
LEARNING ARITHMETIC PROBLEM SOLVER 

Masamichi SHIMURA and Seiichiro SAKURAI 
Tokyo Institute of Technology 
Department of Computer Science 

Ohokayama, Ileguro, Tokyo 

ABSTRACT 

In this paper we describe a problem solving 
system with a learning mechanism (Learning 
Arithmetic Problem Solver, LAPS), which can solve 
arithmetic problems written in natural languages. 
Since LAPS has knowledge about arithmetic 
problems in the form of rules, it can solve many 
different problems without alteration of the 
program. When LAPS cannot solve a given problem 
because of a shortage of knowledge, it asks the 
user how to solve the problem. According to the 
user's advice LAPS acquires knowledge and rules. 
Using these rules, LAPS can solve problems. 
Furthermore, LAPS can improve its performance at 
problem solving by synthesizing rules that are 
applied. 

I INTRODUCTION 

Recently many researchers in A.I. or K.E. have 
developed several practical knowledge based 
systems. However, such systems are restricted to 
rather narrow fields. In general-use systems the 
knowledge required is excessive and knowledge 
acquisition is a bottleneck. This paper presents 
a knowledge acquisition method in problem solving 
systems. For problem solving, the system needs 
knowledge to understand the problem and to derive 
equations. Our LAPS can solve algebraic problems 
given in natural language. When knowledge is lack- 
ing, LA?S can acquire some knowledge to solve a 
given problem through interaction with a user or 
teacher. The knowledge obtained from him is 
generalized and stored in the system. Through the 
process of problem solving LAPS can get problem- 
solving knowledge by synthesizing rules that are 
applied. Once LAPS succeeds in solving the 
problem, it can solve a similar problem without 
backtracking. In other words, LAPS can improve 
its performance at problem solving by learning. 

Early attempts at solving algebraic problems 
given in natural language are the programs by 
Bobrow and Charniak[l]. However the elementary 
parsing technique and simple semantic structures 
used by Bobrow and Charniak are inadequate for 
any but the easiest problems. Bundy[2]'s MECHO 
solves a wide range of mechanics problems given 
in English. MECHO uses meta-level inference, 
which provides powerful techniques for controlling 
the use of knowledge. MECHO, however, must be 
provided with full knowledge in order to solve 
problems. LAPS has a learning module and can fill 

in knowledge deficiencies. Davis[3]'s TEIRESIAS 
can obtain knowledge through interaction with 
users, but TEIRESIAS's purpose is as a knowledge 
acquisition system for an expert system rather 
than a learning system. Our intention has been to 
build a system which can understand a natural 
language, solve problems, and learn through the 
interaction with a teacher or by problem solving. 

II LAPS PROGRAM 

As shown in Figure 1 LAPS consists of a 
natural language processor, problem solver, rule 
generator, rule modifier and knowledge base, 

Natural Language Process0 

Problem Solver 

Rule Generato 

Figure 1. The structure of LAPS 

In our system, the input statements describing 
a given problem are translated into an accessible 
and modifiable structure for the system by the 
natural language processor. The natural language 
processor consists of a syntactic parser and a 
semantic analyzer. As the syntactic analyzer, the 
extended LINGOL[4] is used. LINGOL generates 
multiple parsed trees from an input statement 
when there is syntactic ambiguity. Each parsed 
tree is not only the structured data but also a 
program for the semantic analyzer. After selecting 
the most plausible one from the multiple trees, 
LAPS invokes the semantic processing routine in 
.order to produce the appropriate structure. This 
structure is called a "fact-graph" which is a 
kind of semantic network, In the fact-graph, nodes 
correspond to objects represented by subjective 
and objective words'in the problem statement, and 
links correspond to objects' property represented 
by their modifiers, The process of semantic 
analysis proceeds by the generation of nodes and 
the connection of two nodes with a link. Thus a 
data base about the given problem is constructed 
in the system. 

Figure 2 shows an example of the hierarchy of 
concepts in the knowledge base represented by the 
connection of nodes with links, Such hierarchical 

1036 / ENGINEERING 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



knowledge is used for 
acquired knowledge. 

the process of generalizing 

b-u 

solution 

sugar solution 

Figure 2. Example of the hierarchy of concepts 

For solving arithmetic problems, the system 
derives equations using the data base 
constructed from the problem description. In our 
system, some knowledge rules are used in deriving 
the appropriate equations for the given problem. 
That is, using heuristics, the system chooses the 
most likely equation among the candidates. Then 
the derived equation is rewritten by symbol 
manipulation so that variables are moved to the 
left hand side of the equation. A repetitive 
substitution of value into variables is made until 
no variables appear in the representation. In the 
above manipulation, the algebraic formula for 
solving a given problem is stored in a tree 
structure. Then the problem solver works toward 
extraction of simultaneous equations, and solves 
them by using an equation extraction rule. 

The equation extraction rule consists of a 
lambda part, a target part, a condition part, and 
an action part. The lambda part is a list of 
variables, and the target part contains a 
condition about the target variable. When LAPS 
solves a problem, it determines a target variable 
for the derivation of an equation and then 
generates an applicable rule list by checking the 
target part of each rule. By matching the 
condition part with the fact-graph, the 
correspondence of the variables in the condition 
part with the nodes and links in the 
fact-graph is performed. After replacing the 
variables in the action part according to this 
correspondence, an equation is extracted by the 
evaluation of the action part. Since the value of 
any variable in the action part does not need to 
be known, the rules are used in a variety of 
cases. The condition part is represented in the 
form of a Lisp function or the form defined by 
the user. Operators, "and", "or", and 'lnot" are 
used for connection of the conditions. An example 
of a rule for extracting equations is shown as 
follows. "Condition-add", "action-equation", 
"action-term" and l'action-expression" are names 
of forms defined by the user. The following rule 
in Figure 3 is paraphrased as: 

If * z is a sum of *x and 
the equation *z=*x+*y 

*y then extract 

Since LAPS has knowledge about extracting 
equations in the form of such rules, LAPS's 
knowledge of solving problems can be extended 
easily by adding rules. 

le-1 eq-ru 
(lambda = 
(target = 

(condition 
(action = 

le 
(*target *property)) 
(member *property 
(cardnum weight price . 
= (condition-add *x *y 
(action-equation 
(action-term *z *proper 
= 

- .I>) 
*z>> 
tY) 

(action-expression 
(action-term *y *proper tr) 

(action-term *x *property))))) 

Figure 3. Example of a rule 

Figure 4 shows the LAPS's main routine. When 
no rules match the given problem, LAPS asks a 
teacher how to solve it. LAPS analyzes the 
teacher's answer given in natural language and 
stores it in the form of a generalized rule. This 
generalized rule is produced by the rule generator 
module. The obtained rule, however, is not always 
correct because of the generalization process. If 
LAPS finds that the obtained rule is inappropriate 
for the given problem, the rule is revised 
according to the teacher's supervision, For the 
modification of the rule, LAPS invokes the rule 
modifier module and interacts with the teacher. 

repeat 
get a problem from a teacher 
repeat 
if a rule matches the given problem then 
apply it (no learning) 

else get an instruction from a teacher 
and generate a rule 

until the problem is solved 
until the teacher satisfies 

Figure 4. LAPS's main routine 

III GENERATING A RULE 

A. Generating A Rule From A Teacher 

When LAPS cannot solve a problem because of a 
shortage of knowledge, LAPS resolves this lack of 
knowledge in order to solve the problem. The 
teacher's advice given in natural language is 
transformed to the internal form. Consider the 
following advice. 

The weight of a solution of salt equals the 
total number of the water and the salt. 

The follwing equation can be obtained from 
the above statement, where "solution", "water" 
and "salt" are variables which correspond to the 
objects appearing in the problem statements. 

LEARNING / 1037 



weight (solution) = weight (water) +weight (salt) equation is structured data. In this way, LAPS 
obtain the action part from a teacher’s advice 

can 

This rule can be obtained by the simple 
transformation of an input statement. It is, 
however, a very specific equation and can be used 
only for problems about salt solutions. For 
example, the above rule cannot be used for 
problems about sugar solutions. Even if we extend 
the LAPS’s inference mechanism so that LAPS can 
infer by using the hierarchy of concepts, its 
execution time may be excessive unless the user 
controls the inference mechanism. The generation 
of such specific rules may cause the explosion of 
the rule base. Our system generates more 
generalized rules which are applicable to a wider 
variety of problems. 

Generalization is done by 1) dropping 
conditions, 2) replacing constants with variables, 
and 3) abstracting the concepts by moving up the 
hierarchy of concepts in the knowledge base. 
Disjunctive generalization is made by adding 
additional conditions or replacing conjunction by 
disjunction. 

For the generalization of a rule, the standard 
generalization technique of Mitchell[5][6] has 
been used. However his candidate elimination 
algorithm is not very efficient because it is data 
driven. For the efficiency of generalization, LAPS 
restricts the initial description of the 
hypothesis so that the search space is 
comparatively small. For example, if all constants 
appearing in the generated rule are replaced by 
variables, LAPS could not derive an adequate 
equation because correspondence of variables with 
the nodes and links in the fact-graph cannot be 
obtained. To extract an adequate equation by 
applying learned rules, all the variables in the 
action part must be included in the condition 
part. Once a new variable is introduced into the 
action part by applying the constants replacing 
rule, the condition part must be fulfilled for 
generating new variables. Also, the condition 
part, even if some condition is dropped, must 
still include all the variables in the action 
part. If infinite disjunctive generalization is 
permitted, the space of the hypotheses becomes 
infinite. Disjunctive generalization is made, 
therefore, only when LAPS determines the initial 
description and there exist alternative 
hypotheses. To determine the initial description, 
LAPS generalizes the input data so that there 
exist no more general descriptions which include 
all the variables in the action part. 

1. Action Part 

In order to translate the advice given in 
natural language, the equation extraction rules 
are utilized. The input statement is translated 
into a fact-graph, and then equations are 
extracted from the fact-graph, As a result of 
solving the simultaneous equations, an equation, 
which includes only one variable, is obtained. 
Finally, the system can get an executable form by 
using a pattern matcher, since the obtained 

2. Condition Part 

It is not easy for a teacher to input a 
complete form of the conditions, Therefore, LAPS 
generates the condition part by translating the 
original problem statement into the internal 
format, Since the simply translated form is about 
a specific problem, the translated form should be 
generalized. In the generalization process 
redundant or noisy parts of the original problem 
must be ignored and over-generalization should be 
avoided. In order to modify the translated form 
without backtracking, two conditions are employed 
in association with the rules generated from the 
advice. These two conditions are the maximally 
general condition and the maximally specific 
condition, which hold information about the 
problem states where application of the rule is 
appropriate or inappropriate. 

In applying rules, LAPS checks whether the 
given problem satisfies both these conditions or 
not. If only the general condition is satisfied 
then LAPS identifies whether the application of 
the rule is appropriate or not. To identify 
applicability of the rule, LAPS generates an 
English statement from the rule and interacts 
with the outside teacher. If the application of 
the rule is appropriate, LAPS generalizes the 
maximally specific condition so that the current 
problem satisfies the new condition. If the 
application of the rule is inappropriate, LAPS 
specializes the maximally general condition so 
that the current state does not satisfy the new 
condition. After proceeding with the process of 
the modification of a rule, LAPS acquires a new 
complete rule, if the maximally general condition 
is equal to the maximally specific condition. 
LAPS can solve problems by using the incomplete 
rule during rule learning. 

B. Generating A Rule From The Execution Process 

As described above, LAPS combines equation 
extraction rules so as to solve problems. When 
some rules are applicable to the current target 
variable, LAPS can select a better rule by using 
heuristic information to resolve rule conflict, 
When an inadequate rule is selected, LAPS 
backtracks so as to obtain better rules. 

1. Action Part 

In order to improve performance, LAPS 
generates a new rule by synthesizing rules which 
were applied during problem solving. As LAPS 
constructs a tree structure which contains the 
information for combining equations, LAPS can 
synthesize the action parts of the applied rules 
by traversing the tree and using the information 
stored in the structure. LAPS composes equations 
by symbol manipulation and then translates the 

1038 / ENGINEERING 



composed equation into executable form. This 
process proceeds almost identically to the process 
of making an action part from the teacher’s state- 
ment. The difference between the two processes 
is that by solving a problem the composition 
process requires generalization of the equation. 
In other words, the tree structure generated is 
for a specific problem, and the rule generated by 
using only such specific information is a specific 
one. To get more generalized rules, new variables 
are introduced into the action part by replacing 
constants so that the generated rule can be used 
in similar types of problems. Unless the range of 
the value of the introduced variables is 
restricted, however, the application of a 
generated rule results in extracting an incorrect 
equation. Consider the following equation where X 
is a variable. 

speed(X) = distance(X) / time(X) 

Since the above equation is derived by rules, 
the system can recognize that the following 
equation is incorrect. 

distance(X) = speed(X) / time(X) 

Equation extraction rules represents not only 
equations for solving problems but also con- 
straints on the equations. In LAPS, the range of 
the variables is restricted by using the equation 
extraction rules. When a rule is extracted in the 
execution process, the constraints of the 
introduced variables are composed into the 
condition part of the rule. 

C. Comparative Review 

An equation extraction rule can be considered 
as a model of a problem, since its condition part 
represents the problem statements and its action 
part represents the problem solving procedures. In 
order to generate a new equation extraction rule, 
the rules initially given in the system are used 

as domain dependent knowledge. Hence our method is 
applicable for knowledge acquisition by altering 
the rules. 

Since the process of generating a rule from a 
teacher is based on a data driven method, it 
requires many examples to complete a new rule. 
On the other hand, the process of generalizing a 
rule is a model driven method guided by the 
equation extraction rules and does not require as 
many examples. If appropriate models are given, 
knowledge acquisition in LAPS is realized in 
comparatively short time. 

IV IMPLEMENTATION 

LAPS is written in UTILISP[S] on MC68000 
(12.5MHz) , and the program contains about 7000 
lines, There are about 20 grammar rules and 
almost 400 words in the dictionary. There are 10 
equation extraction rules, but LAPS can solve 
many problems by combining these rules. When 
LAPS lacks knowledge to solve a given problem, 
LAPS asks the user how to solve the problem. 
Figure 5 shows the example of a dialogue when 
LAPS queries. The statement preceded by “3 I1 are 
the user’s input. 

-> There is water with a weight of 95 grams. 
Please continue. 
-> We dissolve salt with a weight of 5 grams in 
the water. 
Please continue. 
-> What is the concentration of the solution? 

Excuse me, please teach me how to solve the 
problem. 
-) The concentration of a solution is the weight 
of the salt divided by the weight of the solution 
times 100. 
Thank you very much. 
I’ll try to solve the problem. 

The answer is 5. 

Figure 5. Example of a dialogue 
knowledge. 

when LAPS lacks 

In Figure 5 the first attempts to solve the 
given problem results in a failure because of a 
shortage of knowledge. Then LAPS asks the user 
how to solve the problem, solves it by using the 
acquired knowledge, and acquires a new rule. 
However, since the acquired rule is not 
guaranteed correct, LAPS uses the newly acquired 
rule while checking its applicability, If only 
one condition of the learned rule is satisfied, 
LAPS asks the user whether the rule is applicable 
or not. According to the user’s advice, LAPS can 
then solve the second problem while modifying the 
rule. 

LEARNING / 1039 



To improve the performance of LAPS, LAPS 
generates a new rule by synthesizing rules applied 
during solving problems, Figure 6 shows the 
example of a dialogue with LAPS. The cardnum in 
Figure 6 represents the function which returns the 
number of elements of the given objects. 

-> The total number of cranes and turtles is 20. 
Please continue. 
-> The total number of legs of cranes and turtles 
is 60. 
Please continue. 
-: How many cranes are there? 
As the number of crane's legs is 2, 
cardnum(crane-1) = cardnum(leg-of-crane-l) * l/2 
As the total number of legs of cranes and turtles 
is 60, 
cardnum(leg-of-crane-l) = 

(60 - cardnwn(leg-of-turtle-l) ) 
As the number of a turtle's legs is 4, 
cardnum(leg-of-turtle-l) = cardnum(turtle-1) * 4 
As the total number of cranes and turtles is 20, 
cardnum(turtle-1) = (20 - cardnum(crane-1) ) 
Consequently, 

cardnum(crane-1) = 10 
The answer is 10. 

Figure 6. Example of a dialogue 

After solving the problem shown in Figure 6, 
LAPS generates a new rule which may produce the 
following equation. 

cardnum(crane-1) = 
(cardnum(animal-1) * cardnum 

cardnum(leg-of-animal-l)) 
/ 
(cardnum(leg-of-turtle) 

cardnum(leg-of-crane)) 

Figure 7. Example of a composed 

leg-of-turtle) 

equation 

In Figure 7 cardnum(leg-of-turtle) and 
cardnum(leg-of-crane) represent the numbers of 
turtle's legs and crane's legs, respectively. 
Cardnum(animal-1) represents the total number of 
cranes and turtles, and cardnum(leg-of-animal-l) 
represents the total-number of legs of cranes and 
turtles. LAPS generalizes the above equation so 
that LAPS can solve a similar problem by applying 
the newly generated rule. In the above equation, 
the constants are replaced by the different 
variables, and the conditions which include the 
newly introduced variables are appended to the 
condition part of the rule. Then the newly 
synthesized rule will be tested in the future 
problem solving. To identify the applicability of 

the new rule, LAPS interacts with the teacher. If 
the generalization by replacing constants is 
incorrect, specialization of the rule by replacing 
variables to constants will be done. 

V CONCLUSIONS 

In this paper, we presented a problem solving 
system which employs learning, problem solving and 
natural language processing together. With the aid 
of a teacher, our system can acquire new knowledge 
and utilize it, Learning from examples creates 
equation extraction rules that can be used in the 
problem solver. However, LAPS cannot acquire 
disjunctive concepts because of using Mitchell's 
candidate elimination algorithm. And if the 
maximally specific condition is overly generalized, 
the rule learning results in a failure because 
LAPS cannot restore the information that were 
discarded. 

REFERENCES 

[l]Charniak, E. "Compute solution of calculus 
word problems", In Proc. IJCAI-69, Washington 
D.C., 1969, pp. 303-316 

[2]Bundy, A., Byrd, L., Luger, G., Mellish, C. and 
Palmer, M., "Solving Mechanics Problems Using 
Meta-level Inference", In Proc. IJCAI-79. Tokyo, 
Japan, August, 1979, pp. 1017-1027. 

[S]Davis, R. and Buchanan, B. G. "Meta-level 
knowledge: overview and applications", In Proc. 
IJCAI-77. Cambridge, USA, August, 1977, 
pp. 920-927. 

[4]Unemi, T. Master thesis, Tokyo Institute of 
Technology, Tokyo, Japan, March, 1980. 

[SlMitchell, T. M. ltVersion spaces: a candidate 
elimination approach to rule learning", In Proc. 
IJCAI-77. Cambridge, USA, August, 1977, 
pp. 305-310. 

[6]Mitchell, T. M. "Generalization as Search" 
Artificial Intelligence 18:2 (1982), 205-226 

[7]Neves, D. M. "Learning procedures from examples 
and by doing" In Proc: IJCAI-85. Los Angels, 
USA, August, 1985, pp. 624-630 

[8]Michalski, R. S. "A Theory And Methodology Of 
Inductive Learning", Machine Learning, tioga, 
1983, pp. 83-134. 

[SlChikayama, T. UTILISP Manual, METR 81-6, 
Department of mathematical engineering and 
instrumentation physics, University of Tokyo, 
1981. 

1040 / ENGINEERING 


