
RESTRICTING LOGIC GRAMMARS

EDWARD P. STABLER, JR.

Quintus Computer Systems
2345 Yale St.,

Palo Alto, CA, 94306
stabler@quintus.uucp

ABSTRACT

A parser formalism for natural languages that is so restricted as to

rule out the definition of linguistic structures that do not occur in any

natural language can make the task of grammar construction

easier, whether it is done manually (by a programmer) or

automatically (by a grammar induction system). A restrictive

grammar formalism for logic programming languages is presented

that imposes some of the constraints suggested by recent

Chomskian linguistic theory. In spite of these restrictions, this

formalism allows for relatively elegant characterizations of natural

languages that can be translated into efficient prolog parsers.

I. INTRODUCTION

The best-known parser formalisms for logic programming systems

have typically aimed to be expressive and efficient rather than

restrictive. It is no surprise that in these systems a grammar writer

can define linguistic structures which do not occur in any natural

language. These “unnatural” structures might suffice for some

particular processing of some particular fragment of a natural

language, but there is a good chance that they will later need

revision if the grammar needs to be extended to cover more of the

natural language. On the other hand, if the grammar writer’s

options could be limited in the right way, there would be less to

consider when a choice had to be made among various ways to

extend the current grammar with the aim of choosing an extension

that will not later need revision. Thus a restricted formalism can

actually make it easier to build large, correct, and upward-

compatible natural language grammars. A similar point obviously

holds for automatic “language learning” systems. If a large class of

languages must be considered, this can increase the difficulty of

the problem of correctly identifying an arbitrary language in the

class. So there are certainly significant practical advantages to

formalisms for natural language parsers which allow the needed

linguistic structures to be defined gracefully while making it

impossible to define structures that never occur.

Recent work in linguistic theory provides some indications about

how we can limit the expressive power of a grammar notation

without excluding any human languages. There appear to be

severe constraints on the possible phrase structures and on the

possible “movement” and “binding” relationships that can occur.

The exact nature of these constraints is somewhat controversial.

This paper will not delve into this controversy, but will just show

how some of the constraints proposed recently by Chomsky and

others, constraints to which all human languages are thought to

conform, can very easily be enforced in a parsing system that

allows an elegant grammar notation. These grammars will be

called “restricted logic grammars” (RLGs). Two well known logic

grammar formalisms, definite clause grammars (DCGs) and

extraposition grammars (XGs) will be briefly reviewed, and then

RLGs will be introduced by showing how they differ from XGs.

RLGs have a new type of rule (“switch rules”) that is of particular

value in the definition of natural languages, and the automatic

enforcement of some of Chomsky’s constraints makes RLG

movement rules simpler than XGs’. We follow the work of (Marcus,

1980), (Berwick, 1982) and others in pursuing this strategy of

restricting the grammar formalism by enforcing Chomsky’s

constraints, but we use a simple nondeterministic top-down

backtracking parsing method. This approach to parsing, which has

been developed in logic programming systems by (Pereira and

Warren, 1980) and others, allows our rules to be very simple and

intuitive. Since, on this approach, determinism is not demanded,

we avoid Marcus’s requirement that all ambiguity be resolved in the

course of a parse.

II. DEFINITE CLAUSE GRAMMARS (DCGs)

DCGs are well known to logic programmers. (See Pereira and

Warren, 1980 for a full account.) DCGs are similar to standard

context free grammars (CFGs), but they are augmented with

certain special features. These grammars are compiled into prolog

clauses which (in their most straightforward use) define a top-

down, backtracking recognizer or parser in prolog.

A DCG rule that expands a nonterminal into a sequence of

nonterminals is very similar to the standard CFG notation, except

that when the right-hand side of a rule contains more than one

element, some operator (like a comma) is required to collect them

together into a single term. The rules of the following grammar

provide a simple example:
s --> np , vp. det --> [the].
*p --> det , n. n --> [woman].
VP --> v. v --> [reads].

(DCG 1)

The elements of the terminal vocabulary are distinguished by being

enclosed in square brackets. An empty expansion of a category

“cat” is written “cat --> [I.” (DCG 1) defines a simple context free

language which includes “the woman reads”.

1048 / ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

Two additional features provide DCGs with considerably more

power. First, the nonterminals in the DCG rules may themselves

have arguments to hold structural representations or special

features, and second, the right hand side of any rule may include

not only the grammatical terminals and nonterminals but also

arbitrary predicates or “tests”. The tests must be distinguished from

the grammatical vocabulary, and so we mark them by enclosing

them in braces, e.g., (test}.

(Pereira and Warren, 1980) define a simple translation which

transforms rules like these into Horn clauses in which each n-place

nonterminal occurs as a predicate with n+2 arguments. The two

added arguments provide a “difference list” representation of the

string that is to be parsed under that nonterminal. Given the

standard prolog depth-first, backtracking proof technique, these

clauses define a standard top-down backtracking parser.

The DCG notation is very powerful. The fact that arbitrary prolog

tests are allowed makes the notation as powerful as prolog is: a

DCG can effectively parse or recognize exactly the class of

effectively parsable or recognizable languages, respectively. Even

eliminating the tests would not restrict the power of the system. We

get the full power of pure prolog when we are allowed to give our

grammatical predicates arbitrary arguments. With just two

arguments to grammatical predicates to hold the difference list

representation of the string to be parsed, we could recognize only

context free languages, but with the extra arguments, it is not hard

to define context sensitive languages like anbncn which are not

context free (cf., Pereira, 1983).

III. EXTRAPOSITION GRAMMARS (XGs)

In spite of the power of DCGs, they are not convenient for the

definition of certain constructions in natural languages. Most

notable among these are the “movement-trace” or “filler-gap”

constructions. These are constructions in which a constituent

seems to have been moved from another position in the sentence.

This treatment of natural language

by recent work in linguistic theory.

syntax been well motivated

For example, there are good reasons to regard the relative pronoun

that introduces a relative clause as having been moved from a

subject or object position in the clause. In the following sentences,

the relative clauses have been enclosed in brackets, and positions

from which “who” has moved is indicated by the position of the

coindexed “[t]“, which is called the “trace”:
The womani [who [t], likes books] reads.
The woman [whoi booksellers like [tli] reads.
The woman [who1 the bookseller told me about

[tli] reads.

In ATN parsers like LUNAR (Woods, 1970), filler-gap constructions

are parsed by what can be regarded as a context free parser

augmented with a “HOLD” list: when a prefixed wh-phrase like “in

which garage” or “who” is parsed, it is put into the HOLD list from

which it can be brought to fill a “gap” in the sentence that follows.

Fernando Pereira (Pereira, 1981, 1983) showed how a very similar

parsing method could be implemented in logic programming

systems. These augmented grammars, which Pereira calls

“extraposition grammars” (XGs) allow everything found in DCGs

and allow, in addition, rules which put an element into a HOLD list -

actually, Pereira calls the data structure which is analogous to the

ATN HOLD list an “extraposition list”. So, for example, in addition

to DCG rules, XGs accept rules like the following:
nt . . . trace --> RHS

where the RHS is any sequence of terminals, nonterminals, and

tests, as in DCGs. The left side of an XG rule need not be a single

nonterminal, but can be a nonterminal followed by I...’ and by any

finite sequence of terminals or nonterminals. The last example can

be read, roughly, as saying that nt can be expanded to RHS on

condition that the category “trace” is given an empty realization

later in the parse. We realize nt as RHS and put trace on the

extraposition list.

This allows for a very natural treatment of certain filler-gap

constructions. For example, Pereira points out that relative clauses

can, at first blush, be handled with rules like the following:

*p --> det , n.
*p --> det , n , relative.
*p --> trace.

relative --> rel marker , s.
rel marker..
rel:pro

.traGe --> relgro.
--> [who].

These rules come close to enforcing the regularity noted earlier: a

relative clause has the structure of a relative pronoun followed by a

sentence that is missing a noun phrase. What these rules say is

that we can expand the relative node to a rel-marker and

sentence, and then expand the rel-marker to a relative pronoun on

condition that some np that occurs after the relative pronoun be

realized as a “trace” that is not realized at all in the terminal string.

It is not hard to see that this set of rules does not quite enforce the

noted regularity, though. These rules will allow the relative pronoun
to be followed by a sentence that has no gap, so long as a gap can

be placed somewhere after the relative pronoun. So, for example,

these rules would accept a sentence like:
* the woman [whoi the man reads the book]

reads [tli.

In this sentence, a gap cannot be found in the sentence [the man

reads the book], but since the second occurrence of “reads” can be

followed by an np, we can realize that np as the trace or associated

with the moved np “who”. But this is clearly a mistake.

To avoid this problem, Pereira suggests treating the extraposition

list as a stack, and then “bracketing” relative clauses by putting an

element on the stack at the beginning of the relative clause which

must be popped off the top before the parsing of the relative can be

successfully completed. This prevents filler-gap relationships that

would hold between anything outside the relative clause and

anything inside.

The rest of this paper does not require a full understanding of

Pereira’s XGs and their implementation. The important points are

the ones we have noted: the extraposition list is used to capture the

filler-trace regularities in natural language; and it is used as a stack

so that putting dummy elements on top of the stack can prevent

access to the list in inappropriate contexts.

NATURAL LANGUAGE / 1049

IV. RESTRICTED LOGIC GRAMMARS (RLGs)

The XG rules for moved constituents are really very useful. The

RLG formalism that will now be presented maintains this feature in

a slightly restricted form. RLGs differ from XGs in three respects

which can be considered more or less independently. First, RLGs

allow a new kind of rules, which we will call “switch rules”. Second,

we will show how the power of the XG leftward movement rules

can be expanded in one respect and restricted in another to

accommodate a wider range of linguistic constructions. And finally,

we show how a similar treatment allows constrained rightward

movement.

A. Switch Rules

In the linguistic literature, the auxiliary verb system in English has

been one of the most common examples of the shortcomings of

context free grammars. The structure of the auxiliary is roughly

described by (Akmajian et al., 1979) in the following way: “The

facts to be accounted for can be stated quite simply: an English

sentence can contain any combination of modal, perfective have,

progressive be, and passive be, but when more than one of these
is present, they must appear in the order given, and each of the

elements of the sequence can appear at most once.” The difficult

thing to account for elegantly in a context free definition is that the

first in a sequence of verbs can occur before the subject. So for

example, we have:
I have been successful.
Have I been successful?

This is a rather peculiar phenomenon: it is as if the well defined

sequences of auxiliaries can “wrap” themselves around the

(arbitrarily long) subject np of the sentence.

Most parsers have special rules to try to exploit the regularity

between simple declarative sentences and their corresponding

question forms. (Marcus, 1980) and (Berwick, 1982), for example,

use a “switch” rule which, when an auxiliary followed by a noun

phrase is detected at the beginning of a sentence, attaches the

noun phrase to the parse tree first, leaving the auxiliary in its

“unwrapped”, canonical position, so that it can be parsed with the

same rules as are used for parsing the declarative forms.

It turns out to be possible to implement a rule very much like

Marcus’s in logic programming systems. When an auxiliary is

found at the beginning of a sentence, its parsing is postponed while

an attempt is made to parse an np immediately following it. When

that np is parsed it is just removed from the list of words left to

parse, leaving the auxiliary verb sequence in its canonical form. We

use a notation like the following:
s --> switch(aux-verb , np) , vp.

The predicate “switch” triggers the special behavior. These switch

rules can be implemented very easily and efficiently in prolog

(Stabler, 1986ms, 1983). To account properly for the placement of

negation, etc. requires some complication in the rules, but this kind

of rule with its simple “look ahead” is exactly what is needed.

B. Leftward Movement

When introducing the XG rules above, we considered some rules

for relative clauses but not rules for fronted wh-phrases like the one

in “In which garage did you put the car?” or the one in “Which car

did you put in the garage?“. The most natural rules for these

constructions would look something like the following:
s --> wh_phrase , s.
whghrase. ..pp_trace(wh-feature) -->

pp(wh-feature).
wh-phrase.. .np_trace(wh-feature,Case,Agreement)

--> np(wh-feature,Case,Agreement).

pp --> pp_trace(wh-feature).
np(Case,Agreement) -->

np_trace(wh-feature,Case,Agreement).

If we assume that these rules are included in the grammar along

with the XG rules for relative clauses discussed above, then we

properly exclude any possibility of finding the gapped wh-phrase

inside a relative clause:
* What car did the man [who put

[*p-trace] in the garage] go?
* In which garage did the man [who

put the car [pp-trace]] go?

These sentences are properly ruled out by Pereira’s “bracketing”

constraint.

There are other restrictions on filler-gap relations, though, that are

not captured by the bracketing constraint on relative clauses. The

following sentence, for example, would be allowed by rules like the

ones proposed above:
* About what did they burn [the politician's

book [pp-trace]]?
* Who did I wonder whether she was (*p-trace)?

These filler-gap relations are unacceptable. How can this filler-gap

relation be blocked? We cannot just use another bracketing

constraint to disallow filler-gap relations that cross vp boundaries,

because that would disallow lots of good sentences like “What did

they burn?“.

There is a very powerful and elegant set of constraints on filler-gap

relations which covers all of these cases and more: . they are

specified by Chomsky’s (Chomsky, 1981) theories of coreference

(“binding”) and movement (“bounding”). The relevant principles

can be formulated in the following way:
(i) A moved constituent must c-command its
trace, where a node 01 c-commands p if
and only if a does not dominate p, but
the first branching node that dominates a
dominates p.

(ii) No rule can relate a constituent x to
constituents Y or Z in a structure of the form:

Y [a . ..[p . ..X...l...l...Z

where u and p are "bounding nodes."
(In English, the bounding nodes for leftward
movement are s and np.)

The first rule, the c-command constraint, by itself rules Out

sentences like the following:
* The computer [which you wrote the program]

uses *p-trace.
* I saw the man who you knew him and I told

np_trace.

since the first branching node that dominates “who” and “which” in

these cases is (on any of the prominent approaches to syntax) a
node that does not dominate anything after the “him”. The second

rule, called subjacency, rules out sentences like
* Who [s did [np the man with *p-trace] like]?
* About what [s did they burn [np my book

h-trace1 II?

1050 / ENGINEERING

In the first of these sentences, “who” does c-command the trace,

but does so across two bounding nodes. In the second of these

sentences, notice that the pp-trace is inside the np, so that we are

not asking about the “burning”, but about the content of the book!

This is properly ruled out by subjacency.

There is one additional complication that needs to be added to

these constraints in order to allow sentences like:
Who [s do you think [s I said [s I read

[*p-trace1 11 I ?
Who [s does Mary think [s you think

[s I said [s I read [np-trace]]]]]?

These “movements” of wh-phrases are allowed in Chomskian

syntax by assuming that wh-phrase movements are “successive

cyclic”: that is, the movement to the front of the sentence is

composed of a number of smaller movements across one s-node

into its “camp” node.

The implementation of RLG movement rules is quite natural. The

trick is just to restrict the access to the extraposition list so that only

the gaps allowed by Chomsky’s constraints will be allowed by the

parser. The c-command restriction can be enforced by indicating

the introduction of a gap at the first branching node that dominates

the moved constituent, and making sure that the gap is found

before the parsing of the dominating node is complete. So, for

example, we replace the following three XG rules with two

indicated RLG rules:
(XG rules)

relative --> rel-marker , s.
rel marker...np trace --> rel-pro.
rel-pro --> [wh;]. -

(RLG rules)
relative <<< *p-trace --> rel-pro , S.
rel-pro --> [who].

The change from I’...” to “CCC” is made to distinguish this approach

to constituents which are moved to the left (leaving a trace to the

right) from RLG rules for rightward movement. The XG’s additional

(linguistically unmotivated) category “rel-marker” is not needed in
the RLG because the trace is introduced to the extraposition list

afferthe first category has been parsed. So the translation of these

RLG rules is similar to the translation of XG rules, except that

rel_pro’s are not treated as gappable nodes, the traces are

indexed, and a test is added to make sure that the trace that is

introduced to the extraposition list is gone when the last constituent

of the relative has been parsed (see Stabler, 1986ms for

implementation details).

Subjacency can be enforced by adding an indication of every

bounding node that is crossed to the extraposition list, and then

changing the access to the extraposition list. Once this is done, it is

clear that we cannot just use the extraposition list as a stack: we

have introduced the indications of bounding nodes, and we have

indexed the traces. The presence of the bounding node markers

allows us to implement subjacency with the rule that a trace cannot

be removed from a list if it is covered by more than one bounding

marker, unless the trace is of a wh-phrase and there is no more

than one covering bound that has no available camp argument.

So, to put the matter roughly, access to the RLG extraposition list is

less restrictive than access to the XG’s in that the c-command and

subjacency constraints are enforced. These restrictions allow a

considerable simplification in the grammar rules. Note that the XG

rules that were shown as examples are comparable in complexity

to the RLG rules shown, but the XG rules were incorrect in the

crucial respects that were pointed out! The XG rules shown allowed

ungrammatical sentences (viz., violations of the subjacency and c-

command constraints) that the RLG rules properly rejected. The

XG rules that properly

more complex.

rule out cases would be considerably

C. Riqhtward Movement

Although the preceding account does successfully enforce

subjacency for leftward movement, no provisions have been made

for any special treatment of rightward moved constituents, as in

sentences like the following:
[The man [tli] arrived [who I

told you aboutli.
*The woman [who likes [the man [tli] 1

arrived [who I told you aboutli.

It is worth pointing out just briefly how these can be accommodated

with techniques similar to those already introduced.

There are a number of ways to deal with these constructions: (i)

The standard top-down left-to-right strategy of “guessing” whether

there is a rightward moved constituent would obviously be

expensive. Backtracking all the way to wherever the incorrect

guess was made is an expensive process, since a whole sentence

with arbitrarily many words may intervene between the incorrect

guess and the point where the error causes a failure. (ii) One

strategy for avoiding unnecessary backtracking is to use

lookahead, but obviously, the lookahead cannot be bounded by

any particular number of words in this case. More sophisticated

lookahead (bounded to a certain number of linguistically motivated

consitituents) can be used (cf., Berwick, 1983), but this approach

requires a complicated buffering and parse-building strategy. (iii) A

third approach would involve special backward modification of the

parse tree, but this is inelegant and computationally expensive. (iv)

A fourth approach is to leave the parse tree to the left unspecified,

passing a variable to the right. This last strategy can be

implemented quite elegantly and feasibly, and it allows for easy

enforcement of subjacency. This is the approach we have taken.

To handle optional rightward movement (extraposition from np), we

use rules like the following:
s --> np, vp, adjunct.

optional-rel --> rel.
optional-rel >>> ((adjunct-->rel) ; Tree).

In these rules, “Tree” is the variable that gets passed to the right.

The last rule can be read informally as saying that optional-rel has

the structure Tree, where the content of Tree will be empty unless

an “adjunct” category is expanded to a rel, in which case Tree can

be instantiated to a trace that can be coindexed with rel.

The situation here is more complicated than the situation in

leftward movement. In rightward movement, following (Baltin,

1981), we provide a special node for attachment, the “adjunct”

node. This violation of the “structure preserving constraint” has

been well motivated by linguistic considerations. The adjunct node

NATURAL LANGUAGE / 105 1

is a node that can do nothing but capture rightward moved pp’s or ACKNOWLEDGMENTS

relative clauses.* I am indebted to Janet Dean Fodor, Fernando Pereira and Yuriy

Tarnawsky for helpful discussions. (Stabler, 1986ms) provides a

more complete discussion of this material, including

implementation details as well as more theoretical discussion.

REFERENCES

[I] Akmajian, A., S. Steele, and T. Wasow. “The Category AUX in

Universal Grammar.” Linguistic Inquiry, 10 (1979) l-64.

[2] Baltin, M.R. “Strict Bounding.” In C.L. Baker and J.J. McCarthy,

eds., The Loqical Problem of Lanquaqe Acquisition. MIT Press

(1981).

[3] Berwick, R.C. Locality Principles and the Acquisition of

Syntactic Knowledqe. Ph.D. Dissertation, MIT Department of

Computer Science and Electrical Engineering (1982).

[4] Bet-wick, R.C. “A Deterministic Parser with Broad Coverage.” In

Proc. 8th IJCAI, 1983.

[5] Betwick, R.C. and Weinberg, A.S. “Deterministic Parsing and

Linguistic Explanation.” 1985ms, forthcoming.

[6] Chomsky, N. Lectures on Government and Bindinq. Foris

Publications, Dordrecht, Holland, 1981.

[7] Colmerauer, A. “Metamorphosis Grammars.” In L. Bolt, ed.,

A second respect in which rightward movement is more

complicated to handle than leftward movement is in the

enforcement of subjacency. Since in a left-to-right parse, rightward

movement proceeds from an embedded gap position to the moved

constituent, we must remove boundary indicators across the

element in the extraposition list that indicates a possible rightward

movement. So to enforce subjacency, we cannot count boundary

indicators between the element and the top; rather we must count

the boundary indicators that are removed across the element.

Subjacency can be enforced only if the element of the extraposition

list that carries “Tree” to the right can also mark whether a

bounding category has been passed (i.e., when the parse of a

bounding category has been completed). Again, the elaboration of

the definition of “virtual” required to implement these ideas is fairly

easy to supply (see Stabler 1986ms for implementation details).

V. CONCLUSIONS AND FUTURE WORK

Even grammar notations with unlimited expressive power can lack

a graceful way to define certain linguistic structures, and they can

define structures that never occur in human languages. DCGs have

universal power, but XGs immediately offer a facility for elegant

characterization of the movement constructions common in natural

languages. RLGs are one more step in this direction toward a

notation for logic grammars that is really appropriate for natural

languages. RLGs provide “switch rule” notation to allow for elegant

characterization of “inverted” or “wrapped” structures, and a

notation for properly constrained movements that defines filler-gap

relations for both rightward and leftward movement, even when

those relations are not properly nested. Getting these results in an

XG would be considerably more awkward, but our approach has

shown how a careful handling of the “extraposition list” allows easy

enforcement of movement constraints.*’ A fairly substantial RLG

grammar for English has been constructed. It runs efficiently, but

the real argument for RLGs is that their rules for movement are

much simpler than would be possible if constraints on movement

were not automatically enforced.

Natural Lanquaqe Communication with Computers. Springer-

Verlag (1978).

[8] Dahl, V. “More on Gapping Grammars.” In Proc. of the Int. Conf.

on Fifth Generation Computer Svstems. Tokyo, Japan, 1984.

[9] Marcus, M. A Theory of Syntactic Recoqnition for Natural

Lanquaqe. MIT Press, Cambridge, MA (1980).

[lo] Pereira, F. “Extraposition Grammars.” American Journal of

Computational Linquistics, 7 (1981) 243-256.

[11] Pereira, F. “Logic for Natural Language Analysis.” Technical

Note 275, SRI International, Menlo Park, California, 1983.

[12] Pereira, F. and Warren, D.H.D. “Definite Clause Grammars for

Natural Language Analysis.” Artificial Intelliaence 13 (1980)

231-278.

[13] Stabler, E.P., Jr. “Deterministic and bottom-up parsing in

prolog.” In Proc. of the National Conference on Al, AAAI-83, 1983.

[14] Stabler, E.P., Jr. “Restricting Logic Grammars with

Government-Binding Theory.” Unpublished manuscript, submitted

to Computational Linquistics (1986ms).

[15] Woods, W.A. “Transition Network Grammars for Natural

Language Analysis.” Communications of the ACM 13 (1970)

591-606.
*These rules for rightward movement are oversimplified. Most linguists

follow (Baltin, 1981) and others in assuming that phrases extraposed from
inside a VP are attached inside of that VP, whereas phrases extraposed
from subject position are attached at the end of the sentence (in the
position we have marked “adjunct”). (Baltin, 1981) points out that this
special constraint on rightward movement seems to hold in other
languages as well, and that we can capture it by counting VP as a
bounding category for rightward movement. This approach could easily be
managed in the framework we have set up here, though we do not
currently have it implemented.

“The MGs of (Colmerauer, 1978), the GGs of (Dahl, 1984) and other
systems are very powerful, and they sometimes allow fairly elegant rules
for natural language constructions, but they are not designed to
automatically enforce constraints: that burden is left to the grammar writer,
and it is not a trivial burden.

1052 / ENGINEERING

