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ABSTRACT: The physics of motion of a sliding object can be 
used to plan sensorless robot manipulation strategies. Prediction 
of a sliding object’s motion is difficult because the object’s 
distribution of support on the surface, and the resulting frictional 

forces, are in general unknown. This paper describes a new 
approach to the analysis of sliding motion, which finds the set of 
object motions for all distributions of support. The analysis 
results in the definition of discrete regions of guaranteed sticking 
and slipping behavior which lend themselves to use in planning. 
Unlike previous work our approach produces quantitative bounds 
on the rate at which predicted motions can occur. To illustrate a 
manipulation plan which requires quantitative information for its 

construction, we consider a strategy based on “herding” a sliding 
disk toward a central goal by moving a robot finger in a decreasing 

spiral about the goal. The optimal spiral is constructed, and its 
performance discussed. 
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1. Introduction 

Sliding operations can be used constructively to manipulate and 
acquire objects, without sensing, and despite uncertainty in the 

orientation and position of the object. For instance, in a typical 
grasping operation a robot opens a two-jaw gripper wide enough to 
accommodate both an object to be grasped, and any uncertainty in 
the object’s position. In the general case, the object will be nearer 
initially to one jaw than to the other, and as the jaws close the 
nearer jaw will make contact first. There follows a sliding phase 
until the second jaw makes contact. During the sliding phase the 
object is likely to rotate. (Once both jaws come into contact with 

the object, sliding on the table becomes less important than 
slipping of the object with respect to the faces of the jaws. This 

regime will not be considered here.) The behavior of an object 
during both phases is discussed in [l]. Brost finds grasp strategies 

which bring the object into a unique configuration in the gripper, 
despite substantial uncertainty in its initial configuration. 
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Another example of the use of sliding is the interaction of an object 
on a moving belt or ramp (as in a parts feeder) with a fixed, 
slanted, fence. (Equivalently the object may be on a stationary 
table, and the fence moving under robot control.) One of many 
possible behaviors of the object when it hits the fence is to rotate 
until a flat edge is flush against the fence, and then to slide along 
the fence. The behavior of objects on encountering a fence has 
been considered in [l] and [2]. In [2], Mani and Wilson find 
strategies for manipulation which can orient an object on a table 
by pushing it in various directions with a fence. Each push aligns 
a facet of the object with the fence. 

R. P. Paul demonstrated a clever grasping sequence on a hinge 
plate. The strategy makes use of sliding to simultaneously reduce 
the uncertainty of a hinge plate’s configuration to zero, and then 

to grasp it [3] [5]. To understand this and similar operations, 
Mason [3] determined the conditions required for translation, 
clockwise (CW) rotation, and counter-clockwise (CCW) rotation of 
a pushed object. Mason’s results are used in both [l] and [2], and 
also in this work. 

The contribution of our work, summarized in section 2, is to place 
quantitative bounds on the rate at which a predicted motion 
occurs, and to demonstrate the application of these bounds to the 
planning of manipulation tasks. Without rate information none of 
the above methods can produce manipulation strategies guaranteed 
to succeed. For instance, to implement one of Mani and Wilson’s 
orientation strategies, it is necessary to find the worst case distance 

a sliding object must be pushed by a fence, before a flat edge of 
the object comes into alignment with the fence. The rate 
information found by our method can be used to determine the 

worst-case distance. 

2. Summary of Analytical Results 

A sliding object has three degrees of freedom. If we require the 
object to be in contact with another object (a pusher), the sliding 
object retains two degrees of freedom, which are most conveniently 
expressed as the coordinates of a point in the plane called the 
center of rotation (COR). Any infinitesimal motion of the object 
can be expressed as a rotation 68 about some COR, chosen so that 

the infinitesimal motion of each point G of the object is 
perpendicular to the vector from the COR to the point Y~J 

Finding the COR of a sliding object in planar contact with a 
surface is complicated by the fact that changes in the distribution 
of support forces under the object substantially affect the motion. 
The distribution of support may be changed dramatically by tiny 
deviations from flatness of the surfaces. Since we wish to 
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determine the motion of any object, without knowing the 
distribution of support for it, our goal is to find the locus of CORs 
under alE possible support distributions. 

The coefficient of friction with the supporting surface (cl,) does not 

affect the motion of the object if we use a simple Coulomb model 
of friction. It is also assumed that all motions are slow (the 
quasi-static uppro&?autio?z. [4]) 

We will take the object being pushed to be a disk with its center of 
mass (CM) at the center. Given another object of interest (e.g. a 

square), we can consider a disk centered at the CM of the square, 

big enough to enclose it. The radius a of the disk is the maximum 

distance from the CM of the square to any point on the square. 

Since any support distribution on the square could also be a 
support distribution on the disk, the COR locus of the disk must 

enclose the COR locus of the square. The locus for the disk 

therefore provides useful bounds on the locus for the real object. 

The parameters of the COR problem are the point of contact Z 
between the pusher and the object, and the angle CY between the 
edge and the line of pushing, as shown in figure 2-1. The values of 
(Y and Z shown are the ones which are needed in considering the 
motion of the five-sided object shown inscribed in the disk. We do 

not require the point of contact -d to be on the perimeter of the 
disk, as this would eliminate applicability of the results to objects 

inscribed in the disk. Similarly, we do not require (Y to be such 
that the edge being pushed is perpendicular to vector 2 , as it 

would be if the object were truly a disk. The disk (with radius a), 

Q, z , and the CM, are shown in figure 2-l. A particularly simple 
distribution of support forces, in which the support is concentrated 

at just a “tripod” of points (q,$, ;;S) is indicated, along with 

what might be the COR for that distribution of support. 

Figur 2-l: Parameters of the pushing problem. 

/ 
CnR 

Peshkin and Sanderson [6] analyze the motion of the sliding object 
in detail. The approach is to minimize the energy dissipated by 

friction with the surface for arbitrary infinitesimal motions. 
Analytical relations are found between the set of all support 
distributions, an intermediate formulation called the Q-locus, and 
the locus of CORs. Boundaries of the COR locus are found by 

evaluating the resulting analytical expressions. 

Figure 2-2 shows examples of the COR loci found [6] for various 

values of cv and Z . In each section the angle c~ of the edge with 
respect to the line of pushing is indicated. The edge may be the 

front edge of a fence pushing a corner of an inscribed object, or it 
may be an edge of the inscribed object in contact with a pushing 
point (as in figure 2-l). Z is the vector from the CM (at the 

center of the disk) to the point of contact indicated by the 
arrowhead. The boundary of the COR locus is shown in bold 
outline. Every point within the locus is the COR for some possible 

distribution of support forces on the disk. Our results [6] indicate 
that no distribution of support forces can result in a COR outside 
the boundary shown. In figure 2-2, the coefficient of friction 

between the pusher and the object (p,) is zero. These elementary 

COR loci are denoted {COR}a. 

0 -P . 
F. 

P 
Figure 2-2: 

Defining the unit vector & = (cos a, sin cy), we observe that the 
COR loci have an axis of symmetry about &. Note that the 
pushing force is directed perpendicular to &, (not parallel to the 
line of motion,) since pc= 0. We see in figure 2-2(c), that if the 

pushing force is directed from the point of contact almost directly 

through the CM, the maximum distance from the CM to an 
element of the COR locus becomes great. This distance, called r 

tap’ 
is infinite if the pushing force is directed at the CM, as shown by 
Mason [3]. In [6] we found a simple formula for r . 

ttP 
: 

U2 

‘tip = K (1) 

As the angle (Y is varied, the tip of {COR}(2 traces out a straight 

line called the tip li?ze. The tip line, (figure 2-3), is perpendicular 

to 2, and a distance u2/c from the CM. 

If the coefficient of friction between pusher and object ~1, is non- 

zero, we find that we can combine two of the elementary (II, = 0) 

COR loci (such as are shown in figure 2-2), and the tip line 
construction, to create a COR sketch comprising all the possible 

locations of the COR for the system with non-zero friction p,. A 

COR sketch is shown in figure 2-4. The two elementary COR loci 
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wwaiv which are to be combined, are shown in outline. The 

half-width of the friction cone is V= tan -lp . The locus of 

possible values of the COR consists of three diitinct intersection 

regions: (1) the part of the elementary COR locus {COR},+, left 

of the sticking line (shown shaded), (2) the part of {COR}a-y right 

of the sticking line (also shaded), and (3) part of the sticking line 
(described below) above the tip line. 

Figure 2-3: rtip (CX) vs. CY, and construction of the tip 

line. 

STICKING 
MODE 

Figure 2-4: Construction of the COR sketch. 

2.1. Modes of Motion 
The sticking lilze is the normal to the line of motion of the pusher, 
at the point of contact. If the COR lies on the sticking line, there 

is no slipping of the object relative to the pusher as motion 
advances. If the COR lies left (resp. right) of the sticking line, the 
object slips down (resp. up) relative to the pusher as motion 
advances. The three component parts of the COR sketch described 
above are designated the down-slipping, up-slipping, and sticking 
loci, respectively. In the example shown, any of the three modes of 
motion (sticking, slipping down, slipping up) are possible, but this 
is not always the case. We can determine the possible modes of 

motion, and their minimum and maximum rates, by constructing 
the COR sketch [7]. 

Whether a clockwise or a counterclockwise mode of rotation occurs 
can also be determined from the COR sketch, or by using the rules 
found by Mason [3]. 

2.2. Application to Gross Motion 
We have seen how bounds can be placed on the possible 
instantaneous motions of a sliding object being pushed by another 
object, in the presence of unknown frictional forces between object 
and table, and between object and pusher. Often we wish to 
calculate not the bounds on the instantaneous of motion, as above, 
but bounds on a gross motion of the object which can occur 
concurrently with some other gross motion of known magnitude. 

(For instance, we may wish to find bounds on the displacement of 
the pusher which occurs while the object rotates 15 degrees.) Our 

approach to dealing with gross motion follows a definite strategy 
outlined below, and explained in more detail in [7]. Examples are 

given in [7]. 

Suppose we wish to find the greatest possible change in a quantity 

2, while quantity p changes from ,Binitial to ,Bfinar. From the 

geometry of the problem we find a differential equation of 
motion relating the instantaneous motions dx and dp. We then 
construct the COR sketch for each value of p. In each sketch we 
locate the possible COR which maximizes dx/d/3. Using that COR, 
we integrate the differential equation of motion from Pinitial to 

,Blinar, yielding an upper bound for the quantity x. 

3. Planning Sensorless Manipulation 
Planning a sensorless manipulation strategy requires construction 
of a sequence of interactions of pusher with pushed object, such 

that the set of all possible positions of the object (which in our case 
is a subset of three dimensional configuration space) is reduced 
from an initial volume to a smaller final volume. Optimally the 
final set of configurations consists of just a point in configuration 
space. Manipulation with sensory feedback permits comparison of 
intermediate states with goal states in order to modify the control 
strategy. In sensorless manipulation prediction of intermediate 
states depends on reliable models of motion. The models are used 
to determine preconditions and results of each operation, and a 
plan evolves by matching a series of subgoals to bounds on motion 
in order to constrain resulting configurations. 

For planning of manipulation strategies it is useful to have a 
graphical representation of the mode of motion of the sliding 
object (i.e. clockwise rotation, counterclockwise rotation, up- 
slipping, down-slipping, and sticking), as a function of the 

parameters which determine the mode: object orientation, and 
direction of pushing. Since in many cases more than one mode is 

possible, the regions corresponding to each mode may overlap. 
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Brost [I] and Mani [2] have independently developed graphica: 
representations for a simplified set of modes of motion consisting 

of only clockwise and counterclockwise rotation. Using our results 
the representations can be extended to incorporate the slipping and 

sticking modes. 

Design of manipulation strategies requires, first, that the possible 
modes of motion be understood. This understanding can be used 

to guide a search for pusher motions which reduce the 
configuration space volume of the possible positions of the pushed 
object. But using only the set of modes, it is not possible to 

move down, as it continues along its path (figure 4-l). To 

guarantee that the disk will be pushed into the spiral, we must 

make sure that it moves down faster than does the pushing point. 

One way of comparing rates of moving down is by considering the 

increase or decrease in the angle p, called the collision parameter, 
in figure 4-l. If as the pusher’s motion along its spiral progresses /3 

increases, the disk is being pushed into the spiral; localization is 
succeeding. But if as the pusher’s motion progresses p decreases, 
the disk is being pushed out of the spiral; localization is failing. 

produce a guaranteed manipulation strategy. It is also necessary 
to understand the quantitative response of the pushed object to 
any proposed push. Since in general one must consider the effect 

of a proposed push on every possible initial position of the pushed 
object, it is essential that calculating the effect of a push be 

computationally inexpensive. 

The qualitative and quantitative results described in section 2 

fulfill both of the requirements listed above. 

4. Spiral Localization of a Disk 
Several examples of sensorless manipulation strategies are analyzed 
in 161 and 171, using the results summarized above (section 2). In 

I 

Figure 4-l: Geometry at the moment of the second 
collision of pusher and disk. 

this section we describe an unusual robot motion by which a. disk, 
free to slide on a tabletop, can be localized without sensing. The 
approach is to enclose the set of possible initial position of the disk 
within a spiral executed by a robot finger. As the spiral decreases 

in radius, the disk is to be pushed towards the center of the spiral. 

Our quantitative results allow us to optimize this strategy by 
choosing the maximum convergence rate of the spiral subject to the 

constraint that the object must not escape. 

CENTER OF SPIRAL 

(PC1 

4.2. Critical Case: Pusher Chasing the Disk around a 

If the disk is known init,ially to be located in some bounded area of 
radius b,, we begin by moving a point-like pusher in a circle of 

radius b,. Then we reduce the pusher’s radius of turning by an 

amount Ab with each revolution, so that the pusher’s motion 
describes a spiral. Eventually the spiral will intersect the disk (of 
radius a), bumping it. We wish the disk to be bumped toward the 
center of the spiral, so that it will be bumped again on the pusher’s 
next revolution, If the spiral is shrinking too fast, however, the 
disk may be bumped out of the spiral instead of toward its center, 

and so the disk will be lost and not localized. 

We wish to find the maximum shrinkage Ab consistent with 
guaranteeing that the disk is bumped into the spiral, and not out. 

(Ab will be a function of the present spiral radius.) We also wish to 
find the number of revolutions which will be required to localize 
the disk to some radius b, with a < b <b,, and the limiting value 

of 6, called bm, below which it will not be possible to guarantee 

localization, regardless of the number of revolutions. 

4.1. Analysis 
Suppose the pushing point has just made contact with the disk. 
Since the previous revolution had radius only Ab greater than the 

current revolution, the pusher must contact the disk at a distance 
at most Ab from the edge of the disk, as shown in figure 4-1. We 

will consider only the worst case, where the distance of the pusher 
from the edge is the full Ab. 

Circular Path 
In the critical case the angle p does not change with advance of the 
pusher. The critical case, shown in figure 4-2, is unstable. The 
pushei’s motion is shown as an arc of a circle, labeled path of 

pusher, and centered at PC. To maintain the critical case, the 

path followed by the CM of the disk (labeled critical path of CM) 
must be as shown in the figure: an arc of a circle, concentric with 

the arc path of pusher. Instantaneously, the direction of motion of 
the CM must be along the line labeled motion of CM, tangent to 

the crilicul path of CM. The critical line, drawn through FY? and 
CM, is by construction perpendicular to the line motion of CM. 
The COR of the disk must fall on the critical line, in order that 

the instantaneous motion along the line motion of CM be tangent 

to the critical path of CM. 

If the COR falls to the left of the critical line, the CM diverges 
from the critical path of CM by moving inside the arc. Therefore 

p will increase with advance of the pusher (i.e. localization is 

succeeding.) If the COR falls to the right of the critical line, the 

CM diverges from the critical path of CA! by moving outside the 
arc. Therefore p will decrease with advance of the pusher (i.e. 
localization is failing.) The critical line divides the plane into two 
zones: if the COR falls in the left zone, the disk is pushed into the 

pusher circle, while if the COR falls in the right zone, the disk is 

pushed out of the pusher circle. 

In figure 4-3 we have constructed the COR sketch with collision 
parameter /?. To make sure that the whole COR locus falls to the 

left of the critical line, we need only place the center of the pusher 
We know that if Ab < a the disk will move downward [3]. This is 
not sufficient to assure that the disk will be pushed into the spiral 
(rather than out of the spiral), because the pushing point will also 

motion (PC) below the lower endpoint of the sticking locus. The 
figure shows the marginal case where FC is exactly at the lower 

endpoint of the sticking locus. 
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Figure 4-2: Critical case: pusher “chasing” disk 
around a circular path. 

/ 

Figure 4-3: COR sketch for critical case, and solution 
for location of PC. 

4.3. Critical Radius vs. Collision Parameter 
For every value of ,B, (the collision parameter), we compute the 
distance from the pusher’s line of motion to the lower endpoint of 

the sticking locus. This defines a critical radius r*(p). For each 

collision parameter p, r*(p) is the radius of the tightest circle that 
the pusher can describe with the guarantee that the disk will be 

pushed into the circle. In figure 4-4, a / r*(p) is plotted as a 
function of collision parameter ,8 for each of several values of ~1,. 

The inverse of the function r*(p) will be denoted p*(r ), 

representing the smallest value of j3 for which a pusher motion of 

0.1 0.2 0.3 0.4 0.5 
collwon parameter Cbela/pd 

Figure 4-4: Inverse of the radius of the critical circle 

r*(B) as a function of collision parameter ,B/rr 

radius r still results in guaranteed localization. In terms of the 
pusher’s distance from the top edge of the disk, d, (figure 4-3), we 
can use .the relationship 

a (1 - sin p) = d (2) 

to define the critical distance from grazing d *(r ) as a function of 

r. d *(r ) is the largest d’ t is ante of the pusher from the top edge of 
the disk for which a pusher motion of radius r still results in 
guaranteed localization. 

4.4. Limiting Radius for Localization 
If there is a limiting radius boo of the spiral motion below which 

localization cannot be guaranteed, then as the spiral approaches 
radius boo the motion must become circular. Ab --+ 0 as bw is 

approached, so collisions become grazing collisions, and we have 

the distance from grazing d --+ 0. (In terms of the collision 
parameter p, we have ,B + 7r/2.) If the disk is not to be bumped 

out of the spiral, we must have bw = r*(a=s/2). bco can be 

shown analytically to be 

boo = a(p,+l) for pe 5 1 (3) 

ba = 2 a for pc 2 1 
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We see that only if pLc= 0 can a disk be localized completely, i.e. 

localized to within a circle the same radius as that of the disk. 
Otherwise the tightest circle within which the disk can be localized 
is given by equation 3. 

4.5. Computing the Fastest Guaranteed Spiral 

Let bn be the radius of the nth revolution of the pusher, so that we 

have initially radius b,, and bm is the limiting radius as n -+ CO. 

We define recursively 

bn = b,ml -d *(b,) 

The difference between the radii of consecutive turns of the spiral 

n-1 and n, is Ab = d *(btl). Equation 4 thus enforces the condition 

that on the nth revolution, the value of d is exactly the critical 

value for circular pushing motion of radius bn. 

Figure 4-5 shows the deviation of spiral radius bn above bm, vs. 

number of turns n, on logarithmic and on linear scales. We start 

(arbitrarily) with b, = 100 U. The spiral radius was computed 

numerically for p,= .25, using the results for p*(r) shown in 

figure 4-4, and equation 4. 

Figure 4-5 shows that when the spiral radius is large compared to 
the disk radius a (which is taken to be 1 in the figure), we can 
reduce the radius of the spiral by almost a with each revolution. 

As the limiting radius is approached, the spiral reduces its radius 
more and more slowly, approaching the limiting radius bm a+s 

about n -1.6 , where n is the number of revolutions. 

Figure 4-5 demonstrates the best performance that the “herding” 
strategy can achieve. 
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5. Conclusion 
1Ve have shown how bounds can be placed on the possible 
instantaneous motions of a sliding object being pushed by another 

object, in the presence of unknown frictional forces between object 
and table, and between object and pusher. These bounds provide 
the basis for planning manipulation of sliding objects with or 
without sensors. As an example a sensorless strategy for localizing 
a disk was developed and optimized. We believe that the motion 
of a sliding object is now sufficiently well understood that reliable 
robot strategies taking advantage of sliding motion can be designed 
and verified. 
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Figure 4-6: Deviation of spiral radius from ultimate 
localization radius, vs. number of spiral 
revolutions completed. 
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