
Refining the Knowledge Base of a Diagnostic Expert System:
An Application of Failure-Driven Learning

Michael J. Pazzani
The Aerospace Corporation

P.O.Box 92957
Los Angeles, CA 90009

Abstract

This paper discusses an application of failure-driven learning to the
construction of the knowledge base of a diagnostic expert system.
Diagnosis heuristics (i.e., efficient rules which encode empirical
associations between atypical device behavior and device failures) are
learned from information implicit in device models. This approach is
desireable since less effort is required to obtain information about device
functionality and connectivity to define device models than to encode and
debug diagnosis heuristics from a domain expert,

We give results of applying this technique in an expert system for the
diagnosis of failures in the attitude control system of the DSCS-III satellite.
The system is fully implemented in a combination of LISP and PROLOG
on a Symbolics 3600. The results indicate that realistic applications can be
built using this approach. The performance of the diagnostic expert system
after learning is equivalent to and, in some cases, better than the performace
of the expert system with rules supplied by a domain expert.

Introduction

An important part of the construction of an expert system is the
development of the knowledge base. This paper describes an application of
computer learning to the construction of the knowledge base of an expert
system for the diagnosis of anomalies in the attitude control system of a
satellite. (The attitude control system is responsible for detecting and
correcting deviations from the desired orientation of the satellite.) Rather
than inducing diagnosis heuristics (i.e., empirical associations between
symptoms and device failures) from a number of training examples,
diagnosis heuristics are deduced as needed from device models.

The techniques illustrated in this paper are applicable to learning
diagnosis heuristics for complex systems such as a power plant or a
satellite. The status of such systems is continuously monitored for unusual
or atypical features. When one or more atypical features are detected, a
diagnosis process seeks to find an explanation for the atypical features.
This explanation typically involves isolating the cause of the atypical
feature to a component failure. Occasionly, the explanation may be that
system is in a normal but unusual mode.

Two different approaches have been used for fault diagnosis. In one
approach [3,6], the observed functionality of devices are compared to their
predicted functionality which is specified by a quantitative or qualitative
model of the device [4]. For a large system, comparing observed to
predicted functionality can be costly. The alternative approach
[ll, 141 encodes empirical associations between unusual behavior and

faulty components as heuristic rules. This approach requires extensive
debugging of the knowledge base to identify the precise conditions which
indicate a particular fault is present.

We describe the the Attitude Control Expert System (ACES) which
integrates model-based and heuristic-based diagnosis. Heuristics examine
the atypical features and hypothesize potential faults. Device models
confirm or deny hypothesized faults. Thus, heuristics focus diagnosis by
determining which device in a large system might be at fault. Device
models determine if that device is indeed responsible for the atypical
features.

The initial diagnosis heuristics used in ACES are quite simple. They
often hypothesize faults which are later denied by device models. We call

this a hypothesis failure. When a fault is proposed, and later denied by
device models, the reasons for this hypothesis failure are noted and the
heuristic which suggested the fault is revised so that the hypothesis will not
be proposed in future similar cases. This is a kind of failure-driven learning
1121 which enables a diagnostic expert system to start with heuristics which

indicate some of the signs (or symptoms) of a failure. As the expert system
solves problems, the heuristics are revised to determine what part of the
device model should be consulted to distinguish one fault from another fault
with similar features. There are several reasons why this approach is
desirable:

l Device models are a natural way of expressing the functionality of a
component. However, they are not the most natural or efficient
representation for diagnosis [13].

l Determining some of the signs of a fault (i.e., the initial diagnostic
heuristics) is a relatively easy task. Often, the initial fault diagnosis
heuristics are definitional. For example, ACES starts with a heuristic
which states that if a tachometer is reading 0, then it is faulty. Later
this heuristic is revised to include conditions to distinguish a fault in a
tachometer from a fault in the component measured by the tachometer.

One way to view failure-driven learning is as an extension of
dependency-directed backtracking [151. In dependency-directed
backtracking, when a hypothesis failure occurs, the search tree of the
current problem is pruned by removing those states which would lead to
failure for the same reason. In failure-driven learning, the reason for
hypothesis failure is recorded, so that the search tree of future similar
problems does not include states which would lead to failure for the same
reason.

Failure-driven learning dictates two important facets of learning: a
to learn (when a hypothesis failure occurs) and what to learn (features
which distinguish a fault in one component from faults in other
components). What is not specified is how to learn. For example, a
learning system could learn to distinguish a faulty tachometer from failures
with similar features by correlation over a number of examples
(e.g. [7, 8, 161). Device models (or a teacher) could classify a large number
of examples as positive or negative examples of broken tachometers. For
example, the heuristic which suggests broken tachometers could be revised
to include a description of those combination of features which are present
when a tachometer is faulty, but not present when the tachometer is working
properly. In contrast, ACES learns how to avoid a hypothesis a failure after
just one example. It does this by finding the most general reason for the
hypothesis failure. The device models serve a dual role here. First, they
identify when to learn by denying a hypothesis. More importantly, they
provide an explanation for the hypothesis failure. The device models
indicate which features would have been needed to be present (or absent) to
confirm the hypothesis. This deductive approach to learning is called
explanation-based learning [5,9]. Explanation-based learning improves
the performance of ACES by creating fault diagnosis heuristics from
information implicit in the device models.

Schank [12] has proposed failure-driven learning as the mechanism by
which a person’s memory of events and generalized events evolves with
experience. A person’s memory provides expectations for understanding
natural language understanding and inferring other’s plans and goals. When
a new event fails to conform to these expectations, it is stored in memory
along with the explanation for the failure to prevent the generation of the
erroneous expectation in the future. In future similar situations, this event
will be the source of expectations rather than the generalized event whose

LEARNING / 1029

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

expectations were incorrect. In failure-driven learning as applied to fault
diagnosis, the failures are of fault hypotheses as opposed to expectations.
The reason for failure is identified as some aspect of a device’s function
which disagrees with the fault hypothesis. The correction is to modify the
heuristic rule which proposed the incorrect hypothesis to check that aspect
of the device before proposing the fault.

Failure-driven Learning of Diagnosis Heuristics

In this section, we describe our approach to learning fault diagnosis
heuristics by finding symptoms of faults implicit in device models. First,
let us clarify what we mean by a device model. Following Chandraskaran
[131, we represent the following aspects of a device:

. Structure: Specifies the connectivity of a device.

l Functionality: Specifies the output of a device as a function of its
inputs (and possibly state information).

It is not important to the expert system or the learning module that the
functionality be expressed quantitatively or qualitatively. The important
part is that given the observed inputs of a device, the device model can
make a prediction about the output. The predicted value of the output be
compared to the observed value or can be treated as an input to another
device.

Reasons for Hypothesis Failure
We have identified three different reasons for failing to confirm a

hypothesis. For each reason, we have implemented a correction strategy.

l Hypothesized Fault- Inconsistent Prediction: The hypothesized
failure is inconsistent with observed behavior of the system. The
strategy for correction is to check for other features which the
proposed fault might cause.

l Hypothesized Unusual Mode- Enablement Violated: The atypical
features can be explained by the system being in a normal but unusual
mode. However, the enabling conditions for that mode are not met.
The strategy for correction is to consider an enabling condition of the
unusual state.

l Hypothesized Fault- Unusual Input: The device hypothesized to be
faulty is in fact functioning properly. This typically occurs when the
input to a device is very unusual. In this case, the output of the device
is unusual and the device might be assumed to be faulty unless the
input is considered. The strategy for correction is to consider the
device functionality.

Revising Fault Diagnosis Heuristics
When there is a hypothesis failure, the explanation for the failure is found

and the heuristic rule which proposed the hypothesis is revised. A heuristic
rule which proposes a fault can apply to one particular component (e.g., the
light bulb of the left taillight) or a class of components (e.g., light bulbs).
Similarly, the correction strategy can apply to a particular component or a
class of components. The manner in which the knowledge base of heuristic
rules is revised depends on the generality of the heuristic rule and
correction. These interact in the following manner:

Cantone [l] gives an approach for ordering tests based in part on the cost of
the test.

A Definition of Failure-driven Learning of Fault
Diagnosis Heuristics

More formally, a diagnosis heuristic can viewed as the implication:

F and consistent(H) + H

where F is a set of features, H is a hypothesis, and consistent(H) is true if
believing H does not result in a contradiction. (See [2], for a discussion of
consistent.) In our approach to learning and fault diagnosis, consistent(H)
corresponds to confirming a hypothesis with &vice models. Confirmation
can be viewed as the following implications:

H + C,
. . .
H + C,

If F is true, but consistent(H) is false because not(C1) is true, then the
diagnosis heuris tic can revised to:

F and C, and consistent(H) + H

In some cases, checking the consistency of a hypothesis with the device
models is more properly viewed as the following implication:

B and H + C,

The situation when consistent(H) is false because B is true and Ct is false
corresponds to the case that the revised heuristic is used in addition to the
old heuristic. The form of the revised heuristic in this case is:

F and C, and B and consistent(H) + H

The point of failure-driven learning of diagnosis heuristics is that it is
simpler to rule out a hypothesis by testing for Cl than proving
consistent(H).

An Example

In this section, we describe an example of how the performance of the
expert system to diagnose faults in the attitude control system is increased
through failure-driven learning. To follow this example, it is necessary to
know a little about attitude control.

Attitude Control
The attitude control system consists of a number of sensors which

calculate the satellite’s orientation on the three axes (called yaw, pitch and
roll) by detecting the location of the earth and the sun and a set of reaction
wheels which can change the satellite orientation if it deviates from the
desired orientation due to torques such as solar pressure. There are four
reaction wheels (PY+, PY-, PR+, and PR-), arranged on the four sides of a
pyramid (see Figure 1). Pitch momentum is stored as the sum of all four
wheel speeds; roll momentum is stored as the difference between the PR+
and PR- speeds; and yaw momentum is stored as the difference between the
PY+ and PY- speeds.

t
+yaw

l Heuristic rule not more general than the correction: The correction
is added to the heuristic rule and this new more specialized rule

replaces the old rule.

l Heuristic rule more general than the correction: The correction is
added to the heuristic rule and applied only in the specialized case.
The old rule is retained for use in other cases.

There are two other issues to be considered in revising heuristic rules.
First, since some testing is being added to hypothesis generation, it would
be wasteful to repeat the same test during confirmation. To avoid this
potential problem, the revision to a rule caches the results of a test. Second,
the amount of search necessary to prove a conjunction of subgoals in
PROLOG (the language we use to implement our rules) is dependent on the
or&r in which the subgoals are attempted. We use a strategy to order the
tests in a revised rule similar to one proposed by Naish [lo]. This strategy
minimizes the size of the search space by detecting the ultimate failure of a
rule as soon as possible. This assumes that &creasing the search space is
the best means of increasing performance. This is true in our application
since testing for the presence or absence of any feature is equally expensive.

PY-
0

$fa6
0

pr-

/a\ S?+

+roll

t
-pitch

Figure 1: The reaction wheels

1030 / ENGINEERING

Tachometer

Drive
Signal

prormeei PA+

YG33”‘y~-y+@eaction Wheel)-d Tachometer h

Roll

Attitude

YCTL

+ Yaw i-
YATT

h ! 118PR-
YYLR Tachometer li WePAt
RMAR Signal

, Processing G ISPY-
PYLR

UaPYt

Figure 2: Block diagram of the attitude control system

A diagram of the attitude control system appears in Figure 2. The signals
YATT, RATT, and PATT represent the attitude on the yaw, roll and pitch
axes respectively. The wheel drive signal processing component issues
drive signals to the motor of the reaction wheels to change the wheel speeds
to correct for any deviations from the desired attitude. The wheel drive
signals are WDPY +, WDPY-, WDPR+ and WDPR- for the PY+, PY-, PR+
and PR- wheels respectively. The wheel speeds are measured by
tachometers yielding the signals WSPY+, WSPY-, WSPR+ and WSPR-.
The tachometer signal processing module converts the four wheel speeds to
the three values called momentum equivalent rates (YMER, RMER, and
PMER) representing the equivalent wheel speeds on the three axes. These
equivalent wheel speeds are also combined with the attitude information
from the sensors to yield the estimated attitudes (YATT, RA’lT, and
PATT).

The attitude control system contains the logic necessary to maintain the
desired attitude. For example, to compensate for a disturbance on the roll
axis, the difference between the speed of PR+ and PR- wheels must change.
Once or twice each day, at a predetermined part of the satellite’s orbit if the
wheel speeds exceed a certain speed, the momentum stored by the wheels is
dumped by fuing a thruster.

ACES: The Attitude Control Expert System
One reason that our particular satellite was chosen for this research is that

The Aerospace Corporation possesses a simulator for the attitude control
system which generates telemetry tapes reflecting faulty behaviors to aid
engineers in faults diagnosis. In addition, these tapes serve as input to our
expert system. ACES consists of two major modules:

l Monitor. This module converts the raw telemetry data to a set of
features which describe the atypical aspects of the telemetry. In
ACES, the features detected include:

l (value-violation signal start-time end-time value): Between start-time
and end-time the average value of signal has taken on an illegal value.

l (jump signal start-time end-time amount start-value end-value slope):
The signal has changed from start-value to end-value between
start-time and end-time. Amount is the difference between start-value
and end-value and slope is amount divided by the difference between
start-time and end-time.

l Diagnostician. This module finds an explanation for the atypical
features.

In this article, we focus on the learning in the diagnostician. The
diagnostician is comprised of several cooperating modules:

l Fault Identification. The atypical features are used as symptoms of
faults by heuristic rules to postulate a hypothesis which could account
for the behavior of the satellite.

l Fault Confirmation. This step compares the actual device functionality
to the functionality as specified by a device model. This process either
can confirm or deny that a hypothesized fault is present. If a
hypothesis is denied, an attempt is made to identify another fault.

l Fault Implication Analysis. After a fault has been confirmed, the
effect of the fault on the values of other telemetry signals is assessed.
A model of the attitude control system predicts the values of telemetry
signals which might be affected by the fault. The predicted telemetry
values are analyzed by the monitor to see if they are atypical.

Descriptions of atypical predicted values are then compared against
the set of atypical features to explain any features which are a result of
a confirmed fault.

Refining Fault Diagnosis Heuristics
For this example, the initial fault diagnosis heuristics are quite simple.

Figure 3 presents the definition of three fault diagnosis rules. These
PROLOG rules have a LISP-like syntax since our PROLOG is implemented
in LISP. The first element of a list is the predicate name and all variables
are preceded by “?“, The part of the rule preceded by ‘I:-” is a fault
hypothesis, and the part of the rule after “:-” are those conditions which are
necessary to be proved to propose the hypothesis. These rules implement
three very crude diagnosis heuristics: “if the speed of a reaction wheel is 0,
then the tachometer is broken”, “if the speed of a reaction wheel is 0, then
the wheel drive is broken” and “if there is a change of momentum, then a
thruster has fired to unload the momentum”.

Telemetry data indicating the values of the momentum equivalent rates,
attitude and wheel speeds are illustrated in figure 4. Typical values for
these signals are present between 1:07 and 1:08. After 1:08 the monitor
notices several atypical features:

1. YMER, Rh4ER, and PMER have changed an unusual amount,

2. WSPR+, WSPR-, WSPY+, and WSPY- have changed an unusual
amount.

3. YATT, PATT, and RA’IT have changed an unusual amount.

4. WSPR+ is 0.

LEARNING / 1031

1: (problem (problem wheel-tach ?from
(broken-wheel-tach ?wheel ?from)))
:-

;there is a tachometer stuck at 0
(feature(value-violation ?sig ?from

?until 0))
(measurement ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
;if the speed of a wheel is 0

2: (problem (problem wheel-drive ?from
(broken-wheel-drive ?wheel ?from

?sig) 1)

3: (problem (normal-operation ?device
?from-jump ?end-jump

(wheel-unload ?axis ?sign ?thruster
?ntimes ?jump)))

:-
;there is a wheel unload on the ?axis
-in the
iisa

?sign direction
?sig
momentum-equivalent-rate-signal)

(feature (jump ?sig ?from-jump ?end-jump
?jump ?start ?end ?slope))

*if there is a jump of the of I
;YMER, RMER, or PMER
(momentum-sig-axis ?sig ?axis)
(is ?s (sign ?jump))
(opposite ?s ?sign)
(thruster-axis ?device ?axis ?sign)
;find the thruster on the same axis
-as I the momentum change in the
-opposite direction ,

.- .
*there I is a wheel drive motor not
; responding to the drive signal
(feature(value-violation ?sig ?from

?until 0))
(measurement ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
; if the speed of a wheel is 0

Figure 3: Initial Fault Diagnosis Heuristics

Since ACES is implemented in PROLOG, it tries the heuristic rules in the
In this training example, the third rule in Figure 3 first hypothesizes that

the change in PMER is due to a wheel unload. The &vice model of a
order that they are defined. However, for the purposes of learning, the thruster reveals that there are two enabling conditions for a wheel unload.
ordering of the rules undefined. (This is implemented by randomly First, the satellite must be in part of the orbit called the wheel unload
changing the order of the rules before each run.) This prevents one window. Second, the satellite must be in a high momentum state. In this
heuristic from relying on the fact that another fault proposed by an earlier example, the satellite is in a high momentum state, but it is not in the unload
heuristic has been ruled out. window. Therefore, the hypothesis is denied.

200.0 -
100.0 - **-. # ---.

0.0 -
-100.0 -
-200.0 -
-300.0 -
-400.0 -
-500.0 -

I I I I I I I I 1
1:07:00 1:07:30 1:08:00 1:08:30 1:09:00 .1:09:30 1:10:00 1:10:30 1:11:00

WSPY- in CNTS WSpy+ in CNTS--------------
MS/JR+ in CNTS_.........I.........~...........................- WSPR- in CNTS _ _ - _ _ - -

1.0 -

0.5 -

0.0 -

-0.5 -

-1.0 - . \ \ \
-1.5 - '\

-2.0 -
I I I I I I I

1:07:00 1:07:30 1:08:00 1:08:30 1:09:00 1:09:30 1:10:00 1:10:30 1:11:00
RATT in DEG PflTT in DEG ---_r--Dm--m ----
YATT in DEGI.........I.........~....,.........~................~

8000.0 -
6000.0 -
4000.0 -
2000.0 - -a-----.._-

0.0 -
-2000.0 - -s --_
-4000.0 - .,.+ ,,,._. __ l -.-...r . . .

+-..... -...
-6000.0 - m,...-..C.... ...--s -...._ -1

*.-...
-8000.0 - *...�...� �...C__...... *

._........* .v--- l .-.. ..-.,..,...*

-10000.0

1:07:00 1:07:30 1:08:00 1:08:30 1:09:00 1:09:30 1:10:00 1:10:30 1:11:00
RMER in CNTS YflER in CNTS --_---- - _--- ---
PMER i n CNTS_.........I.........-..............-.........-~

Figure 4: Telemetry data after a broken tachometer

1032 / ENGINEERING

The hypothesis failure is found to be caused by not considering one of the
enabling conditions of the wheel unload (Hypothesized Unusual Mode-
Enablement Violated). The heuristic is revised to include this enabling
condition (see Figure 5). Since the heuristic and the explanation for the
failure both applied to thrusters, the revised rule replaces the old version. In
addition to checking the enabling condition, the revision includes a call to
the predicate “cache-proved” which indicates that if this rule succeeds, there
is no need to recheck the enabling condition “unload-window-status” during
the confirmation process.

(problem (normal-operation ?device
?from-jump ?end-jump

(wheel-unload ?axis ?sign ?thruster
?ntimes ?juq)))

:-
(IN-MODE WHEEL-UNLOAD-WINDOW ?START-97 ?END-98)
;MAIcE SURE THE SATELLITE IS IN THE UNLOAD WINDOW.
(isa ?sig

momentum-equivalent-rate-signal)
(feature (jump ?sig ?from-jump ?end-jump

?jump ?start ?end ?slope))
(AFTER ?FROM-JUMP ?START-97)
;MAKE SUFUZ THE JUMP STARTS AFTER
;ENTERING THE UNLOAD WINDOW.
(BEFORE ?END-JUMP ?END-98)
;MAKE SURE THE JUMP ENDS BEFORE

;EXITING THE UNLOAD WINDOW.
(momentum-sig-axis ?sig ?axis)
(is ?s (sign ?jump))
(opposite ?s ?sign)
(thruster-axis ?device ?axis ?sign)
(CACHE-PROVED UNLOAD-WINDOW-STATUS)

Figure 5: Revised Wheel Unload Heuristic-
changesin SMALLCAPITALS

This example also illustrates another point. We are not drawing an
arbitrary line between what we call generating hypotheses and confirming
hypotheses. Not all information is moved from confirmation to generation.
Rather, we move only those tests from confirmation which prevent the
generation of an erroneous hypothesis. In this example, the high
momentum state information is not included in the heuristic because it does
not differentiate a wheel unload from the true fault. -.

After the heuristic has been revised, diagnosis continues. The next
hypothesis is a failure of a tachometer of the PR+ reaction wheel. This
hypothesis is proposed by the second rule in Figure 3. The device model
confirms this hypothesis.

One further example will help to illustrate the other strategies for revising
fault diagnosis heuristics. Figure 6 contains the relevant telemetry data.
For this telemetry tape, the monitor notices several atypical features:

1. WSPR-, WSPR+, WSPY+ and WSPY- have changed an unusual
amount.

2. WSPR+ and WSPR- are 0.

The first hypothesis proposed by the first rule in Figure 3 is that the
tachometer of the PR- wheel is stuck at 0. The confirmation module denies
this hypothesis for the following reason: if the tachometer were stuck at 0,
the attitude of the satellite would change drastically. (The attitude control
system would believe that the wheel was not storing any momentum when
in fact it is. To compensate for the erroneous report of loss of momentum,
the attitude control system would adjust the momentum of the other wheels,
changing the attitude of the satellite.) Since the attitude did not change, the
heuristic must be revised to avoid the generation of this hypothesis in future
similar cases. The hypothesis failure is caused by not checking the
implications of a faulty tachometer (Hypothesized Fault- Inconsistent
Prediction). Checking any of the attitude signals would suffice to
distinguish a faulty tachometer from the actual fault. In Figure 7, the
revision tests YATT.

After the heuristic has been revised, diagnosis continues. The next
hypothesis proposed by the second rule in Figure 3 is that the wheel drive of
the PR- wheel is broken. The device model of a wheel drive includes the
following information: the wheel speed is proportional to the integral of the
wheel drive signal. If the wheel drive signal is positive, the wheel speed
should increase.

During the time that WSPR- increased from -100 to 0, WDPR- was
positive (see figure 6). Therefore, the PR- wheel was not ignoring its drive
signal and the hypothesis is denied. The hypothesis failure is caused by the
fact that WSPR- wheel is indeed doing something very unusual by changing
so rapidly and stopping. However, it is doing this because it is responding
to WDPR-. The heuristic which proposed this fault is revised to consider
the functionality of the device (Hypothesized Fault- Unusual Input).

0.0 -
-50.0 - /-

-)------e--------c----“---------

,'
-100.0 - : : : : - v- +
-150.0 -
-200.0 -
-250.0 - -----*--c%--~~~,~

-300.0 -
-350.0 -

I I I I I I I

0:06:00 0:07:00 0:08:00 0:09:00 0:10:00 0:11:00 0:12:00 0:13:00 0:14:00
WSPY- in CNTS WSpR+ in CNTS--------------
WSpy+ in CNTS-.........................-.........-...........- WSPR- in CNTS - - - _ - - -

-80.0 -- -

0:0z0 0~0~:00 0:0;:00 0:1&0 0:1::00 0:1;:00 0:1;:00 0:14:00
WDPR- in CNTS
WDPR+ in CNTS- - - - - -

Figure 6: Telemetry data after a broken wheel drive

LEARNING / 1033

(problem (problem wheel-tach ?from
(broken-wheel-tach ?wheel ?from)))

(FEATURE (VALUE-VIOLATION YATT ?FROM-32
?END-33 ?VALUE-34))

;MAKX SURE THE YAW ATTITUDE HAS BEEN DISTURBED
(feature(value-violation ?sig ?froxn

?until 0))
(AFTER ?FROM-32 ?FROM)
;MAKE SURE THE ATTITUDE DISTURBANCE IS
:AFTER THE VALUE VIOLATION
(measurexnent ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
(CACHE-PROVED ATTITUDE-DISTURBANCE)

Figure 7: Revised Faulty Tachometer Heuristic-
changesin SMALLCAPITALS

In Figure 8, the revised heuristic checks that the change of the wheel
speed as it approaches 0 is not due to the drive signal. Since our heuristic
rules and our &vice models are implemented in the same language, it is
possible to move code from the device model to a heuristic rule by
renaming variables. In other systems, this may not be possible. However,
this strategy would still apply if the rule could be revised to indicate what
part of the device model to check for (e.g., test that the observed wheel
speed could not be produced given the wheel drive between timet and
time,). In ACES, it is possible to revise the rule to specify how the test
should be performed instead of m test should be performed.

(problem (problem wheel-drive ?frorn
(broken-wheel-drive ?wheel ?from ?sig)))

:-
(FEATURZ(JUMP ?SIG ?FROM-37 ?UNTIL-38 ?JWMP-39

?START-40 ?END-41 ?SLOPE-42))
;THERE IS A CHANGE IN THE WHEEL SPEED
(feature(value-violation ?sig ?from

?until 0))
(AFTER ?FROM ?FROM-37)

:THB WHEEL SPEED REACHES 0 AFTER IT CHANGES
‘(masurernent ?sig ?wheel speed ?tach)
(isa ?wheel reaction-wheel)
(DRIVES ?DRIVE-43 ?WHEEL)
(MEASUREMENT ?DRIVF.-SIGNAL-44 ?DRIVE-43

AMPLITUDE DIRECT)
;FIND THE WHEEL DRIVE SIGNAL OF THE ?WHEEL
(IS ?DRIVE-SI-GNAL-SIGN-45

(TELEMETRY-SIGNAL-SIGN 7DRIxmSIGNAL-44
?FROM-37 ?UNTIL-38))

;FIND THE SIGN OF THE THE DRIVE SIGNAL
;DURING THE JUMP
(IS ?SLOPE-SIGN-46 (REPORT-SIGN ?SLOPE-42))
;FIND THE SIGN OF SUM?
(NOT (AGREE ?SLOPE-SIGN-46 ?DRIVE-SIGNAL-SIGN-
;MAKE SURE THE DIRECTION OF THE JUMP
;DISAGREES WITH THE DRIVE-SIGNAL.
(CACHE-DISPROVED WHEEL-DRIVE-STATUS)

Figure 8: Revised Wheel Drive Heuristic-
changesin SMALLCAPITALS

45))

After the heuristic has been revised, another hypothesis is found to
account for the atypical features: the faulty wheel drive heuristic proposes
that the PR+ drive is ignoring its input since WSPR+ is 0, and when it
increased to 0, WDPR+ was negative indicating that the speed should
decrease (see Figure 6). The confirmation of this hypothesis is trivial since
the heuristic already proved that the drive was not functioning according to
its device description. After the fault is confirmed, the effects on the rest of
the attitude control system are assessed. Since roll momentum is stored as
the difference between the speed of the PR+ and PR- reaction wheels, when
WSPR+ goes to 0, WSPR- should change by the same amount. The
satellite was in a very unusual state prior to the failure: WSPR+ and WSPR-
were equal. When the PR+ drive broke, WSPR- went to 0 to compensate for
the change in WSPR+. In addition, since the pitch momentum is stored as
the sum of all four wheels, to maintain pitch momentum WSPY+ and
WSPY- decreased by the amount that WSPR+ and WSPR- increased.
While WSPY+ and WSPY- decreased, the difference between them
remained constant to maintain the yaw momentum. The broken PR+ wheel
drive accounts for the atypical features and the diagnosis process
terminates.

Results
There are two standards for evaluating the effects of learning in ACES.

First, there is the performance of ACES using the rules in Figure 3. We call
this version naive-ACES. Additionally, there is the performance of ACES
using rules hand-coded from information provided by an expert. We call
this version of the system expert-ACES. The performance of the naive-
ACES after learning is compared to naive-ACES and expert-ACES in
Figure 9 and Figure 10. There are four test cases which are used for
comparison:

1. A tachometer stuck at 0 (see Figure 4).

2. A wheel drive ignoring its input when the opposite wheel is at the
same speed (see Figure 6).

3. A wheel unload (i.e., the
the firing of a thruster).

speed of the reaction wheels is changed by

4. A wheel drive ignoring its input in the usual case where the opposite
wheel is at a different speed.

The data in Figure 9 demonstrate that the failure driven learning
technique presented in this paper improves the simple fault diagnosis
heuristics to the extent that the performance of ACES using the learned
heuristics is comparable to the system using the rules provided by an expert.
In one case, the performance of the learned rules is even better than the
expert provided rules. This particular case is the previous example in which
a wheel drive broke when the satellite was in an unusual state. The
heuristic provided by the expert did not anticipate the rare condition that
two opposing wheel speeds were equal.

CASE fault naive
ACES

naive+ expert
learning ACES

1 tachometer 21 1 1
2 wheel drive 4 1 2
3 wheel unload 1 1 1
4 wheel drive 2 1 1

Figure 9: Number of Fault Hypotheses

The data in Figure 10 reveal that the number of logical inferences

required by the expert system decreases after learning. This demonstrates
that after learning, the expert system is doing less work to identify a failure
rather than moving the same amount of work from hypothesis confirmation
to hypothesis generation. Comparing the number of inferences required by
naive-ACES after learning to those of expert-ACES is not actually fair since
it appears that the expert’s rules at times test some information retested by
the confirmation process. Recall that retesting is avoided by a revised rule
since the revision contains information to cache the results of consulting a
device model. It has been our experience that this cache reduces the
number of inferences by approximately ten percent. An additional ten
percent of the inferences am saved through intelligent ordering of clauses of
revised rules compared to our initial simple approach of appending the
revision to the end of a rule.

1034 / ENGINEERING

CASE fault naive naive+ expert
ACES learning ACES

1 tachometer 2268 211 584
2 wheel drive 1238 616 910
3 wheel unload 870 861 947
4 wheel drive 745 409 643

Figure 10: Number of Inferences to Generate and Confirm Fault

Conclusion

We have presented an approach to learning fault diagnosis heuristics by
determining what aspect of a device model must be consulted to distinguish
one fault from another fault with similar features. This approach relies on
explaining why a heuristic does not apply in a certain case and correcting
the heuristic to avoid proposing an erroneous fault hypothesis. Applying
this technique to a simple version of the ACES expert system for the
diagnosis of faults in the attitude control system yields performance
comparable to and in some cases better than the performance of ACES with
expert fault diagnosis heuristics.

Acknowledgements

Comments by Anne Brindle, Jack Hodges, Steve Margolis, Rod McGuire
and Hilarie Orman helped clarify this article. This research was supported
by the U.S. Air Force Space Division under contract FO4701-85-C-0086
and by the Aerospace Sponsored Research Program.

References

111 Cantone, R., Pipitone, F., Lander, W., & Marrone, M. Model-based
Probabilistic Reasoning for Electronics Troubleshooting. In Proceedings of
the Eigth International Joint Conference on Artificial Intellegence, pages
207-211. IJCAI, Vancouver, August, 1983.

PI Charniak, E., Riesbeck, C. and McDermott, D. Artzjkial
Intelligence Programming. Lawrence Erlbaum Associates, Hillsdale, NJ,
1980.

[31 Davis, R., Shrobe, H., et al. Diagnosis Based on Description of
Structure and Function. In Proceedings of the National Conference on
Artificial Intelligence. American Association for Artificial Intelligence,
Pittsburgh, PA, 1982.

141 de Kleer, J. & Brown, J. A Qualitative Physics Based on
Confluences. Artzjicial Intelligence 24(l), 1984.

151 DeJong, G. Acquiring Sche:nata Through Understanding and
Generalizing Plans. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence. Karlsruhe, West Germany, 1983.

161 Genesereth, M., Bennett, J.S., Hollander, C.R. DART: Expert
Systems for Automated Computer Fault Diagnosis. In Proceedings of the
Annual Conference. Association for Computing Machinery, Baltimore,
MD., 1981.

[71 Michie, D. Inductive Rule Generation in the Context of the Fifth
Generation. In Proceedings of the International Machine Learning
Workshop. Monticello, Illinois, 1983.

PI Mitchell, T. Generalization as Search. Artificial Intelligence 18(2),
1982.

PI Mitchell, T., Kedar-Cabelli, S. & Keller, R. A Unifying Framework
for Explanation-bused Learning. Technical Report, Rutgers University,
1985.

[lo] Naish, Lee. Prolog Control Rules. In Proceedings of the Ninth
International Joint Conference on Artificial Intellegence, pages 720-722.
IJCAI, Los Angeles, CA, August, 1985.

[111 Nelson, W.R. REACTOR: An Expert System for Diagnosis and
Treatment of Nuclear Reactor Accidents. In Proceedings of the National
Conference on Artificial Intelligence. AAAI, Pittsburgh, PA, 1982.

[121 Schank, R. Dynamic Memory: A Theory of Reminding and
Learning in Computers and People. Cambridge University Press, 1982.

[131 Sembugamoorthy, V. & Chandraskaran, B. Functional
Representation of Devices and Compilation of Diagnostic Problem Solving
Systems. Technical Report, Ohio State University, March, 1985.

[141 Shortliffe, E.H. Computer-based Medical Consultation: MYCIN.
American Elsevier, New York, NY, 1976.

[IS] Stallman, R. M. & Sussman, G. J. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided
Circuit Analysis. Artificial Intelligence g(2): 135-196, 1977.

[16] Vere, S. Induction of Concepts in the Predicate Calculus. In
Proceedings of the Fourth International Joint Conference on Artificial
Intelligence. Tbilisi, USSR, 1975.

LEARNING / 1035

