 

ncation nlmber: Ii 
Building age: 
Actequate for current occupancy: 
Heating condition ssseaslllent: 
Electrical capacity assent: 
Aluinm or other inferior wiring: 
Tmprary wiring asseszaent: 
Electrical cmditron: 

Heating and ala 
CmstructiM type: 
CMcaaled spaces: 
Interior finishing: 
Mixed cm5tructlM: 
Admquacy of cutoffs: 

kdmr or stories: a, 

Construction fire risk assessnmnt 
Building fire risk amesant 

Figure 1: Fire risk at Location 1 

Forms are represented as structured objects constructed of 
rectangular primitive regions called boxes and non-primitives called 
groups. Boxes (which need not have visible outlines) are used to accept 
input data, display several kinds of output assessments, and allocate 
regions for displaying text and annotations of various kinds. Groups, 
which can be nested to any depth, are typically used to define larger 
regions of the display, to define a single full display screen (a “form”) 
z?d to define sets of forms. 
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A high-level form description language provides the means for 
defining and positioning boxes, for composing them into higher-level 
groups, and for associating various properties with them. These 
descriptions can be compiled to run on desired target displays. 

B. Inference Net Integration 

An important design feature of SYNTEL is the close relation 
between the user interface and the control of propagation in the 
inference net. Control is accomplished through explicit links between 
variables held in nodes of the inference net and display objects. Among 
the more important links are the following: 

Input data: A link can specify a node which is to receive a 
user-supplied value. When a user enters a value for a variable (typically 
by menu-selection), the forward-propagation process is initiated. Since 
any variable can be selected, the underlying flow of control is 
effectively in the hands of the user*. 

Output and Limited Propagation : A node value can be 
displayed (in any of several formats) in a linked object, and is updated 
whenever a change occurs. As mentioned earlier, propagation does not 
proceed “upward” beyond currently-displayed objects. 

Conditional display: In our domains of interest, the complete 
assessment of a single case can in principle require the user to supply a 
very large number of individual data items. In practice, fortunately, 
most cases can be resolved after supplying only a small subset of the 
possibly-relevant data. A forward-chaining system, however, cannot 
easily take advantage of this opportunity to spare the user from the need 
to supply values for, or even to scan, unnecessary items. 

Our design approach to this difficulty has been to hide from the 
user all information or requests for data whose present relevance is 
problematic. We accomplish this by allowing the display of any object 
to be conditional on the value of any logical variable. Figure 2 shows 
the Fire Risk form as it applies to Location 2. The input data requested 
for this building is rather different from that shown in Figure 1, because 
the two buildings differ in key aspects such as age, height and 
construction-type. Thus, while the user controls the flow of inferences, 
this control can be exercised only within currently-relevant portions of 
the knowledge base. 

BUILDING FIRE RISK - CONS7RUCTION - FIRE L ALLIED 

LoutiM lumber: 12 
@uilding age: i 
Adtlqlnts for current occupancy: i 

Heating and electrical *ssessma"t fT"T:.,;: .II(., ;+I 

cmstruction type: 
conwaled spaces: 
Intarlor flnishlng: 

Yurber Of stLlr1es: ml 
AdequA3ly 7Aned heat/air: 
Flmr openings ws-nt: 
DetectIon equipant assmnt: 
Elevator safety sss-nt: 
Epsrgency backw p-r: 

Ccmstructicm fire risk assesaaent 
Buildlng fire risk assessment 

The user-interface definition-facility has allowed us to factor 
knowledge base design into two independent parts. The inference net is 
based on decision criteria supplied by experts, while the interface is 
governed by the need to provide a smooth, natural and efficient 
environment for the end user. 

V RUN-TIME CAPABILITIES 

The SYNTEL run-time environment contains a number of 
features to increase the efficiency and confidence of the end user. For 
reasons of space, we describe just two of them: the backward chaining 
facility and the explanation facility. 

A. Backward Chaining 

While we believe that the user should control the interaction, 
we have nonetheless found it important to indicate which missing data 
items are especially relevant in the current context. To this end, we 
have designed a best-first search algorithm based on sensitivity analysis. 
Working backwards from an identified goal node, the algorithm uses the 
probability distribution at each daughter node to estimate the amount by 
which that daughter is likely to change the distribution of the parent. 
The process continues until input nodes are reached. The input node 
having the largest likelihood of changing the goal node is indicated to 
the user, who ‘is free to accept the advice or to supply some other piece 
of data. 

B. Explanations 

The ability to explain reasoning is an important feature of 
expert systems, improving both the efficiency of knowledge engineering 
and the acceptability by users. However, as representational power has 
grown beyond that of the earliest systems, it has become increasingly 
difficult to generate cogent explanations. 

Because we wish to minimize the need for knowledge 
engineers to define significant auxiliary structures, we have had to rule 
out approaches like those described by [Neches, et al., 19851 and 
[Smith, et al,, 19851. Instead, we adopted a simpler approach based on 
refining the standard notion of the support for an inference. 

In a functional representation such as ours, the support for a 
variable is simply the arguments of the function that computes its value. 
We extend this slightly and define explainable support to be a subset of 
the support so designated by the knowledge engineer. Explanations can 
be then restricted to include only those variables whose meanings are 
judged to be intuitive and useful to the end user.** A recursive 
procedure allows the user to explore explainable supports to any desired 
depth. 

VI STATUS AND CONCLUSIONS 

SYNTEL has been implemented on a Xerox 1 lxx in Interlisp- 
D and in a distributed IBM mainframe/workstation environment in PUI 
and C. Several large knowledge bases have been built, with the aid of a 
well-developed knowledge engineering environment, to address risk 
assessment problems in commercial insurance and banking. 

What has been learned? 
Figure 2: Fire risk at Location 2 

*This is analogous to the use of active values in access-oriented programming systems 

[Stefik, et al., 19861. In SYNTEL, however, function evaluation is invoked uniformly by 

the system, rather than by programmer-provided explicit triggers. 

**Even though a SYNTEL knowledge base contains no control information-a standard 

problem for explanation systems--the expert may judge some intermediate variables to 

represent unintuitive concepts. 
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The salient feature of SYNTEL is its functional representation 
of knowledge. Even experienced computer scientists and software 
engineers require a little time before they are fully comfortable with this 
purely non-procedural representation. Significantly, however, 
computer-naive domain experts find it very natural to describe their 
expertise in these terms. This suggests that we have at least partially 
achieved our goal of matching the representation to the structure of 
domain knowledge. This conclusion is further supported by the fact that 
no knowledge base built to date has had to escape to the underlying 
implementation language. 

We have come to appreciate the benefits to the user of a “soft” 
mixed-initiative system. Forward chaining provides the basis for high- 
bandwidth, user-controlled interactions. The features for computing 
advice and conditionally controlling the display prevent the interactions 
from becoming unfocused and time-wasting. 

A final point: We have tenaciously maintained the purity of 
the non-procedural architecture, with consequences extending beyond 
philosophical gratification. It has allowed the system to undergo major 
enhancements with minimum re-coding. 
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